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Exogenous application of double-stranded RNA (dsRNA) in the tobacco–Tobacco
mosaic virus (TMV) pathosystem was shown previously to induce resistance against
TMV providing an alternative approach to transgenesis. In the present study, we
employed proteomics technology to elucidate the effect of TMV on tobacco as well as
the effect of exogenous application of TMV p126 dsRNA molecules (dsRNAp126) at an
early stage of the tobacco–TMV interaction. The proteome of tobacco leaf at 15 min post
inoculation (mpi) in the presence or absence of dsRNAp126 molecules was studied.
Thirty-six tobacco proteins were differentially accumulated in TMV-infected vs. healthy
tobacco leaf tissue. The identified main differential TMV-responsive proteins were found
to be involved in photosynthesis, energy metabolism, stress, and defense responses.
Most of the virus-induced changes in the tobacco leaf proteome were not observed
in the leaves treated with dsRNAp126 + TMV. The results indicated that the protein
changes induced by TMV infection were counteracted by the exogenous application
of dsRNAp126 molecules. Moreover, using small RNA sequencing, we showed that
the exogenously applied dsRNAp126 was efficiently processed in tobacco as early as
15 min post application (mpa) to produce small interfering RNAs (siRNAs); the dicing
pattern was not affected by the presence of TMV. The presence of dsRNAp126 reduced
TMV p126 RNA abundance suggesting virus titer reduction via a sequence-specific
mechanism, since a non-homologous dsRNA did not protect from TMV infection nor
affect TMV accumulation.

Keywords: double-stranded RNA, plant proteomics, RNA interference, silencing suppressor, Tobacco mosaic
virus, tobacco

INTRODUCTION

RNA interference (RNAi) plays an important role in plant defense against subcellular pathogens
including viruses (Padmanabhan et al., 2009; Wang M. B. et al., 2012). Double-stranded RNA
(dsRNA) and stem-loop RNAs are the crucial players in RNAi initiation (Meister and Tuschl,
2004; Brodersen and Voinnet, 2006). The dsRNA-specific nucleases, known as DICER-like proteins
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(DCL), cleave the dsRNA into double-stranded small interfering
RNAs (siRNAs) of 20–25 nucleotides in length; subsequently, one
siRNA strand (guide strand) interacts with Argonaute (AGO)
proteins resulting in the formation of the RNA-induced silencing
complex (RISC), which facilitates target mRNA degradation
(Dykxhoorn et al., 2003; Blevins et al., 2006; Deleris et al., 2006).

Viruses have developed a strategy to suppress RNAi, the
most common way is to protect the viral genome against RNA
silencing-mediated inactivation by encoding proteins that act
as suppressors of RNA silencing (viral suppressors of RNA
silencing, VSRs). VSRs inhibit the host silencing mechanism
in several ways such as the inhibition of DICER protein
activity and prevention of RISC assembly (Blevins et al., 2006;
Brodersen and Voinnet, 2006; Wang M. B. et al., 2012). The
severity of viral disease symptoms is usually correlated with
the effectiveness of viral-encoded proteins to act as VSRs.
Previous studies have shown that exogenous application of
dsRNA targeted to VSRs conferred significant resistance against
plant viruses (Tenllado and Díaz-Ruíz, 2001; Yin et al., 2009;
Gan et al., 2010; Voloudakis et al., 2015; Konakalla et al.,
2016; Kaldis et al., 2018). Tobacco mosaic virus (TMV) is
well-known for its high replication rate and its capacity for
rapid systemic movement in order to establish a successful
infection. The p126 and p183 genes (components of viral
replicase) get translated at a very early stage during TMV
infection (Lewandowski and Dawson, 2000). Multiple domains
of p126 protein especially methyltransferase, helicase, and non-
conserved region II domains have independent host RNA
silencing suppressor function (Wang L. Y. et al., 2012). Moreover,
the p126 and p183 proteins alter the host metabolism in such
a way to facilitate TMV replication within a few minutes
upon viral entry into the host cell (Christensen et al., 2009;
Niehl and Heinlein, 2011).

TMV p126 is an ideal target gene for dsRNA construction
in order to apply the method of dsRNA vaccination for the
induction of resistance against TMV in tobacco. Earlier, we
reported the dsRNA-mediated virus gene silencing by the
exogenous application of in vitro-produced dsRNA molecules
(“RNA-based vaccination”) targeted to TMV p126 and TMV CP
genes and demonstrated its role in minimizing TMV infection
and disease induction (Konakalla et al., 2016).

The understanding of the complete mechanism underlying
the events of virus–host plant interaction is crucial for the
development of novel plant virus resistance strategies. TMV is
a positive-sense, single-stranded RNA virus that belongs to the
genus Tobamovirus of the Virgaviridae family. TMV has a very
wide host range and its primary host is Nicotiana tabacum. It
causes severe disease in tobacco with systemic mosaic symptoms
that lead to a great reduction in quality and yield of tobacco leaves
(Creager et al., 1999). Lee et al. (2006) employed two-dimensional
gel electrophoresis (2DE) and revealed at 24 h post inoculation
(hpi) that differentially accumulated proteins (DAPs) from TMV-
inoculated Capsicum annuum leaves were involved in biotic
stress, programmed cell death, metabolism, and mRNA binding.
Two complementary proteomic methods DIGE and iTRAQ were
employed by Caplan et al. (2009) to identify DAPs in Nicotiana
benthamiana leaves in the absence (no defense response) and

in the presence (defense response) of the N resistance gene.
They revealed that the silencing of the endoplasmic reticulum
(ER)-resident disulfide isomerases (NbERp57, NbP5) and the
calreticulins (NbCRT2 and NbCRT3) leads to a partial loss of
N-mediated resistance against TMV. An iTRAQ study of Wang
et al. (2016) reported the effect of TMV on the proteome of
two varieties of tobacco, namely NC89 (resistant to TMV) and
its natural mutant Yuyan8 (tolerant to TMV). The authors
concluded that differential proteins were respectively enriched in
the photosynthesis and the pentose phosphate pathways.

Deep sequencing is a powerful means to study plant–virus
interactions. In particular, the analysis of virus-derived small
interfering RNAs (vsiRNAs) could reveal the hot (high number of
vsiRNAs) and cold (low number of vsiRNAs) spots of the targeted
virus genome indicating functional dicing by DCL proteins
(Donaire et al., 2009). Qi et al. (2009) have obtained the small
RNA profile of the TMV-Cg strain in Arabidopsis thaliana at
3 days post inoculation.

In the present study, in vitro-produced dsRNA molecules
derived from the p126 gene of TMV were topically applied
to the plants, as described previously (Tenllado and Díaz-
Ruíz, 2001; Konakalla et al., 2016). The working hypothesis
was that the synthesized dsRNAs (dsRNA vaccines) would
induce the plant RNAi mechanism against TMV at very early
stages of infection resulting in the degradation of the TMV
genome, conferring plant protection. Here we used two high-
throughput omics approaches, label- and gel-free proteomics
and small RNA next-generation sequencing (small RNA NGS),
to analyze the effect that dsRNAp126 exerts against TMV in
tobacco plants at a very early stage of infection such as 15 min
post infection (mpi) and to provide experimental evidence that
the exogenously applied dsRNA is successfully diced as early
as 15 min post application (mpa) by the endogenous RNAi
machinery of the plant. Moreover, the results show that the
exogenously applied dsRNAp126 is efficient in blocking TMV
accumulation and counteracts the changes that TMV exerts on
the tobacco proteome.

MATERIALS AND METHODS

N. tabacum Growth Conditions
N. tabacum cv. Xanthi plants were grown under 25/22◦C
day/night temperature and 16/8 h light/dark cycles in the
greenhouse facilities of KU Leuven, Belgium. Supplemental
lighting of 14 W m−2 at the plant level was provided when
solar radiation was below 250 W m−2 during the daytime. Six
tobacco plants at the four-leaf stage (6 weeks old) were used
for the inoculations in each treatment. The TMV strain used
was TMV-vulgare DSMZ No. PV-0107 (Leibniz Institute DSMZ,
Braunschweig, Germany) and was maintained on N. tabacum
cv. Xanthi plants.

In vitro Synthesis of dsRNA Molecules
The dsRNAp126 molecules [nucleotides 426–1,091 of TMV
(Accession No. NC_001367.1)] were produced by a two-step
PCR approach and in vitro transcription protocol reported by
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FIGURE 1 | Partial least squares discriminant analysis (PLS-DA). Components
1 and 2 of the PLS-DA show a significant correlation to the treatments and
explain, respectively, 24 and 8% of the variability. Component 2 separates the
dsRNAp126 + TMV and control treatments from the TMV treatment. Each
sample point is a biological replicate. All samples were collected 15 min post
treatment.

Voloudakis et al. (2015) and adopted by Konakalla et al. (2016;
Supplementary Figure 1). In a similar manner, dsRNA molecules
derived from the Helper Component-Proteinase (HC-Pro) gene
of Zucchini yellow mosaic virus (ZYMV) were produced and used
as the non-homologous control treatment. A Fisher Scientific
Multiskan FC Reader (Thermo Fisher Scientific, United States)
was used to estimate the concentration of total nucleic acids
spectrophotometrically.

Topical Application of dsRNAp126 + TMV
on Tobacco Plants for Proteomic
Analysis
The treatments used were as follows: (a) water (negative
control), (b) TMV, and (c) dsRNAp126 + TMV. Each treatment
consisted of six tobacco plants. The TMV treatment consisted of
16 µl of TMV-infected tobacco leaf sap extracted from 14-day
post inoculation (dpi) TMV-infected tobacco leaves (inoculum)
at 5 × 105 dilution, according to Thornberry and Nagaich
(1962) complemented with 4 µl of water. DsRNAp126 + TMV
treatment was prepared by adding 4 µl of the in vitro-produced
TMV p126 dsRNA (28.9 µg/µl) with 16 µl of TMV-infected
tobacco leaf sap (5× 105 dilution). The negative control consisted
of 20 µl of water.

Tobacco plants were inoculated by gently rubbing 20 µl
of each treatment material into the fourth fully grown
carborundum-dusted leaf. The treatment applications were
performed during morning time (9:00–10:00 a.m.). The treated
leaves were thoroughly washed three times using 0.05% Triton
X-100 with 3 min interval between each wash, followed by a
final wash with water. At 15 mpi, 300 mg of leaf tissue was
collected from each of the inoculated plants (six individual
samples per treatment) and immediately placed in liquid nitrogen
for proteomic analysis. Symptom development was monitored
until 20 dpi. Percentage of disease incidence was calculated based

on the number of plants infected out of the total plants used for
inoculation in each treatment (Supplementary Figure 1).

Proteomics Analysis
For each treatment, six biological replicates were performed. The
treated (local) leaf comprised the sample. Proteins were isolated
by the phenol extraction protocol reported by Carpentier et al.
(2005) and Buts et al. (2014). Samples were collected, ground in
liquid nitrogen, and immediately placed in lysis buffer (100 mM
Tris–HCl pH 8.3, 5 mM EDTA, 100 mM KCl, 1% DTT, 30%
sucrose, and protease inhibitor cocktail Roche) before phenol
extraction. The total protein concentration in each sample was
estimated by 2D Quant kit (GE Healthcare, United Kingdom).

Twenty micrograms of total proteins from each sample were
digested with trypsin (trypsin protease, MS grade, Thermo
Fisher Scientific, United States) and desalted using Pierce C18
solid-phase extraction columns according to the manufacturer’s
instructions (Thermo Fisher Scientific) and dried in the SpeedVac
until dry and dissolved in 5% ACN (acetonitrile) and 0.1% formic
acid. The digested and desalted samples were injected (0.5 µg/5
µl) and separated on an Ultimate 3000 UPLC system (Dionex,
Thermo Fisher Scientific) equipped with an Acclaim PepMap100
precolumn (C18 particle size 3 µm, pore size 100 Å, diameter
0.075 mm, length 20 mm, Thermo Fisher Scientific) and a C18
PepMap RSLC (particle size 2 µm, pore size 100 Å, diameter 50
µm, length 150 mm, Thermo Fisher Scientific) using a linear
gradient (0.300 µl/min). The composition of buffer A is pure
water containing 0.1% formic acid. The composition of buffer B
is pure water containing 0.08% formic acid and 80% ACN. The
0–4% fraction of buffer B increased from 0 to 4% in 3 min, from
4 to 10% in 12 min, from 10 to 35% in 20 min, from 35 to 65%
in 5 min, and from 65 to 95% in 1 min and stayed at 95% for
10 min. The fraction of buffer B decreased from 95 to 5% in
1 min and stayed at 5% for 10 min. The Q Exactive Orbitrap
mass spectrometer (Thermo Fisher Scientific) was operated in
positive ion mode with a nanospray voltage of 2.1 kV and a source
temperature of 250◦C. Mass LTQ/FT-Hybrid ESI Pos. Mode Cal
Mix (MS CAL5-1EASUPELCO, Sigma-Aldrich, United States)
was used as an external calibrant. The instrument was operated
in data-dependent acquisition mode with a survey MS scan at a
resolution of 70,000 (FWHM at m/z 200) for the mass range of
m/z 400–1,600 for precursor ions, followed by MS/MS scans of
the top 10 most intense peaks with +2, +3, +4, and +5 charged
ions above a threshold ion count of 16,0001e + 6 at 17,500
resolution using normalized collision energy of 25 eV with an
isolation window of 3.0 m/z, apex trigger of 5–15 s, and a dynamic
exclusion of 10 s (Thermo Fisher Scientific).

Protein Identification and Quantification
The data of MS were acquired using Xcalibur 3.0.63 software
(Thermo Fisher Scientific, United States). All the raw data
obtained were converted into Mascot generic format (MGF)
files by Proteome Discoverer version 1.4 (Thermo Fisher
Scientific, United States). The mzxml-converted files were
imported to Progenesis v4.1 software (Non-linear Dynamics,
United Kingdom) for peptide normalization, alignment, and
selection (ANOVA p ≤ 0.1). Protein statistics were applied
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to the summed, normalized, and selected peptide intensities.
Spectra were identified using MASCOT v2.2.06 against the
UniProt database taxonomy “Nicotiana” (6,793 accessions). The
parameters employed to query were as follows: parent tolerance
of 10 ppm, fragment tolerance of 0.02 Da, variable modification
oxidation of M, fixed modification with carbamidomethyl C,
and up to two missed cleavages for trypsin. The total protein
false discovery rate was calculated in Scaffold 3.6.5 (Proteome
Software, United States). Protein identifications were retained
having at least one identified peptide with 95% confidence.

Statistical Analysis of Proteomic Data
On the protein level, ANOVA and partial least square
discriminant analysis (PLS-DA) were done using the NIPALS
algorithm in Statistica 8.1 (StatSoft, United States).

Gene Ontology Enrichment Analysis and
Network Construction
Gene annotations were taken from UniProt. We built an in-
house tool to perform Gene Ontology (GO) enrichment based
on a user-defined subset of genes in the UniProt format https:
//labtrop.shinyapps.io/UniGO/. The tool is based on TopGO, an
R package, and grasps the GO from the UniProt website and
then performs a Fisher’s exact test to estimate the enrichment. To
correct for multiple testing, the Holm–Bonferroni principle was
applied. All ANOVA significant (p < 0.05) proteins were used as
input for GO enrichment. The Excel file having the UniProt ID
of each protein with corresponding GO terms (protein accession
numbers in UniProt) was introduced to Cytoscape v3.4.0 for the
construction of protein networks (Shannon et al., 2003).

Topical Application of dsRNAp126 + TMV
on Tobacco Plants for Small RNA NGS
Analysis
The treatments used were as follows: (a) TMV, (b)
dsRNAp126 + TMV, (c) dsRNAp126, and (d) water (negative
control); there were six tobacco plants per treatment. TMV or
dsRNAp126 + TMV application was performed as mentioned
above. DsRNAp126 treatment consisted of only 4 µl of the
in vitro-produced TMV dsRNAp126 with 16 µl of water.
Tobacco plants were inoculated by gently rubbing 20 µl of
each treatment material as mentioned above. Samples for RNA
extraction were pooled from six plants in every treatment.
Total RNA extraction from the local leaves of four treatments
was carried out at 15 mpi using TRIzol (Life Technologies,
United States). RNA extracts (3 µg) were sent for small RNA
NGS analysis to Fasteris SA (Geneva, Switzerland). Upon
small RNA library preparation, high-throughput sequencing
was performed using the HiSeq 2500 Sequencing System
(Illumina, San Diego, United States). Inserts with the size of
20–25 nucleotides were selected and mapped against a reference
sequence for the TMV genome (Accession No. NC_001367.1)
employing Bowtie v2.3 (Langmead et al., 2009) using default
parameters. Further analysis and representation of the small
RNA NGS data (hot and cold spots) was carried out using MISIS
software (Seguin et al., 2014).

Virus Titer Estimation via TMV p126
Expression Levels Made by RT-PCR
Reverse transcription (RT) quantitative PCR (RT-qPCR) was
used for the estimation of TMV p126 gene abundance from H2
O-, TMV-, and dsRNAp126+ TMV-treated tobacco local leaves.
RNA samples from two biological replicates were collected at
two time points, e.g., 15 min and 24 h post treatment. Primers
were designed outside the region of the p126 gene (426–1,091 of
TMV genome) that was used for the production of dsRNAp126.
For the RT, we employed the FIREScript Reverse Transcriptase
(Solis BioDyne, Estonia). For qPCR, we used the 5 × HOT
FIREPol R© EvaGreen R© qPCR Supermix (Solis BioDyne, Estonia) in
a StepOnePlus Real-Time PCR System (Thermo Fisher Scientific,
United States). The Ct values were normalized with a tobacco
actin gene (Nt-ACT9, GenBank accession number: X69885.1)
as an endogenous control. Quantification of TMV p126 was
performed following the 2−11Ct method (Livak and Schmittgen,
2001). The sequences of primers for TMV p126 and Nt-ACT9 are
shown in Supplementary Table 1.

RESULTS

Proteomics Analysis of TMV-Inoculated
Tobacco Plants in the Presence or
Absence of dsRNAp126
For the investigation of early events occurring after TMV
infection and in order to explore the putative effect of the
application of dsRNA, we employed a proteomics approach.
Protein samples from six biological replicates from TMV,
dsRNAp126 + TMV, and control treatments (at 15 mpi) were
used to perform the proteomics analysis. The mass spectrometric
data showed that a total number of 661 proteins were confidently
identified with a false discovery rate of 0.6% at the protein level
and 0.04% at the spectrum level. To assess whether the proteome
of the control, TMV, and dsRNAp126 + TMV samples was
different, a PLS-DA statistical test was performed. Components
1 (PC1) and 2 (PC2) of the PLS-DA both show a significant
correlation to the treatments and explain, respectively, 24 and
8% of the variability (Figure 1). Component 2 separates the
TMV treatment from the dsRNAp126 + TMV and control
treatments. This clearly indicates that TMV infection can
already be detected as early as 15 mpi. Most importantly, the
great majority of the TMV-induced changes in the tobacco
leaf proteome were not observed in the leaves treated with
dsRNAp126+ TMV (Table 1), suggesting that dsRNA treatment
has a counteracting effect on the host proteome. Indeed,
dsRNAp126+TMV treatment showed 67% of resistance to TMV
at 20 dpi (Supplementary Figure 1), in accordance with our
previous work (Konakalla et al., 2016).

The differential abundance for the proteins was estimated
based on ANOVA p < 0.05. Nineteen proteins were identified
to be more abundant and 17 proteins were less abundant in
the TMV treatment when compared with dsRNAp126 + TMV
and water treatments (Table 1). The five most significant
processes that were affected by the TMV infection were carbon
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TABLE 1 | List of differentially accumulated proteins (DAPs).

No. UniProt ID Protein name ANOVA p-value Controla TMVa dsRNAp126 + TMVa

Proteins significantly more abundant in TMV treatment as compared with water and dsRNAp126 + TMV treatments

1 A0A077D0A9 Voltage-dependent anion channel 0.0003 b a b

2 E2F3S8 G-strand-specific single-stranded
telomere-binding protein 1

0.0009 b a b

3 A0A075EZS9 Osmotin-like protein 0.0012 b a b

4 I2FJN7 Polyadenylate-binding protein (PABP) 0.0028 b a b

5 G3LV68 Chloroplastic NAD(P)H-quinone
oxidoreductase subunit H

0.0029 b a b

6 A0A0F7R532 S-adenosylmethionine synthase 0.0073 b a b

7 Q6JE37 Thioredoxin-like protein CITRX2,
chloroplastic

0.0081 b a b

8 Q40451 DNA-binding protein 0.0084 b a b

9 Q84UH4 Dehydroascorbate reductase 0.0125 b a b

10 J7G1D7 RNA-binding glycine-rich protein 0.0134 b a b

11 A0A075F933 Cysteine proteinase inhibitor 0.0171 b a b

12 B8R520 Small ubiquitin-related modifier (SUMO) 0.0175 b a b

13 Q5K4L4 Villin 2 (fragment) 0.0207 b a b

14 Q4LB98 Putative glutathione S-transferase
(fragment)

0.0229 b a b

15 A0A0R4WFT2 Antimicrobial peptide 0.0234 b a b

16 A0A075F1V0 Malate dehydrogenase 0.0236 b a b

17 A2PYH3 Alpha chain of nascent
polypeptide-associated complex

0.0281 b a b

18 H9CCI2 Acyl-carrier-protein
S-malonyltransferase

0.0379 b a b

19 A0A075EYQ4 Ubiquitin-conjugating enzyme E2
35-like protein

0.0472 b a b

Proteins significantly less abundant in TMV treatment as compared with water and dsRNAp126 + TMV treatments

20 A0A077DCK9 Carbonic anhydrase (carbonate
dehydratase) (fragment)

0.0002 a b a

21 Q40565 Ribulose bisphosphate
carboxylase/oxygenase activase 2,
chloroplastic (RA 2) (RuBisCO activase
2)

0.0003 a b a

22 V9INR4 Ribulose bisphosphate
carboxylase/oxygenase activase 2

0.0003 a b a

23 Q42961 Phosphoglycerate kinase, chloroplastic 0.0009 a b a

24 P06449 Cytochrome f 0.0011 a b a

25 A4D0J8 Carbonic anhydrase (carbonate
dehydratase) (fragment)

0.0016 a b a

26 A0A075EYT9 Xyloglucan
endotransglucosylase/hydrolase

0.0023 a b a

27 Q0PWS5 Chlorophyll a–b binding protein,
chloroplastic

0.0032 a b a

28 P27141 Carbonic anhydrase, chloroplastic
(carbonate dehydratase)

0.0053 a b a

29 A0A076KWG9 Chloroplast
sedoheptulose-1,7-bisphosphatase

0.0061 a b a

30 A0A0E3JCP4 Developmentally regulated plasma
membrane polypeptide

0.0071 a b a

31 Q9ZP50 FtsH-like protein Pftf 0.0079 a b a

32 A4D0J9 Carbonic anhydrase (EC 4.2.1.1)
(carbonate dehydratase) (fragment)

0.0123 a b a

33 Q42962 Phosphoglycerate kinase, cytosolic 0.0175 a b a

34 P22302 Superoxide dismutase [Fe],
chloroplastic (fragment)

0.0258 a b a

(Continued)
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TABLE 1 | Continued

No. UniProt ID Protein name ANOVA p-value Controla TMVa dsRNAp126 + TMVa

35 I0B7J4 Chloroplast PsbO4 0.0347 a b a

36 Q84N38 OBERON-like protein (Potyvirus
VPg-interacting protein) (PVIPnb)

0.0414 a b a

Proteins significantly more abundant in dsRNAp126 + TMV treatment as compared with water and TMV treatments

37 S6A7M4 Cysteine synthase (EC 2.5.1.47) 0.00004 b b a

38 Q3LAG5 Cysteine synthase (EC 2.5.1.47) 0.003 b b a

39 Q76MF3 Calmodulin 0.0212 b b a

40 E5LCN0 ACC oxidase 2 isoform A 0.023 b b a

41 Q76ME6 Calmodulin 0.026 b b a

aTreatments with the same letter designation do not differ significantly at p < 0.05. a > b, n = 5–6.

utilization, generation of precursor metabolites and energy,
photosynthesis, glycolytic process, and ATP generation from
ADP (Supplementary Table 2).

An overview of all significantly enriched GOs and all the
annotated GOs for the DAPs is listed in Supplementary
Tables 2, 3, respectively. Interestingly, the majority of the
downregulated proteins in the TMV treatment were found to
be associated with the chloroplast (Table 1). Network analysis
revealed that the possible functions of these proteins are
interconnected around the process of photosynthesis (Figure 2
and Supplementary Table 3).

Finally, the proteomics analysis resulted in a small number
of proteins that are more abundant in the dsRNAp126 + TMV
treatment when compared with the water and TMV treatments
(Table 1). These were identified as 1-aminocyclopropane-
1-carboxylate oxidase 2 isoform A (E5LCN0), cysteine
synthase (Q3LAG5, S6A7M4), and isoforms of calmodulin
(Q76ME6, Q76MF3).

Small RNA Next-Generation Sequencing
The mechanistic basis of the protection induced by exogenous
dsRNA application against TMV (Konakalla et al., 2016; this
work) was studied by high-throughput sequencing (small RNA
NGS). More precisely, we investigated whether dsRNAp126
molecules were diced in tobacco leaves treated only with
dsRNAp126 in RNA samples collected at 15 mpa. We focused on
the identification of siRNAs having 20–25 nt size because these
siRNAs are considered to play an important biological role. The
MISIS software was used to graphically represent the 20–25-nt
siRNAs mapped along a reference TMV genome. As shown in
Figure 3 and Supplementary Table 4, siRNAs derived from the
targeted region of p126 (426–1,091 nt) were produced in very
high quantities. The relative abundance of siRNA reads exhibits
heterogeneity throughout the targeted region of p126, indicating
that some regions can function as siRNA generating hot spots.

To investigate the vsiRNA profile of the TMV genome at
a very early stage of the infection, we used the small RNA
NGS technique on RNA samples collected at 15 min post-TMV
application. As shown in Figure 4 and Supplementary Table 5,
TMV vsiRNAs of 21 and 22 nucleotides in length, spanning the
entire TMV genome, are produced in much higher quantities
when compared with vsiRNAs of 20, 23, 24, and 25 nt in length.

The water treatment (negative control) sample had negligible
siRNAs mapped to the TMV genome.

To investigate the siRNA profile of the TMV genome in
case of the simultaneous presence of dsRNAp126 and TMV, we
performed small RNA NGS on RNA samples collected from the
dsRNAp126 + TMV treatment at 15 mpi. We observed that
in the dsRNAp126 + TMV treatment, much higher quantities
of siRNAs were produced from the targeted region of the p126
gene (dsRNA-derived and TMV-derived siRNAs) as compared
with siRNAs outside this region (TMV-derived siRNAs) (Figure 5
and Supplementary Table 6). We noticed that the pattern of
dsRNAp126-derived siRNAs is almost identical between the
dsRNAp126 and dsRNAp126 + TMV treatments (compare
Figure 3 with Figure 5; see also Supplementary Figure 2, where
a representative region of the dsRNAp126 is presented).

It was also observed that in the 426–1,091 portion of the TMV
genome, the profile of dsRNAp126-derived siRNAs is similar to
that of TMV-derived siRNAs, e.g., the most highly abundant
siRNAs are produced from the same hot spot regions in both
the dsRNAp126 and TMV treatments (Supplementary Figure 3).
This suggests that the dicing mechanism of the exogenously
applied dsRNA possesses common components with the well-
known sequence-specific dicing mechanism of the virus.

Accumulation of TMV in TMV-Inoculated
Tobacco Plants in the Presence or
Absence of dsRNAp126
DsRNAp126-derived siRNAs putatively could be loaded to
AGO proteins of the host, functioning as efficient slicers of
complementary TMV-derived RNAs, hampering as a result of
the TMV-related processes inside the host cells or the TMV
replication. To examine the effect of exogenous application
of dsRNAp126 on TMV accumulation, we employed RT-
qPCR to compare the p126 expression levels in TMV and
dsRNAp126 + TMV treatments at two different time points,
namely at 15 min and 24 h post treatment. At 15 min, p126
levels are lower in the dsRNAp126 + TMV treatment as
compared with those in the TMV treatment. The difference
in p126 levels between the two groups is more pronounced
at 24 h (Figure 6A). For example, the log2 value of p126
abundance at 24 h in TMV treatment was 9.536, which
corresponds to more than 700-fold induction relative to p126
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FIGURE 2 | Protein network analysis of the chloroplastic proteins downregulated by TMV. Light-gray rectangles: UniProt protein IDs (Q40565: RuBisCO activase 2,
V9INR4: RuBisCO activase 2, Q42961: phosphoglycerate kinase, P06449: cytochrome f, Q0PWS5: chlorophyll a–b binding protein, P27141: carbonic anhydrase,
Q9ZP50: FtsH-like protein, P22302: superoxide dismutase [Fe], I0B7J4: PsbO4). Green rectangles: GO terms for each UniProt protein ID. GO IDs for individual GO
terms could be found in Supplementary Table 3. Cytoscape was employed for the visualization of the network.

FIGURE 3 | Analysis of siRNAs derived from the exogenously applied dsRNAp126 employing small RNA next-generation sequencing (NGS) as early as 15 min post
application (mpa). Only dsRNAp126 was applied to tobacco plants and NGS analysis was performed at samples collected at 15 mpa. MISIS software visualization
shows the distribution of siRNAs of 20–25 nt length along the sequence of a TMV reference genome (NC_001367.1). It could be observed that siRNAs are produced
only in the region 426–1,091 of the TMV genome. On the y-axis are shown the total read counts of siRNAs. Sense strand reads are shown with blue color above the
x-axis, and antisense strand reads are shown with red color below the x-axis.

amount at 15 min indicating a high TMV accumulation
(Figure 6B). On the contrary, in the dsRNAp126 + TMV
treatment, p126 abundance at 24 h remained low, as observed
at 15 min (Figure 6B). This suggests that dsRNAp126 inhibits
TMV accumulation, exhibiting as a result an antiviral effect

(Supplementary Figure 1). To examine the specificity of this
protective effect, we used dsRNA molecules produced for the HC-
Pro gene of ZYMV as a non-homologous control. In accordance
with our previous observations in other pathosystems (Kaldis
et al., 2018), we found that non-homologous—to the targeted
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FIGURE 4 | Analysis of TMV-derived siRNAs in infected tobacco at 15 min post inoculation (mpi) employing small RNA NGS. MISIS software visualization shows the
distribution of virus-derived small interfering RNAs (vsiRNAs) of 20–25 nt length along the sequence of a TMV reference genome (NC_001367.1). On the y-axis are
shown the total read counts of vsiRNAs. Sense strand reads are shown with blue color above the x-axis, and antisense strand reads are shown with red color below
the x-axis.

virus—dsRNA is not able to inhibit TMV accumulation and
provides no resistance to TMV (Supplementary Figure 4).
Taking these together, the above data suggested that the
exogenous application of dsRNA is capable of inducing a
sequence-specific defense mechanism.

DISCUSSION

Plants, as sessile organisms, need to respond to biotic or abiotic
stresses by rapidly readjusting the abundance levels of specific
proteins with a critical role to stresses. The orchestrated up- and
downregulation of specific host factors in virus–plant interaction

can result in a defense reaction against the virus. Alternatively,
one could hypothesize that such alterations of the host factors
will benefit the invading virus in a compatible interaction. The
literature reports that protein changes are associated with a
putative defensive role against TMV infection in tobacco, while
other protein changes are associated with a successful TMV
infection in tobacco-causing disease. Our proteomics analysis
identified 661 proteins. Tobacco has an incomplete protein
database to date (6,793 accessions) and a low annotated rate
that could explain the low identification rate. The use of gel-free
proteomics for protein identification requires a well-annotated
database of the host species under study to be able to identify
numerous proteins.
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FIGURE 5 | Analysis of siRNAs produced in dsRNAp126 + TMV treatment at 15 min post inoculation (mpi) employing small RNA NGS. MISIS software visualization
shows the distribution of siRNAs having 20–25 nt length along the sequence of a TMV reference genome (NC_001367.1). On the y-axis are shown the total read
counts of siRNAs. Sense strand reads are shown with blue color above the x-axis, and antisense strand reads are shown with red color below the x-axis. In the
region 426–1,091 of the TMV genome, the majority of reads could be derived from the exogenously applied dsRNAp126. Outside this region, the reads represent
TMV-derived siRNAs.

Despite the relatively low number of identified proteins, we
found a significant correlation to the different treatments. Thirty-
six (36) proteins were found to be differentially accumulated
in the tobacco–TMV compatible interaction as early as 15 mpi.
The protein changes that could contribute to resistance to TMV
involve defense-related proteins such as S-adenosylmethionine
synthase, cysteine proteinase inhibitor, glutathione S-transferase,
malate dehydrogenase, Snakin-1, osmotin-like protein, and RNA-
binding glycine-rich protein (upregulated upon TMV infection),
as well as putative susceptibility factors such as phosphoglycerate
kinases and OBERON-like protein (downregulated upon TMV
infection) (Table 1).

S-adenosylmethionine synthase or SAMS (A0A0F7R532)
catalyzes the formation of S-methylmethionine (SMM), which is
necessary for the production of several osmoprotectant proteins
(Espartero et al., 1994). Elevated levels of SMM could contribute
to a response against plant stress, as it is a direct precursor of the
osmoprotectant sulfoniopropionate family of proteins involved
in both biotic and abiotic defense mechanisms. SMM also
influences the biosynthesis of regulatory and defense compounds
such as polyamines and ethylene (Tassoni et al., 2008). Cysteine
proteinase inhibitor (A0A075F933) putatively plays a role in
plant defense against viral infections (Shih et al., 1987; Prins et al.,
2008). Gutierrez-Campos et al. (1999) expressed plant cysteine
protease inhibitors in transgenic tobacco conferring resistance
against potyviruses. Glutathione S-transferase or GST (Q4LB98)
is involved in the neutralization of toxic compounds and reactive
oxygen species formed during virus infection (Zechmann et al.,
2005). In the case of Bamboo mosaic virus, plant GST binds
to the viral RNA delivering glutathione to the viral replication
complex (Chen et al., 2013). Glutathione is a key regulator of

redox signaling and buffering and plays an important role in
plant defense through the activation of defense-related genes
(Foyer and Noctor, 2009). Malate dehydrogenase (A0A075F1V0)
reversibly catalyzes the conversion of oxaloacetate to malate in
both mitochondria and the cytoplasm, leading to the production
of secondary metabolites (Tomita et al., 2005), such as alkaloids,
flavonoids, and terpenoids, which are made in the reaction of
mechanical damage or infection (Beggs and Wellman, 1994).
The antimicrobial peptide Snakin-1 or SN1 (A0A0R4WFT2) has
been associated with enhanced resistance against bacteria, fungi,
and viruses (Almasia et al., 2008; Rong et al., 2013; He et al.,
2017). The SN1 gene of soybean was found to enhance virus
resistance in Arabidopsis and soybean probably by altering the
expression of signal transduction and defense response genes
(He et al., 2017). Osmotin-like protein (A0A075EZS9) belongs
to the pathogen-related protein-5 (PR-5) family of proteins
with a putative defensive role against several pathogens, besides
its role as a osmoregulator. A higher abundance of osmotin-
like proteins in TMV-infected leaf tissues has been reported
(Broekaert et al., 1997). The glycine-rich RNA-binding protein
or GRP (J7G1D7) participates in host–pathogen interactions,
having a role in nucleic acid binding, hypersensitive response, and
salicylic acid biosynthesis (Naqvi et al., 1998). Overexpression of
the A. thaliana glycine-rich RNA-binding protein 7 (AtGRP7)
conferred resistance against TMV (Lee et al., 2012). Furthermore,
ADP ribosylation of the RNA-binding proteins attenuated
host immunity by affecting RNA metabolism and the plant
transcriptome related to defense (Fu et al., 2007).

Phosphoglycerate kinases or PGKs (Q42961, Q42962)
were shown to promote the replication of several positive-
strand RNA viruses (Cheng et al., 2013; Chen et al., 2017;
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FIGURE 6 | Analysis of TMV p126 expression levels in TMV and
dsRNAp126 + TMV treatments by RT-PCR. (A) Gel images from two
biological replicates (Rep 1 and Rep 2) showing p126 RNA abundance by
semiquantitative RT-PCR. RNA samples were collected at two time points
(15 min and 24 h post treatment). Primers for the detection of p126 were
designed outside the region (namely 426–1,091 of the TMV genome) that was
used for the production of dsRNAp126. Nt-ACT9 was employed as an
endogenous reference gene. H2O indicates samples collected from the
negative control treatment. M is a low molecular weight DNA marker (New
England Biolabs, United States). (B) Relative quantification of p126 expression
levels by RT quantitative PCR, employing Nt-ACT9 for normalization
purposes. Depicted are the log2-transformed values of p126 abundance in
TMV (light-gray columns) and dsRNAp126 + TMV (dark-gray columns)
treatments. The value of p126 at 15 min in TMV treatment was set as 1 (log2

value was 0). Bars represent standard errors. Statistical analysis was
performed per time point using Student’s t-test. Asterisks indicate significant
differences between TMV and dsRNAp126 + TMV treatments at the
respective time points (*p < 0.1; **p < 0.001).

Prasanth et al., 2017). This may be achieved either by their
ATP-generating activity that facilitates the establishment of
viral replication complexes (VRCs) (Prasanth et al., 2017) or
by their viral RNA-binding capacity that helps the transport
of viral RNA inside chloroplasts for replication (Cheng et al.,
2013). Interestingly, a naturally occurring mutant of PGK in
A. thaliana exhibits resistance to a potyvirus, suggesting that

PGKs may function as host factors that increase susceptibility to
virus infection (Ouibrahim et al., 2014). OBERON-like protein
(Q84N38) was shown to promote systemic spreading of the
potyvirus Turnip mosaic virus (TuMV) via interaction with the
Vpg viral protein. Downregulation of OBERON-like protein
decreases TuMV infection (Dunoyer et al., 2004).

All the above-described proteins, identified by proteomics
analysis, are involved in the efforts of the host to defend
itself against TMV at a very early infection stage, however,
without success since plants are systemically infected by
the virus. The protein changes correlated with a successful
TMV infection involve the translation-associated poly-A
binding protein (upregulated upon TMV infection), as well
as chloroplast-associated factors such as carbonic anhydrases,
chloroplast photosystem bO4 protein, and RuBisCO activase 2
(downregulated upon TMV infection) (Table 1 and Figure 2).

Poly-A-binding protein or PABP (I2FJN7) may act as a
susceptibility host factor by promoting viral RNA translation
(Iwakawa et al., 2012). TMV 3′ UTR contains several unique
sequences designated as CAP-independent translation enhancer
element (CITE) and A-rich sequences (ARS) which mediate viral
RNA translation.

Carbonic anhydrase or CA enzymes (EC 4.2.1.1)
(A0A077DCK9, A4D0J8, A4D0J9, P27141) have been identified
as salicylic acid-binding proteins with an antioxidant role
and generally constitute part of the defense mechanism in C3
plants upon attack by various pathogens, including viruses
(Slaymaker et al., 2002; Restrepo et al., 2005). PsbO group
protein D1 (I0B7J4) was shown to exhibit significantly lower
abundance in TMV-sensitive tobacco cultivars upon TMV
infection compared with the TMV-tolerant ones, indicating
that high D1 levels are tightly correlated with antiviral
resistance (Wang et al., 2016). In addition, silencing of PsbO
in N. benthamiana resulted in increased TMV accumulation
(Abbink et al., 2002). PsbO proteins are involved in the
control of the photosystem II (PSII) affinity for manganese
(Mn2+), thus participating in the stabilization of the oxygen-
evolving complex (Popelkova et al., 2008). An intact and
operational PSII complex is crucial for resistance to TMV
infection (Wang et al., 2016). Interestingly, TMV p126 helicase
protein interacts with a PsbO protein in a yeast two-hybrid
system suggesting that p126 may interrupt PsbO’s normal
localization and/or function (Abbink et al., 2002; Wang L. Y.
et al., 2012). RuBisCO activases or RCAs (Q40565, V9INR4),
being chaperone-like proteins, are required for optimizing
photosynthesis and were found to colocalize with TMV
replicase inside VRCs upon TMV infection. Downregulation
of RCA substantially increases the infection of TMV (Bhat
et al., 2013). Chloroplasts are energy generators, stress sensors,
and defense signal producers and thus constitute major
targets of invading viruses to establish successful infections
(Li et al., 2016; Bhattacharyya and Chakraborty, 2018). Our
findings showing the decrease in CA, PsbO, and RCA protein
levels at 15 mpi could represent the beginning of a rapid
alteration of the chloroplast caused by TMV (Table 1 and
Figure 2). Typical TMV disease symptoms on tobacco leaves
such as mosaic are correlated with abnormal chloroplast
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structure and distortion of the photosynthetic machinery
(Lehto et al., 2003).

RNAi is considered a very effective antiviral mechanism
(Padmanabhan et al., 2009; Wang M. B. et al., 2012). In
addition, it was proposed recently that dsRNA could induce
a pattern-triggered immune (PTI) signaling pathway in plants
providing antiviral defense (Niehl et al., 2016 and references
therein). No studies have been reported related to the production
of vsiRNAs from the TMV genome as early as 15 mpi.
Tobacco RNAi against TMV is operational at this time point
in the tobacco–TMV interaction, since vsiRNAs from sense
and antisense orientation of the TMV genome are produced
(Figure 4 and Supplementary Table 5). However, even this
defense reaction is not sufficient to confer resistance since all
tobacco plants got infected. To boost the host RNAi machinery,
we employed the topical application of dsRNAs, as inducers
of the RNA-based vaccination (Voloudakis et al., 2018). In
the present work, we used small RNA NGS to show that the
exogenously applied dsRNAp126 on tobacco plants is efficiently
processed as early as 15 mpa, producing siRNAs derived from
the entire region of the dsRNA molecule used (Figure 3 and
Supplementary Table 4), and this is to our knowledge reported
for the first time. Since the siRNA profiles are similar in
TMV and dsRNAp126 treatments (Supplementary Figure 3),
we assume that DCLs play a key role in dicing the exogenously
applied dsRNA. The observed heterogeneity in siRNA production
(hot spots) (Figure 3) could be possibly attributed to the
secondary structures of the dsRNA molecules that may restrict
the accessibility of the DCL proteins to their targets. TMV
via its p126 protein, which possesses RNA silencing suppressor
activity, could interfere with the dicing capacity of the host
DCL proteins, affecting as a result the exogenously applied
dsRNA processing. However, this does not seem to happen
in our experimental system. In particular, the simultaneous
topical application of dsRNAp126 along with TMV produced
the same pattern of siRNA molecules in the region 426–1,091 nt
(region of dsRNA) (Figures 3, 5 and Supplementary Figure 2),
suggesting that the presence of the virus does not alter the
dicing pattern of the dsRNA applied. The siRNAs produced,
at 15 mpi, in the region of dsRNAp126 (426–1,091 nt) is in
great excess relative to the vsiRNAs derived from the rest of
the viral genome (Figure 5 and Supplementary Table 6). This
high abundance of dsRNA-derived siRNAs is a very important
parameter for RNA-based vaccination since RNAi efficacy was
previously shown to be dose dependent (Tenllado and Díaz-
Ruíz, 2001). The efficacy of dsRNAp126 application against TMV
infection can be illustrated by the finding that it significantly
reduces the accumulation of TMV, as evidenced by RT-PCR
analysis (Figure 6).

1-Aminocyclopropane-1-carboxylate oxidase 2 isoform A
(ACO2) (E5LCN0), cysteine synthase (CyS) (Q3LAG5, S6A7M4),
and isoforms of calmodulin (CaM) (Q76ME6, Q76MF3)
compose a small group of proteins that were significantly more
abundant in the dsRNAp126 + TMV treatment when compared
with the water and TMV treatments. We hypothesize that
these proteins are induced by dsRNA itself. No bibliographic
reports exist involving ACO2 and CyS in plant virus infection.

However, a calmodulin-like protein (rgd-CaM) suppresses
the Cucumber mosaic virus-2b (CMV-2b), the viral silencing
suppressor, by physical binding to CMV-2b’s dsRNA-binding
domain (Nakahara et al., 2012). It would be important to
further investigate the accumulation of these proteins to confirm
their involvement in plant RNAi pathway and resistance to
virus infection.

CONCLUSION

The dsRNAp126 application has been shown repeatedly, in the
experiments described here and in our previous study (Konakalla
et al., 2016), to confer a significant level of protection against
TMV. At the molecular level, dsRNAp126 is able to counteract
the harmful effects of TMV on the chloroplast proteome (Table 1)
as well as on PABP, a non-chloroplastic protein, very early in the
tobacco–TMV interaction (Table 1). The observed counteracting
effect by dsRNAp126 (based on the proteomics analysis) is
suggested to be due to the lower TMV RNA (Figure 6) or TMV
protein products (lower level of effectors) in the cell.
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Supplementary Figure 4 | Non-protective effect of non-homologous dsRNAHC
(deriving from HC-Pro of Zucchini yellow mosaic virus) against TMV in tobacco.

Supplementary Table 1 | Primers for the amplification of TMV p126 and
Nt-ACT9 in RT-qPCR.

Supplementary Table 2 | An overview of all significantly enriched GOs.

Supplementary Table 3 | An overview of all the annotated GOs for the
differentially accumulated proteins (DAPs).

Supplementary Table 4 | Next generation sequencing (NGS) data showing the
production of siRNAs in the dsRNAp126 treatment at 15 min post
application (mpa).

Supplementary Table 5 | Next generation sequencing (NGS) data showing the
production of siRNAs in the TMV treatment at 15 min post inoculation (mpi).

Supplementary Table 6 | Next generation sequencing (NGS) data showing the
production of siRNAs in the dsRNAp126 + TMV treatment at 15 min post
inoculation (mpi).
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