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Genomic prediction of complex traits across environments, breeding cycles, and
populations remains a challenge for plant breeding. A potential explanation for this
is that underlying non-additive genetic (GxG) and genotype-by-environment (GxE)
interactions generate allele substitution effects that are non-stationary across different
contexts. Such non-stationary effects of alleles are either ignored or assumed to
be implicitly captured by most gene-to-phenotype (G2P) maps used in genomic
prediction. The implicit capture of non-stationary effects of alleles requires the G2P
map to be re-estimated across different contexts. We discuss the development and
application of hierarchical G2P maps that explicitly capture non-stationary effects
of alleles and have successfully increased short-term prediction accuracy in plant
breeding. These hierarchical G2P maps achieve increases in prediction accuracy by
allowing intermediate processes such as other traits and environmental factors and
their interactions to contribute to complex trait variation. However, long-term prediction
remains a challenge. The plant breeding community should undertake complementary
simulation and empirical experiments to interrogate various hierarchical G2P maps that
connect GxG and GxE interactions simultaneously. The existing genetic correlation
framework can be used to assess the magnitude of non-stationary effects of alleles
and the predictive ability of these hierarchical G2P maps in long-term, multi-context
genomic predictions of complex traits in plant breeding.

Keywords: multi-trait prediction, non-linear relationships, crop growth models, genetic correlation, non-additive
genetic effects, epistasis, pleiotropy, GxE interactions

INTRODUCTION

Response to selection in breeding programs relies on predicting the additive genetic merit of
new individuals for a target population of environments (Hallauer and Miranda, 1988; Comstock,
1996). Predicting the additive genetic merit of individuals, i.e., breeding values, requires the
estimation of allele substitution effects of genetic loci (Falconer and Mackay, 1996). Both functional
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additive genetic effects and functional non-additive genetic
effects, generated by interactions that exist within (dominance)
and between (epistasis) genetic loci, contribute to estimates
of allele substitution effects (Cheverud and Routman, 1996;
Hill et al., 2008; Huang and Mackay, 2016). The contributions
of functional additive effects to allele substitution effects are
considered stationary as they are not influenced by changes in
allele frequencies at genetic loci. However, the contributions
of functional non-additive genetic effects (GxG interactions) to
allele substitution effects are dependent on the allele frequencies
of genetic loci. Therefore, changes in the genetic background can
alter the predictions of allele substitution effects. Predictions of
allele substitution effects can also change across environments,
producing gene-by-environment (GxE) interactions. We refer
to the alterations of allele substitution effects, and therefore
predictions of the additive genetic merit of individuals in
the presence of these interactions as non-stationary effects of
alleles. In the most extreme case, allele substitution effects can
change sign, i.e., from positive to negative values and vice versa,
if changes in the value of non-stationary effects exceed the
value of stationary effects (Paixão and Barton, 2016; Wientjes
et al., 2021). Such sign changes in allele substitution effects
change the performance landscape’s optimum and influence the
breeding target (Wright, 1963; Messina et al., 2011). Therefore,
breeding programs need to accurately predict these non-
stationary effects of alleles across different contexts to deliver
the highest possible response to selection. Beyond the theoretical
considerations, we consider three contexts where the potential
for change in sign of allele substitution effects was identified
to influence genomic prediction accuracy for commercial maize
breeding for the United States corn-belt (Cooper et al., 2014a,b):
breeding cycles, populations, and environments. We anticipate
these considerations will also be relevant for other plant
breeding situations.

Non-stationary effects of alleles decrease the accuracy of
genomic predictions across breeding cycles. The accuracy of
genomic prediction decreases with an increase in breeding cycles
between the training and prediction set (Clark et al., 2012;
Pszczola et al., 2012; Daetwyler et al., 2013; Habier et al., 2013).
Changes in genetic relationships, linkage disequilibrium, and
causal loci’s cosegregation have been identified as important
factors (Habier et al., 2013). These factors can impact GxG
interactions due to changes in allele frequencies. A practical
approach to account for GxG interactions in the decrease in
genomic prediction accuracy over breeding cycles is periodic
retraining of the genomic prediction equation (Podlich et al.,
2004). However, this is costly and may exclude smaller breeding
operations. The ability to estimate non-stationary effects of alleles
can create opportunities to increase the persistence of prediction
accuracy across breeding cycles and widen the application of
genomic prediction in plant breeding.

Non-stationary effects of alleles decrease the accuracy of
genomic predictions across populations. Genomic prediction
across populations is important as the germplasm accessed
for breeding applications is often organized in many different
populations (Melchinger and Gumber, 1998; Technow et al.,
2020; White et al., 2020). Across population prediction often

suffers from lower accuracy than prediction across breeding
cycles due to more considerable differences in allele frequencies
of causal genetic loci (de Roos et al., 2009; Hayes et al.,
2009). Along with mutations and redundancy of causal
genetic loci, extreme differences in allele frequencies can
cause discrepancies in segregation patterns of causal genetic
loci between populations, which can cause large differences
in allele substitution effects between populations (Rio et al.,
2020). Empirical and simulation studies have shown that GxG
interactions primarily determine these large changes in allele
substitution effects between populations (Duenk et al., 2020;
Legarra et al., 2020). Therefore, the ability to accurately capture
GxG interactions in genomic prediction will be necessary to
effectively utilize diverse germplasm (Tanksley and McCouch,
1997; Jordan et al., 2011; Mace et al., 2013, 2020; Gorjanc et al.,
2016; Halewood et al., 2018).

Non-stationary effects of alleles decrease the accuracy of
genomic predictions across environments. Genomic prediction
across environments has allowed faster identification of stable
performing varieties. Most methods that predict performance
across environments, including GxE interactions, have been
purely statistical (Yates and Cochran, 1938; Finlay and Wilkinson,
1963; Eberhart and Russell, 1966; Piepho, 1997; Burgueño
et al., 2012; Crossa, 2012). With implicit knowledge of
environmental effects, these methods have been shown to
increase prediction accuracy within specific datasets or a well-
defined target population of environments. Still, they are
sensitive to changes in the target population of environments.
Explicit knowledge of environmental effects can make genomic
prediction across environments more robust. More recent
methods have demonstrated improved prediction accuracy
by explicitly including environmental covariates in genomic
prediction (Heslot et al., 2014; Jarquín et al., 2014; Costa-Neto
et al., 2021; Jarquin et al., 2021). However, all of these methods
generate predictions conditional on current environments and
therefore represent short-term predictions. Improved long-
term predictions of response to selection in plant breeding,
including effects of GxE interactions, will require methods to
generate predictions of “best-bet” synthetic future environments
(Hammer et al., 2020).

Despite the challenge of non-stationary effects of alleles,
plant breeding has accurately predicted short-term response
to selection to accumulate genetic gain over the long term
(Duvick, 2005; Mackay et al., 2011). Short-term predictions of
response to selection can mitigate non-stationary effects of alleles
by conditioning predictions on current genetic backgrounds
and environments. However, with the introduction of genomic
prediction (Meuwissen et al., 2001), plant breeding now seeks
to re-design breeding programs to further accelerate the pace
of varietal development (Bernardo and Yu, 2007; Heffner et al.,
2009; Gaynor et al., 2017). The increased speed of selection
trajectories of new breeding strategies deploying genomic
prediction places a stronger focus on plant breeding programs’
ability to predict long-term response to selection. Long-term
predictions of response to selection struggle to mitigate the
non-stationary effects of alleles, as predictions conditional
on the current genetic background and environment become
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increasingly uninformative into the future. An illustrative
simulation example to explore these concepts is provided in the
Supplementary Information.

In this perspective, we discuss a few lessons learned
from applying hierarchical gene-to-phenotype (G2P) maps in
predictive breeding and our view of promising future research
directions to realize improvements in the prediction of long-term
response to selection in plant breeding.

PERSPECTIVE

Improvements in prediction from the specification of
interactions require thorough interrogation of the underlying
G2P maps of complex traits (Houle et al., 2010; Marjoram
et al., 2014). The genetic architecture of traits, which details
the number, distribution of effect sizes, and “behavior” of these
causal genetic variants, can be viewed as a G2P map. Therefore,
the G2P map defines the complete paths from causal genetic
variants to the phenotype of complex traits (Waddington, 1957;
Burns, 1970; Lewontin, 1974). The dominant G2P map used
to investigate the role of interactions in response to selection
is a single complex trait underpinned by the infinitesimal
model (Robertson, 1960; Carlborg et al., 2006; Hill et al., 2008;
Mäki-Tanila and Hill, 2014; Goodnight, 2015; Paixão and
Barton, 2016; Wientjes et al., 2021). The infinitesimal model
allows breeders to consider complex phenotypes in a single
trait context, with underlying genetic variation associated
directly with the phenotypic variation of complex traits
within a reference population of genotypes (Figure 1A). The
infinitesimal model, embedded within the breeders equation
(Lush, 1937), has been successful in plant breeding (Hallauer
and Miranda, 1988; Comstock, 1996). However, alternative G2P
maps have been developed. Here we consider their potential for
breeding applications.

Hierarchical G2P maps provide a multi-trait context for
investigations into the importance of interactions in genomic
prediction. Complex trait phenotypes, such as grain yield, can
be viewed as the product of multiple component traits. The
hierarchical structure allows intermediate processes (Figure 1B),
such as other traits and environmental factors and their
interactions, to contribute to complex trait variation (Wright,
1934; Waddington, 1957; Houle et al., 2010; Liu et al., 2019;
Cooper et al., 2020a).

In quantitative genetics, hierarchical G2P maps have
been developed based on path analysis (Wright, 1934). The
specification of intermediate processes in hierarchical G2P
maps allows the decomposition of total effects, captured
by the infinitesimal G2P map, into path specific direct and
indirect effects (Wright, 1934). Lande and Arnold (1983)
demonstrated that hierarchical G2P maps could be used to
separate direct response to selection from indirect response
to selection of multiple correlated traits. Valente et al. (2013)
provide an overview of the breeding applications of Structural
Equation Models (Gianola and Sorensen, 2004; Pearl, 2012)
and highlight their ability to allow prediction across a broader
range of livestock and crop management practices than standard

multi-trait models without requiring frequent re-estimation
of the G2P map. Recently, there has been an increase in
the use of Structural Equation Models for prediction and
inference in both animal and plant breeding (Tiezzi et al.,
2015; Momen et al., 2018; Campbell et al., 2019; Pegolo
et al., 2020; Abdalla et al., 2021). However, due to a lack
of prior knowledge of the underlying relationships, most
studies have used Structural Equation Models to estimate
linear relationships between traits. The assumption of linear
relationships restricts the range and magnitude of non-stationary
effects and, therefore, the frequency of rank changes in
additive genetic merit.

In plant science, decades of experiments led to the
development of hierarchical G2P maps for plant breeding that
allow predictions across a wide range of growing conditions
(Holzworth et al., 2014; Hammer et al., 2019). Crop Growth
Models are hierarchical mechanistic models of plants that
simulate trajectories of multiple trait phenotypes over time for the
growing season determined by environmental conditions. Crop
Growth Models explicitly quantify the relationships, both linear
and non-linear, between traits, physiological “meta-mechanisms”
and complex trait phenotypes such as grain yield. These “meta-
mechanisms” are measurable via high-throughput phenotyping
and resulting in robust and stable equations with heritable
genotype-dependent parameters (Tardieu et al., 2020). This
has allowed Crop Growth Models to be linked to underlying
genotypic variation for plant breeding applications (Chapman
et al., 2003; Chenu et al., 2009; Messina et al., 2011). More
recently, Crop Growth Model – Whole Genome Prediction
methods have connected an underlying “infinitesimal” genetic
architecture to key components of Crop Growth Models via a
hierarchical Bayesian estimation procedure (Figure 2; Technow
et al., 2015; Cooper et al., 2016). The inclusion of Crop Growth
Models in genomic prediction enables the prediction of trait-
trait and trait-environment interactions in the hierarchy’s upper
levels, which are directly associated with the estimates of allele
substitution effects of genetic parameters for traits in the lower
levels of the crop growth model hierarchy. This correction of
phenotypes can lead to improved estimates of genetic correlations
between traits and increased prediction accuracies across the
different contexts discussed above. Crop Growth Model – Whole
Genome Prediction methods, and subsequent variations, have
been shown to improve short-term predictions of genetic merit
in the presence of GxE interactions (Bustos-Korts et al., 2019;
Millet et al., 2019; Robert et al., 2020; Toda et al., 2020;
Diepenbrock et al., 2021) and genotype-by-environment-by-
management interactions in plant breeding. The success of
hierarchical G2P maps in capturing non-stationary effects in
predictions across diverse environments has seen growth models
being revisited in animal breeding (Doeschl-Wilson et al., 2007;
Puillet et al., 2016, 2021).

However, the prediction of long-term response to selection
remains a significant challenge (Reeve, 2000; Goddard, 2009;
Hill, 2017). For example, long-term selection experiments in
maize have often produced results not predictable a priori or
from simulation (Lamkey, 1992; Dudley and Lambert, 2003),
such as continued selection response after 100 years
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FIGURE 1 | Gene-to-Phenotype (G2P) Maps. (A) Representation of an additive infinitesimal G2P map, assuming direct effects of causal genetic variants (green
circles) on complex trait phenotypes. (B) Representation of an additive hierarchical G2P map, decomposing total effects into direct effects of causal genetic variants
on intermediate traits, and phenotypic effects of multiple intermediate traits on complex trait phenotypes.

(Dudley and Lambert, 2003). Long-term predictions of response
to selection, based on the classical versions of the infinitesimal
model (Walsh and Lynch, 2018), struggle to accurately predict
the non-stationary effects of alleles as information from current
genetic backgrounds and environments become increasingly
uninformative into the future. A key paper by Paixão and Barton
(2016), extending Robertson’s (1960) work with only functional
additive effects, has clarified the importance of non-stationary

effects of alleles generated by GxG interactions for long-term
response to selection. They describe two explicit scenarios:
(i) when drift dominates selection, i.e., when the selection
pressure at individual functional loci is weak, the initial variance
components will determine the increase in response to selection
over breeding cycles due to interactions; (ii) when selection
dominates drift, i.e., when the selection pressure at individual
functional loci is strong, the initial variance components are
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FIGURE 2 | Schematic representation of a hierarchical crop growth model whole genome prediction (CGM-WGP) G2P map. Taken from Figure 2b of Cooper et al.
(2020a). Genetic variants are associated with traits or “meta-mechanisms” at lower levels in the crop growth model hierarchy to predict traits at higher levels in the
hierarchy.

poor predictors of the response to selection over breeding cycles
and details of the G2P map need to be explicitly considered.
Therefore, to quantify the importance of non-stationary effects
of alleles in predicting long-term response to selection in plant
breeding, we should consider two questions:

i. What is the strength of selection operating on the causal
loci for traits in breeding programs?

ii. If selection operating on the causal loci is strong, what is
the underlying G2P map?

The availability of dense genotype data, sequence data, and
advances in phenotyping provide the opportunity to revisit
theories about the strength of selection in plant breeding
programs. Before the ability to study allelic variation via genotype
data, the selection units of breeding programs were breeding
values of individuals. It has been shown for complex traits
that strong selection at the individual level does not necessarily
translate to strong selection at the causal loci (Goddard, 2009;
Walsh and Lynch, 2018). However, technologies such as genomic
prediction (Meuwissen et al., 2001) are shifting the selection

units of breeding programs toward the allele substitution effects
of genetic loci. Despite selection still occurring on individuals,
genomic selection can distribute selection pressure unevenly
across the genome by directing selection pressure to genetic
loci with large estimated allele substitution effects (Heidaritabar
et al., 2016; Wientjes et al., 2021). Therefore, the use of genomic
selection in breeding programs can result in selection dominating
drift at specific genetic loci placing greater importance on the
G2P map assumed in genomic predictions.

Complete knowledge of the underlying G2P maps of complex
traits is unlikely. However, hierarchical G2P maps with partial
knowledge of intermediate processes offer promise for predicting
long-term response to selection, given their success in improved
short-term predictions of non-stationary effects of alleles. An
obstacle in the practical applications of such hierarchical G2P
modeling approaches is non-identifiability, also referred to
as equifinality or the many-to-one property (Lamsal et al.,
2018; Barghi et al., 2020; Henshaw et al., 2020; Kruijer
et al., 2020; Tsutsumi-Morita et al., 2021). Effects can be
non-identifiable due to unmeasured confounders that generate
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correlated errors between effects, which results in multiple,
equally likely hierarchical G2P maps for experimental data sets.
As an example, a multi-trait G2P map involving GxG interactions
and the summation of Trait 1 and Trait 2 (Figure 3A) could
equally be parameterized as the simplified Crop Growth Model –
Whole Genome Prediction G2P map of two traits with purely
additive functional genetic effects and non-linear relationships
between traits (Figure 3B). Therefore, the level of detail required
in hierarchical G2P maps to overcome non-identifiability is still
an active research area.

FUTURE DIRECTIONS

In recent times, genomic prediction across multiple contexts
has received increased focus in breeding (de Roos et al., 2009;
Hayes et al., 2009; Windhausen et al., 2012; Gorjanc et al.,
2016; Montesinos-López et al., 2019). In a multi-context setting,
the genetic correlation naturally provides a measure to quantify
predictive accuracy (Falconer, 1952; Robertson, 1959; Bohren
et al., 1966). To maximize the benefits of using the genetic
correlation framework, plant breeding requires hierarchical G2P
maps that include the explicit specification of interactions
(Figure 3C). Specification of gene-gene interactions would allow
the assessment of changes in the genetic background on GxG

interactions and prediction accuracy. Specification of gene-
trait and trait-trait interactions would allow the assessment of
changes in the environment and agronomic management on
GxE interactions and prediction accuracy. Breeding programs
are often organized in many different populations or regions to
limit these impacts of GxG and GxE interactions, respectively,
while assuming a single performance optimum and single
breeding target. However, GxG or GxE interactions can generate
a performance landscape with multiple optima (Wright, 1963;
Cooper et al., 2005; Messina et al., 2011; Technow et al.,
2020). Prior specification of this multiple optima landscape,
via hierarchical G2P maps, would allow more comprehensive
explorations of the impact of such interactions on the long-term
response to selection of plant breeding programs.

Complementary simulation and empirical studies can
interrogate the changes of genetic correlations across contexts to
quantify the relative magnitude of GxG and GxE interactions and
measure their impact on genomic prediction. Recent research,
primarily from animal breeding, has renewed the focus on
this framework (Wientjes et al., 2015; Dai et al., 2020; Duenk
et al., 2020; Legarra et al., 2020). The common theme has been
using the genetic correlation to assess likely magnitudes of GxG
interactions underpinning complex traits. Duenk et al. (2020)
used simulations to show that realistic levels of dominance alone
could not drive the genetic correlation between two populations

FIGURE 3 | Hierarchical G2P Maps for Plant Breeding. Examples of three multi-trait hierarchical G2P maps with the explicit specification of interactions. Hierarchical
G2P maps incorporating knowledge of trait interactions (+, λ) can be used to adjust phenotypes and increase the accuracy of the estimation of gene effects (u),
gene interactions, and genetic correlations (rg) between traits. Gene effects (u) can be directly assigned to trait phenotypes (y) or indirectly assigned via linear trait
relationships (+) or non-linear trait interactions (λ). A, D, and E indicate additive, dominance, and epistatic functional genetic effects, respectively. Non-genetic effects
of trait phenotypes are represented by e. (A) Representation of a G2P map with gene interactions and linear relationship between trait phenotypes,
(B) Representation of current Crop Growth Model – Whole Genome Prediction (CGM -WGP) G2P maps with additive genetic effects and non-linear trait interactions,
and (C) Representation of potential G2P maps with both gene interactions and non-linear trait interactions.
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below 0.8, but realistic levels of epistasis could drive the genetic
correlation as low as 0.45. Legarra et al. (2020) used two regularly
intermated populations with similar allele frequencies and
an expectation of minimal GxG interactions to speculate on
the role of GxE in low across population predictions. They
also suggested a genetic correlation threshold of 0.6, below
which populations should be classed as distinct. However, these
recent animal breeding studies overlooked the inclusion of GxE
interaction scenarios. GxE interaction scenarios are of high
relevance to plant breeding which regularly predict across a
diverse set of target population of environments. Plant breeding
is in a prime position to use results from evolutionary genetics
(de Villemereuil et al., 2016), multi-environment trial analyses
(Piepho, 1997; van Eeuwijk et al., 2005; Malosetti et al., 2013),
and Crop Growth Models (Jones et al., 2003; Hammer et al.,
2010; Messina et al., 2011; Holzworth et al., 2014) to assess
the impact of GxE interactions on genetic correlations and
determine their influence on breeding programs designed to
utilize genomic prediction. Therefore, we propose that the plant
breeding community undertake complementary simulation and
empirical studies to quantify the relative magnitude of GxG and
GxE interactions across relevant environmental and population
contexts to quantify their impact on genomic prediction.

The dominant crop improvement procedure of today is
a sequential operation. Breeding programs first develop new
varieties with a limited sampling of the full range of farmers’
agronomic possibilities. Within this first step, plant breeding
programs simultaneously perform population improvement to
improve the additive genetic merit of breeding germplasm
and product development, to identify new varieties with the
highest total genotypic merit (Messina et al., 2011; Powell
et al., 2020; Technow et al., 2020; Werner et al., 2020). Then
agronomic research programs follow, focusing on developing
and optimizing crop management strategies for the handful of
new varieties. Hierarchical G2P maps can connect the objectives
of plant breeding and quantitative genetics with those of crop
agronomy (Figure 3; Cooper et al., 2020a,b). The explicit
connections between gene and multiple trait levels, embedded
in hierarchical G2P maps, can be perturbed experimentally
(empirical and simulation) to quantify the impact of agronomic
management interventions and changes in the environment. The
effects of the perturbations can be investigated to determine
how they propagate through the hierarchical G2P map and
update estimates of allele effects at both the gene and trait
levels. Ex-ante predictions of perturbations at the gene level
could be used to guide improved prediction of “synthetic”
varieties developed through novel gene-editing techniques. Ex-
ante predictions of perturbations at the trait level could improve
the efficiency of breeding new varieties adapted for alternative
farming systems and future climate scenarios (Hammer et al.,
2020). At the same time, predictions can be extracted from each
level of the hierarchical G2P map, allowing the decomposition
of individual performance into additive genetic, total genetic,
and phenotypic merit. Decomposition of path-specific values in
hierarchical G2P maps has been demonstrated in evolutionary
and quantitative genetics (Lande and Arnold, 1983; Gianola and
Sorensen, 2004; Valente et al., 2010, 2013; Henshaw et al., 2020;

Janeiro et al., 2020; Pegolo et al., 2020). Therefore, the ability to
exploit different sources of improved crop performance under a
single prediction framework could improve crop improvement
pipelines’ accuracy and flexibility to navigate performance
landscapes for current and future environments (Messina et al.,
2011, 2020; Technow et al., 2020).

CONCLUSION

Current genomic prediction methods struggle to predict the non-
stationary effects of alleles as the genetic background (breeding
cycles and populations) and the environment changes. These
non-stationary effects of alleles are determined by interactions
between genetic loci, traits, and the environment. Non-stationary
effects of alleles result in low prediction accuracy across
breeding cycles, populations and environments. As discussed
above, the development of hierarchical G2P maps has been
shown to improve the genomic prediction of non-stationary
effects of alleles across breeding cycles and environments. The
simultaneous specification of GxG and GxE interactions in
hierarchical G2P maps may help to more thoroughly explore
the impact of non-stationary effects of alleles on the long-term
response to selection of plant breeding programs.
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