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Multiple Arabidopsis arogenate dehydratase (ADT ) knock-out (KO) mutants, with
phenotypes having variable lignin levels (up to circa 70% reduction), were studied
to investigate how differential reductions in ADTs perturb its overall plant systems
biology. Integrated “omics” analyses (metabolome, transcriptome, and proteome) of
wild type (WT), single and multiple ADT KO lines were conducted. Transcriptome
and proteome data were collapsed into gene ortholog (GO) data, with this allowing
for enzymatic reaction and metabolome cross-comparisons to uncover dominant or
likely metabolic biosynthesis reactions affected. Network analysis of enzymes–highly
correlated to stem lignin levels–deduced the involvement of novel putative lignin
related proteins or processes. These included those associated with ribosomes, the
spliceosome, mRNA transport, aminoacyl tRNA biosynthesis, and phosphorylation.
While prior work helped explain lignin biosynthesis regulation at the transcriptional
level, our data here provide support for a new hypothesis that there are additional
post-transcriptional and translational level processes that need to be considered.
These findings are anticipated to lead to development of more accurate depictions of
lignin/phenylpropanoid biosynthesis models in situ, with new protein targets identified
for further biochemical analysis and/or plant bioengineering. Additionally, using KEGG
defined functional categorization of proteomics and transcriptomics analyses, we
detected significant changes to glucosinolate, α-linolenic acid, nitrogen, carotenoid,
aromatic amino acid, phenylpropanoid, and photosynthesis-related metabolic pathways
in ADT KO mutants. Metabolomics results also revealed that putative carotenoid and
galactolipid levels were generally increased in amount, whereas many glucosinolates
and phenylpropanoids (including flavonoids and lignans) were decreased in the
KO mutants.
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INTRODUCTION

Arogenate is an important branch-point to either tyrosine (Tyr)
or phenylalanine (Phe) in vascular plants, whose formation from
arogenate (Agn) is catalyzed by arogenate dehydrogenase (ADH)
and arogenate dehydratase (ADT), respectively (Figure 1).
The Phe so formed can then be incorporated into either
proteins or massively utilized in the phenylpropanoid pathway
to produce lignins, as well as other related metabolites
(e.g., lignans, allyl/propenyl phenols, flavonoids, coumarins,
anthocyanins) depending upon the species. In our earlier studies,
homozygous single and multiple Arabidopsis ADT knock-
out (KO) lines with homologous T-DNA insertion mutations
were obtained, with the most extreme phenotypes showing
an ∼70% reduction in lignin content as compared to wild
type (WT) plants (Corea et al., 2012a,b,c). Phenotypes of the
former also displayed prostrate stems and lowest stem dry
weights/heights.

Differentially varying lignin levels as above, obtained
through systematic manipulation of the 6-membered
Arabidopsis ADT gene family (ADT1, At1g11790; ADT2,
At3g07630; ADT3, At2g27820; ADT4, At3g44720; ADT5,
At5g22630, and ADT6, At1g08250), thus offered the
opportunity to investigate the holistic nature of such
perturbations on overall Arabidopsis systems biology. To
do this, we carried out multi-omics (i.e., transcriptomics,
proteomics, and metabolomics) analyses of leaf and
stem tissues of single (adt1, adt3, adt4, adt5, and adt6),
double, triple and quadruple (adt4/5, adt1/4/5, adt3/4/5,
and adt3/4/5/6) KO mutant and WT lines, at 4 weeks of
growth/development.

In this study, multi-omics “normalization” strategies were
employed to enable direct integration and visualization of
the disparate “omics” datasets of related transcripts, proteins
and metabolites, thereby allowing for greater understanding,
confidence and validation of resulting systemic biological
perturbations observed. Network analysis (Szklarczyk
et al., 2015) was also used to (a) identify enzymes or
processes most highly correlated to different lignin levels,
and (b) reveal potentially novel enzymes or processes
related with lignin level regulation and biosynthesis. This
analysis resulted in our provisionally deducing novel
transcriptional, post-transcriptional and translational
regulatory processes, when carbon flux was reduced in the
phenylpropanoid pathway and which profoundly affected
lignin deposition.

Many proteins identified in our network analysis have
not been reported as potentially linked to lignin biosynthesis
regulation. For example, several ribosome subunits with
high correlations to lignin level profiles were identified,
suggesting the possible presence of a “ribocode.” These
proteins, as well as other ribosome-interacting mRNA processing
proteins detected in our network analysis, indicate that
vascular plant lignin levels are not only controlled at the
point of transcription but work together with modulating
factors at a post-transcriptional and translational level as
described below.

MATERIALS AND METHODS

Chemicals
For metabolomics analyses, OptimaTM grade water, acetonitrile
and formic acid were purchased from Fisher Scientific (Hampton,
NH, United States). Authentic standards used for secondary
metabolite metabolomics are described in Höhner et al. (2018).
For proteomics and RNA-Seq sample preparation, nanopure
water was used and all chemicals were obtained from Sigma-
Aldrich (St. Louis, MO, United States) and were of analytical
grade unless otherwise noted.

Arabidopsis T-DNA Knock Out (KO)
Insertion
Arabidopsis thaliana WT (Columbia) T-DNA insertion lines were
obtained from the Salk Institute Genomic Analysis Laboratory
(SIGnAL)1. Individual ADT KO mutant lines were created in
homozygous form, with individual lines crossed to ultimately
provide double, triple, and quadruple homozygous ADT KO
mutants (Corea et al., 2012c).

Plant Growth and Harvesting Conditions
A. thaliana WT (Columbia) and KO mutant lines were grown in
Institute of Biological Chemistry (Washington State University)
greenhouses with a 16/8 h light/dark cycle at 27–28◦C/24–26◦C,
respectively. Nitrogen-based fertilizer (200 ppm) was added five
times a week. Plants were harvested at 4 weeks after planting
with rosette leaf and stem tissues individually collected and
immediately flash-frozen in liquid N2. Each sample was stored
at−80◦C until further analysis.

Primary Metabolite Derivatization
Nine individual plants of each line were frozen in liquid
N2 and freeze-dried. Dry plant tissues were ground into fine
powders using a tissue-lyzer II (Qiagen, Germany) for 30 s
at a frequency of 30 Hz at −80◦C. Powdered freeze-dried
Arabidopsis leaves or stems (20 mg) were individually suspended
in 500 µL of methanol:2-iso-propanol:water (5:2:2, v/v/v). After
adding 13C labeled ribitol standard (1.5 µg), each material was
extracted by vortexing for 10 min, followed by sonication for
5 min. Extracts were individually centrifuged for 10 min at
15,000 × g, with supernatants transferred to a new vial and
subsequently dried under vacuum. Dry residues were individually
re-suspended in water:acetonitrile (500 µL, 1:1 v/v), and re-
extracted by sequential vortexing and sonication, followed by
centrifugation at 15,000 × g for 5 min with supernatants then
removed and dried under vacuum. Dry residues were individually
suspended in O-methoxylamine hydrochloride (40 mg mL−1

in pyridine, 5 µL, Sigma) and incubated for 90 min at 30◦C
at 1,000 rpm (Eppendorf Thermomixer). Subsequently, samples
were individually derivatized with MSTFA (45 µL) with 1%
TMCS (Thermo-Pierce) for 30 min at 37◦C and 1,000 rpm
(Eppendorf Thermomixer).

1http://signal.salk.edu/cgi-bin/tdnaexpress
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FIGURE 1 | Simplified metabolic pathways linking photosynthesis, carbon fixation and lignin biosynthesis, as well as placement of arogenate dehydratase (ADT)
between the chorismate-shikimate, aromatic amino acid, and phenylpropanoid pathways in vascular plant systems. Selected metabolites are illustrated along with
enzymes depicted by arrows.

Primary Metabolite Analysis Using Gas
Chromatography Time-of-Flight Mass
Spectrometry
Analyses were performed using a Pegasus 4D time-of-flight
mass spectrometer (LECO) equipped with a Gerstel MPS2
autosampler and an Agilent 7890A oven. Derivatization products
were separated on a (30 m × 0.25 mm i.d. ×0.25 µm) Rxi R©-
5Sil column (Restek) with an IntegraGuard R© pre-column using
ultrapure He at a constant flow of 1 mL min−1 as carrier gas. The
linear thermal gradient started with 1 min at 50◦C, followed by
a ramp to 330◦C at 20◦C min−1. Final temperature was held for
5 min prior to returning to initial conditions and mass spectra
were collected at 17 spectra s−1. The injection port was held at
250◦C, and an aliquot of the sample (1 µL) was injected.

GC-MS Data Processing
Peak annotation employed the Fiehn primary metabolite library
(Kind et al., 2009), where an identity score cutoff of 600 was
used. Peak alignment and mass spectra comparisons were carried
out using the Statistical Compare feature of the ChromaTOF R©

software (LECO). Surrogate standard 13C ribitol and original
tissue weight were used for normalization.

Secondary Metabolomic Analysis Using
Liquid Chromatography Time-of-Flight
Mass Spectrometry
Metabolites were extracted from freeze-dried material from each
individual plant tissue (10 mg) as described (Lu et al., 2017)
in 200 µL of methanol:water (70:30, v/v) containing naringenin
(Aldrich) as an internal standard. Samples were vortexed,
sonicated for 10 min and finally centrifuged at 14,000 × g
at 4◦C for 15 min. Supernatants were individually stored at
−80◦C until analysis.

Samples were analyzed using a Waters AcquityTM Ultra
Performance LC system as described in Lu et al. (2017)
with the following modifications: Liquid chromatography was
performed using a 100 × 2.1 mm i.d. (1.7 µm particle
size) UPLC BEH C18 column (Waters). Masses of eluted
compounds were detected using an electrospray ionization (ESI)
source in the negative ion mode with capillary voltage at
2.2 kV; cone voltage at 20 eV; collision energy at 6 eV and
at 30 eV. Chromatograms and spectra were inspected, and
raw data files and metabolite assignments were determined as
described previously (Lu et al., 2017). Before statistical analysis,
feature integration results were normalized to internal standard
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naringenin (M271T1197_1, retention time 1197 s and m/z
(average) 271.0609 and calculated 271.0606, for C15H11O5).
Many metabolites were unambiguously identified by comparison
with retention times, UV spectra and MS/MS fragmentation
patterns of authentic standard compounds. Other metabolites
were putatively annotated based on accurate mass, isotopic
pattern recognition, and MS/MS spectra. These were searched in
both the literature and publicly available mass spectral databases
[i.e., Metlin, ReSpect2, Massbank3, and HMDB4].

RNA Extraction and Illumina HiSeq
Analysis
For each sample, liquid nitrogen frozen tissue sample (100 mg)
was ground using a mortar and pestle cooled in presence of
liquid nitrogen. A SpectrumTM Plant Total RNA kit (Sigma-
Aldrich, St. Louis, MO, United States) was employed according to
the manufacturer’s instructions. Quality control was performed
on a Thermo Scientific NanoDrop with all 260/280 nm
and 260/230 nm readings above 1.8. Illumina TruSeq RNA
libraries were constructed per the manufacturer’s protocol, with
quality evaluated using the Agilent Bioanalyzer. Samples were
sequenced on a HiSeq 2000 instrument (Illumina, San Diego, CA,
United States). Six lanes were multiplexed with five samples per
lane in the single ended, 50 bp configuration. A mean of 41 M
reads passing quality filters was obtained for each sample (min.
31 M, max. 50 M). Cluster generation used the cBot SR Cluster
Gen Kit (V3) and the flow cell used was SR FC Information (V3).

RNA-Seq Data Workup
CyVerse (formerly iPlant Collaborative)5 (Goff et al., 2011),
was used for analysis and evaluation of the HiSeq data. Once
all FASTQ files produced from the Illumina sequencing were
uploaded into the Discovery Environment (DE), the TopHat2-
SE App, which comprised TopHat 2.0.9 and Bowtie 2.1.0, was
used to align the RNA-Seq reads to the A. thaliana TAIR10
genome using the short read aligner Bowtie which is capable of
analyzing the mapping results to identify splice junctions between
exons. The reference genome and reference annotations used the
A. thaliana TAIR10 genome (A. thaliana Ensembl 19). Default
analysis options were used with the exception of the FASTQ
quality scale of Illumina 1.3-1.8 (PHRED64). Anchor length: 8;
Maximum number of mismatches that can appear in the anchor
region of spliced alignment: 0; The minimum intron length:
70; the maximum intron length: 50000; Minimum isoform
fraction: 0.15; Maximum number of alignments to be allowed:
20; Minimum intron length that may be found during split-
segment (default) search: 50; Maximum intron length that may be
found during split-segment (default) search: 500000; Number of
mismatches allowed in each segment alignment for reads mapped
independently: 2; Minimum length of read segments: 20. Next,
Cufflinks2 (an interface for Cufflinks version 2.1.1) located in the
DE of CyVerse was used to link short read RNA-Seq alignments

2http://spectra.psc.riken.jp/
3http://www.massbank.jp/
4http://www.hmdb.ca/
5http://www.cyverse.org/

found from the TopHat analysis to the reference annotations
from the TAIR10 genome. Cufflinks identified sequences that
did not align with the annotated genome and labels them
with novel identifiers. Default settings were used in Cufflinks.
These parameters included abundance estimation options of:
Number of importance for samples generated for each locus:
1000; Number of iterations allowed during MLE (maximum-
likelihood estimates) of abundances: 5000; Prefix for transcripts
in reported GTF (General Transfer Format): Cuff; Minimum
isoform fraction: 0.1; Pre-mRNA fraction: 0.1; Maximum intron
length: 300000; Alpha value for the binomial test used during false
positive spliced alignment filtration: 0.001; Small anchor fraction:
0.09; Minimum fragments per transfrag: 10; The number of bp
allowed to enter the intron of a transcript when determining if
a read or another transcript is map-able with it: 8; Maximum
genomic length allowed for a given bundle: 3500000; Minimum
intron length: 50; Minimum average coverage required to attempt
3′ trimming: 10; The fraction of average coverage below which to
trim the 3′ end of an assembled transcript: 0.1. Next, the HTSeq-
with-BAM-input app in the CyVerse site was used to produce
count data from the BAM files using default parameter values.

Protein Extraction and Digestion
Ice cold 0.1 M ammonium acetate in methanol (10 mL) and
β-mercaptoethanol (250 µL) were added to each pulverized
powder sample (ground in liquid nitrogen in a mortar and
pestle) followed by vigorous shaking for 15 s. For stem tissues,
a Polytron homogenizer was used for about 30 s at a speed of 30
to further homogenize them. Samples were individually placed in
a−20◦C freezer for 2 h, and subsequently centrifuged for 10 min
at 5000 × g at 4◦C. Each supernatant was next removed and
discarded. The above addition of ammonium acetate/methanol
solution and centrifugation steps were repeated four more times
to remove metabolites and lipids from each sample. Excess
methanol was removed by drying the pellets gently under a
flow of nitrogen for ∼2 min. A protein solubilization solution
containing 7 M urea, 2 M thiourea, 4% CHAPS and 5 mM
of neutralized tris(2-carboxyethyl)phosphine (TCEP) (Bond-
Breaker, Thermo Fisher, San Jose, CA, United States) was
added to each sample to completely cover each pellet, plus
500 µL more. Samples were then individually incubated at
4◦C overnight. Debris from each was physically mixed into
solution with a pipette tip and the slurry sonicated in a
Hielscher UTR200 ultrasonic processor for 10–20 s at 100%
amplitude. Protein slurries were next individually incubated
at 60◦C for 30 min, with samples vortexed and sonicated in
the sonoreactor again for about 30 s. Each sample was then
centrifuged for 10 min at 5000 × g at 4◦C. A Coomassie
Plus protein assay (Pierce, Rockford, IL, United States), using a
bovine serum albumin (BSA) standard, was next conducted on
individual supernatants to estimate protein contents. Afterward,
denatured samples were diluted tenfold with 50 mM ammonium
bicarbonate (pH 8.0). CaCl2 was added to a concentration of
2 mM and trypsin (Affymetrix, Santa Clara, CA, United States)
was added at a trypsin:sample ratio of 1:50 (w/w). Samples were
individually digested overnight at 37◦C and then alkylated with
chloroacetamide at a concentration of 5 mM in the dark at 37◦C
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for 30 min. Peptides from each treatment were desalted with
an SCX SPE (SUPELCO Supelclean) using 10 mM ammonium
formate (pH 3.0), 25% acetonitrile (v/v) in water, to remove
CHAPS, and then a 80:15:5 (v/v/v) methanol:water:ammonium
hydroxide (14.8 M) was used to elute peptides. C-18 SPE columns
(SUPELCO Discovery) were employed to remove ammonium
salts, using a 0.1% TFA (v/v) in nanopure water to wash the
peptides and a 80:20 (v/v) acetonitrile:water with 0.1% (v/v) TFA
solvent to elute peptides. Peptides were quantified using a BCA
assay (Pierce, Rockford, IL, United States) with a BSA standard.

iTRAQ Peptide Labeling
Peptides were labeled with 8-plex iTRAQ (AB Sciex, Redwood
City, CA, United States) reagents: Each peptide sample (30 µg)
was placed in a new tube and dried down. Dissolution buffer
(iTRAQ buffer kit, 13 µL) was added to each sample, these being
vortexed into solution and centrifuged briefly to draw sample to
the bottom of each tube. iTRAQ reagent (10 µL) was diluted
further with isopropanol (35 µL), and this was added to each
sample. Each reaction was carried out at room temperature for
2 h, with 50 mM ammonium bicarbonate (200 µL) added to
quench each reaction. After 1 h, contents from all iTRAQ channel
reactions were added to one tube and then the sample was
vortexed and dried down in a centrifugal vacuum concentrator.

Offline Fractionation of Peptides and
Preparation of Proteome Samples
Labeled peptides were separated using an off-line high pH (pH
10) reversed-phase (RP) separation with a Waters XBridge C18
column (250 mm × 4.6 mm i.d., 5 µm particle size) and a
guard column (4.6 mm × 20 mm) using an Agilent 1200 HPLC
System. Each sample loaded onto the C18 column was washed
for 15 min with Solvent A [10 mM ammonium formate, adjusted
to pH 10 with ammonium hydroxide (14.8 M)]. The gradient
started with a linear increase of 0% Solvent B [10 mM ammonium
formate, pH 10, acetonitrile:water (90:10 v/v)] to: 5% Solvent
B over 10 min, 45% Solvent B over 65 min, and then to 100%
Solvent B over 15 min. Solvent B was held at 100% for 10 min,
and then this was changed to 100% Solvent A, this being held
for 20 min to recondition the column. The flow rate was 0.5 mL
min−1. A total of 48 fractions were collected for each sample
into a 96 well plate throughout the above LC gradient. The high
pH RP fractions were then combined into 12 fractions using the
concatenation strategy previously reported (Wang et al., 2011).
Peptide fractions were dried down and re-suspended in nanopure
water at a concentration of 75 ng µL−1 for mass spectrometry
analysis using an LTQ-Orbitrap Velos MS (Thermo Scientific)
system as described below.

Mass-Spectrometry Based Analysis of
Peptide Samples
The LC system was custom built using two Agilent 1200
nanoflow pumps and one Agilent 1200 cap pump (Agilent
Technologies, Santa Clara, CA, United States), various Valco
valves (Valco Instruments Co., Houston, TX, United States),
and a PAL autosampler (Leap Technologies, Carrboro, NC,

United States). Full automation was made possible by custom
software that allows for parallel event coordination and therefore
near 100% MS duty cycle through use of two trapping and
analytical columns. Reversed-phase columns were prepared in-
house by slurry packing 3 µm Jupiter C18 (Phenomenex,
Torrance, CA, United States) into 40 cm× 360 µm o.d.×75 µm
i.d. fused silica (Polymicro Technologies Inc., Phoenix, AZ,
United States) using a 1-cm sol-gel frit for media retention
(Maiolica et al., 2005). Trapping columns were prepared similarly
by slurry packing 5-µm Jupiter C18 into a 4-cm length of
150 µm i.d. fused silica and fritted on both ends. Mobile
phases consisted of 0.1% formic acid in water (A) and 0.1%
formic acid in acetonitrile (B) operated at 300 nL−1 min
with a linear gradient profile as follows (min:%B): 0:5, 2:8,
20:12, 75:35, 97:60, 100: 85. Sample injections (5 µL) were
trapped and washed on the trapping columns at 3 µL min−1

for 20 min prior to alignment with analytical columns. Data
acquisition lagged the gradient start and end times by 15 min
to account for column dead volume that allowed for the
tightest overlap possible in a two-column operation. The two-
column operation also allowed for columns to be “washed”
(shortened gradients) and re-generated off-line without any
cost to duty cycle.

The LTQ Orbitrap Velos mass spectrometer was operated
in the data-dependent mode acquiring higher-energy collisional
dissociation (HCD) scans (R = 7,500, 5 × 104 target ions) after
each full MS scan (R = 30,000, 3 × 106 target ions) for the
top ten most abundant ions within the mass range of 300 to
1,800 m/z. An isolation window of 2.5 Thomson units (Th)
was used to isolate ions prior to HCD. All HCD scans used
normalized collision energy of 45 and maximum injection time
of 1000 ms. The dynamic exclusion time was set to 60 s and
charge state screening was enabled to reject unassigned and
singly charged ions.

Peptide Identification and Quantification
For peptide identification, MS/MS spectra were searched against
a decoy A. thaliana protein TAIR106 database using the algorithm
SEQUEST (Eng et al., 1994). Search parameters included:
no enzyme specificity for proteome data and trypsin enzyme
specificity with a maximum of two missed cleaves, ±50 ppm
precursor mass tolerance, ±0.05 Da product mass tolerance, and
carbamidomethylation of cysteines and iTRAQ labeling of lysines
and peptide N-termini as fixed modifications. Allowed variable
modifications were oxidation of methionine and proline. MS-GF
(Kim et al., 2008) spectra probability values were also calculated
for peptides identified from SEQUEST searches. Measured mass
accuracy and MS-GF spectra probability were used to filter
identified peptides to <0.4% false discovery rate (FDR) at
spectrum level and <1% FDR at the peptide level using the
decoy approach. iTRAQ reporter ions were extracted using the
MASIC software (Monroe et al., 2008) with a 10 ppm mass
tolerance for each expected iTRAQ reporter ion as determined
from each MS/MS spectrum.

6www.arabidopsis.org
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Protein and Transcript Relative Fold-change, Z-score
and P-value Determinations
For the protein data, relative abundances of peptides were
determined using iTRAQ reporter ion intensity ratios from
each MS/MS spectrum. Individual peptide intensity values were
determined by dividing the base peak intensity by the relative
ratio associated with each reporter ion. Each iTRAQ experiment
references a pool of peptides so that all experiments could be
linked. All peptide data were combined into a single data table
and were transformed to a log2 value, following which each
data row of each iTRAQ experiment was shifted so that the
reference pool value in each iTRAQ experiment was equal. Then
each column of data representing each channel of each iTRAQ
experiment was mean centered. All peptide values were next
transformed to undo the log2, by calculating 2 to the power of
each data point. Peptide abundance values were then separated
into two datasets, one of peptides unique to a single protein
and peptides which are shared between two or more proteins.
Peptides were rolled up to a protein value by summing the
peptides that belong to each protein in each dataset. Where
the same protein was calculated in both datasets, only one
protein value was selected in a final protein rollup table with the
protein value from the unique peptide rollup given preference if
identified in all channels. Individual protein roll-up calculations
from the unique or shared peptide table were designated in
the final protein roll-up table. KEGG Orthology protein family
groups (KEGOs) were also determined for both protein and
transcript data. Protein KEGOs were calculated by summing all
unique peptide values found within a KEGO. Transcript KEGOs
were calculated by summing all transcript count data within
a like KEGO. All protein, transcript and KEGO values were
converted to a log2 value. Log2 values below 2 in all protein
datasets were removed as these primarily represent noise signals
which interfere with z-score calculations. All replicates were
averaged, and MA plots were constructed for each comparison
between the average value of each WT and mutant line. All fold
change pairs analyzed in MA plots, were combined into a single
dataset and the values obtained in the A axis were ranked from
lowest to highest. A sliding window which represented 10% of
the total number of data point was used to calculate the z-score
value along the A axis for each data point (in the MA plot).
Z-score (z = x-µ/σ = (datapoint–median)/standard deviation).
This standardized the log2 fold change distribution among all
data points (low and high abundance alike). From the normal
distribution of all log2 fold changes, a p-value was calculated
for each log2 fold change comparison using the normsdist
function in Excel.

Network Analysis
All proteins with a high Spearman rank correlation (rho > 0.85)
to the monomeric guaiacyl (G) and syringyl (S) lignin-derived
moieties, and which had a z-score ratio value no more than
±0.5 in the adt1 versus WT analysis, were identified in WT
and adt1, adt3, adt4, adt5, adt4/5, adt1/4/5, adt3/4/5, and
adt3/4/5/6 mutants, and were entered into the STRING network
analysis algorithm7 (Szklarczyk et al., 2017) searching against

7https://string-db.org

the A. thaliana database. STRING returned protein-protein
associations, type of association, and strength of association.
Known interactions from either curated databases or which
were experimentally determined were considered, along with
predicted interactions from gene fusion, gene co-occurrence,
gene neighborhood experiments, as well as from text mining,
co-expression datasets and protein homology datasets. Node
interactions were selected only if STRING returned a minimum
interaction score of 0.4 or higher and for nodes with at least one
interaction. These data were then exported into an interaction
table, this then being made into a SIF document and uploaded
into Cytoscape 3.4.0 (Smoot et al., 2011). In Cytoscape, the
layout attribute Organic was selected under yFiles Layout. Nodes
in close proximity were further clustered together manually
based on either like KEGG or a gene ortholog (GO) term
functional category if no KEGG category existed. Nodes were
represented by rectangles colored by a red-blue color scheme
to represent z-scores of log2 ratios (ADT KO mutant/WT),
where red represents proteins higher in abundance in ADT KO
mutants compared to WT, white symbolizes no change, and
blue represents proteins higher in abundance in WT compared
to ADT KO mutants. The thickness of the edge represents
strength of relationship between nodes/proteins, as determined
by the final combined score output of STRING. A more
focused STRING analysis was carried out just on ribosome,
spliceosome and mRNA processing involved proteins to view
the putative specific connections. Only associations related to
known and predicted interactions were considered. A minimum
interaction score of 0.4 or higher was used for nodes with at least
one interaction.

RESULTS

A multi-omics evaluation of Arabidopsis ADT KO mutant
lines (compared to WT plants) was conducted at 4 weeks of
growth/development, when the plants had fully developed
rosette leaves and had stems about 10–20 cm high (∼1/3
height at maturity). For both tissue types, full RNA-Seq
transcriptomics, iTRAQ 8-plex multiplexing proteomics
coupled with LC-MS/MS, together with primary (GC-MS) and
secondary (LC-MS) metabolomics analyses were performed.
Data interrogation resulted in confident detection (1% FDR) of
27,181 transcripts, 8,672 proteins, together with 132 primary and
30 secondary metabolites.

Normalization of Expression Data for
Multi-Omics Integration
Each biomolecular class (i.e., transcripts, proteins, and
metabolites) was measured using disparate workflows. Since only
a few replicate analyses were feasible, as is typical for RNA-Seq
and proteome analysis, variance estimations were offset by
“borrowing” information from genes or proteins across the
entire analysis (Subramaniam and Hsiao, 2012). The general
rationale for this approach relied on the assumption that variance
is similar for biomolecules of similar abundances. Transcript or
peptide measurements with similar abundances can therefore act
as pseudo-replicates producing similar distribution parameters.
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This strategy is commonly utilized for expression data and with
various bioinformatics tools [e.g., SAM (Tusher et al., 2001),
limma (Ritchie et al., 2015), and VAMPIRE (Hsiao et al., 2005)].

We applied this approach to log2 fold change transcriptome,
proteome and metabolome data between each ADT KO mutant
and WT analysis. Data were first processed as MA-plots (Dudoit
et al., 2002; Labbe and Dudoit, 2012) (Supplementary Figure 1),
an approach that distributes log2 fold change data (M = y-
axis) according to average abundance (A = x-axis) of the two
measurements being compared. Log2 fold change calculations for
any type of expression data (gene/protein/metabolite) typically
form a normal distribution, with subsequent utilization of
localized data (or a sliding window of log2 fold change data
with similar abundances) enabling calculation of more accurate
z-scores and p-values for significance estimations. Resulting
z-score calculations then allowed for normalization of data into
units of standard deviation (away from an average or zero-
fold change value). This normalization then permits integration
of datasets obtained on disparate platforms (i.e., Illumina
sequencing, mass spectrometry) to be compared directly.

Metabolomics Analysis
Metabolite profiles represent the ultimate molecular phenotypic
indicator of an organism at a specific growth/developmental
stage. Metabolites often function as cofactors, energy sources,
signaling molecules, polymer precursors (e.g., to cellulose,
lignins, proteins, DNA), as well as defense, attractant and
effector molecules. In the context of plant bioengineering,
metabolomic analyses provide the ultimate validation as to which
metabolites are increased or decreased in quantity in response
to a genetic change or other perturbation. Here we used two
mass spectrometric methods to evaluate the differences between
each ADT KO mutant and WT in terms of both primary and
secondary metabolism.

Supplementary Figures 2, 3 show heat maps displaying
z-scores of log2 fold changes between ADT KO mutants
and WT for the metabolites identified by GC-MS (i.e.,
primary metabolites) and LC-MS (i.e., secondary metabolites),
respectively. Data were grouped by functional categories, as
defined by KEGG8 (Kanehisa et al., 2017), when available. Z-score
values pertaining to Supplementary Figures 2, 3 are found in
Supplementary Table 1. The GC-MS results (Supplementary
Figure 2) are shown as a heat map displaying z-score of the
log2 fold change values of each metabolite found in each ADT
KO mutant compared to WT. The largest primary metabolite
classes identified were related to carbohydrates, amino acids and
lipids. Fold-changes found in the carbohydrate class included
on average decreases in ascorbate (2.6 in leaf, 2.3 in stem) and
dehydroascorbate (2.6 in leaf, 1.5 in stem). While not detected in
leaf tissue, melibiose (3.2 fold), and xylitol (2.3 fold) were lower
in abundance in the stems.

In both leaf and stem tissues, the most significant change
of all metabolites identified from GC-MS data was that of an
increase in sorbitol (5.9 fold in leaf, 152 fold in stem). Knocking
out even a single ADT isoform in Arabidopsis has profound

8http://www.kegg.jp/

effects on sorbitol biosynthesis, and perhaps on a plant-wide
level. Jain et al. (2010) reported that treatment of maize seedlings
with increased concentrations of sorbitol (a) decreased total
chlorophyll, protein and RNA contents, while increasing proline
levels and nitrate reductase activity; and (b) induced a stress
response that overall inhibited maize growth. By producing so
much sorbitol in vivo, ADT KO mutants may too be experiencing
changes in chlorophyll, protein and RNA levels. Moreover, these
plant lines may also be under increased levels of stress relative
to WT plants. Glycolic acid (2.1 fold in leaf and 2.3 fold in
stem) additionally was found to be increased in ADT KO mutants
versus WT. Glycolic acid is produced when ribulose bisphosphate
(RuBisCo) fixes O2 instead of CO2. The increased presence of
glycolic acid in both leaf and stem tissues suggests increased
photorespiration pathway utilization, which results in a release
of CO2 back to the atmosphere.

In stem tissue, other carbohydrates such as D-glyceric acid (2.8
fold), 6-deoxy-D-glucose (10.1 fold), and fructose-6-phosphate
(4.1 fold) also had higher levels in ADT KO lines versus WT,
whereas significantly increased levels of D-glucoheptose (36.1
fold), allose (4.0 fold), gluconic lactone (3.5 fold), sorbose (2.5
fold), threonic acid (7.3 fold), and glucose-1-phosphate (3.9 fold)
were observed in leaves.

Amino acids with the most increased levels in the ADT KO
mutants versus WT stem tissues included allothreonine (4.2 fold),
alanine (2.3 fold), and glutamate (2.2 fold). By contrast, decreases
in the ADT KO lines were found for oxoproline (2.4 fold) in the
stems. Interestingly, shikimate which is a key metabolite located
in the aromatic amino acid/shikimate chorismate pathways
upstream of ADT, was, on average, increased (2.6 fold) in
ADT KO mutant leaves, but decreased (8.3 fold) in abundance
in stem tissues.

The LC-MS metabolomics analysis of hydro-alcoholic extracts
of leaves and stems led to the detection of numerous important
secondary metabolites (Supplementary Figure 3). This approach
was chosen based on previous knowledge of important and
characteristic metabolites produced by A. thaliana, which
include flavonoids, phenylpropanoids (e.g., sinapate esters,
lignans) and glucosinolates. We found that putative galactolipids
and carotenoids generally increased in abundance in both
tissues, whereas most of the identified flavonoids, 1-O-
β-D-glucopyranosyl sinapate, 5-hydroxyferuloyl malate and
lignans (e.g., putative dimeric coniferyl-OH hexoside), generally
decreased in abundance most prominently in the stem tissues,
with the greatest reductions being in stems with single
or multiple KOs of ADT5. Nine glucosinolates, which are
nitrogen- and sulfur-containing metabolites synthesized by
plants as defense against herbivory and pathogens, were also
identified. Glucosinolates derived from homomethione (i.e.,
glucoiberin, glucohirsutin, 7-methylsulfinylheptylglucosinolate,
and glucohesperalin) generally decreased in abundance in the
ADT KO mutants compared to WT, whereas those derived
from Trp or Phe showed mixed abundance changes depending
on the ADT KO mutant and tissue type. Glucobrassicin, 4-
hydroxyglucobrassicin and 1-methoxyglucobrassicin, all derived
from Trp, showed increases and decreases depending on the
specific ADT KO mutant analyzed. 4-Methoxyglucobrassicin
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(Trp derived) increased in abundance in most ADT KO mutants
leaf samples, and in most of the double/triple/quadruple ADT
KO mutants as well as in adt5. Ties between glucosinolates
and phenylpropanoids, with lignin being synthesized in the
phenylpropanoid pathway, have been previously documented in
the literature, suggesting that there is a strong link between these
two pathways. For example, Kim et al. (2015) identified an indole
glucosinolate which limits phenylpropanoid accumulation via an
inhibitory effect on early steps of phenylpropanoid biosynthesis.

Transcriptomics and Proteomics
Analysis
Various metabolites can often be synthesized or metabolized
by one or more isoenzymes contained in distinct plant
compartments and/or expressed at different times within a plant’s
lifespan. This makes metabolite identification and quantification
alone not entirely sufficient to convey key information on
specific gene/enzyme targets necessary for full understanding
of a system or for bioengineering purposes. For this reason,
transcriptomics and proteomics prove to be invaluable for
identifying significantly affected pathways, specific gene/enzyme
targets, gene regulation events, and tissue specific and/or
subcellular compartment-specific target enzyme information.

Supplementary Figure 4 shows RNA-Seq counts observed
in leaves and stems for each line investigated. In WT
plants, the relative order of transcript abundance in stems
(where lignin deposition is greatest) was determined to be
ADT5 > ADT4 > ADT3 > ADT1 > ADT6. Earlier phylogenetic
evaluation showed that ADT3, ADT4 and ADT5 are all part of
the same phylogenetic subgroup. It was also determined that
these three ADTs correspond to proteins that exclusively utilize
arogenate as a substrate (Cho et al., 2007), whereas ADT1,
ADT2, and ADT6 showed a preference for arogenate but could
potentially, albeit less efficiently, use prephenate in synthesizing
Phe. Our findings that ADT3, ADT4, and ADT5 were highest
in abundance in 4 week old stems was corroborated by similar
findings of RT-PCR levels found in 5 week old Arabidopsis stem
tissues (Corea et al., 2012c) and separate Northern blot analyses
(Rippert et al., 2009) in 4 week old WT Arabidopsis. The latter
showed that ADT4 and ADT5 were highest in abundance in stem
and root tissues.

RNA-Seq data also indicated an increase in ADT expression
between ADT3, ADT4, and ADT5, when one of the ADTs
in that subgroup was knocked-out. Large increases of ADT5
were observed in the stems when ADT3 and ADT4 were
knocked out, showing ∼2 fold and ∼4 fold increases in the
adt3 and adt4 knockout lines, respectively. When ADT5 was
knocked out, ADT4 was expressed in greater amounts (∼2
fold increase). Overall, these data showed that, especially in
stem tissue, ADT mRNA expression between ADT3, ADT4, and
ADT5 seemed to be coordinated, as remaining ADTs in the
ADT3/ADT4/ADT5 subgroup increased when other subgroup
members were knocked out. In leaf tissue, only modest effects
were observed within this subgroup.

To view coverage and relative amounts (i.e., counts) of mRNA
fragments identified in each RNA-Seq analysis (in reference to

each ADT in leaves or stems), location of the various T-DNA
insertions used to produce the KOs and peptides identified from
the proteomics analysis, gene product data for each gene were
illustrated side by side. The IGV Browser (Robinson et al., 2011;
Thorvaldsdóttir et al., 2013) was used to map out reads to the
gene, and using a PNNL developed script9, the peptide data were
converted into BED files which could then be used by any genome
viewer software. This allowed visualization of proteomics data in
relation to the gene alongside the RNA-Seq data.

Supplementary Figure 5 displays an example of gene-
transcript-peptide visualization comparisons detected in WT and
ADT KO lines for ADT5. Comparisons of all other ADTs in all
RNA-Seq and proteomics data can be accessed at the MassIVE
and ProteomeXchange data repository sites (Accession numbers
MSV000081518 and PXD007701, respectively). Read sequences
downstream of transcription from T-DNA insertions displayed
vastly decreased levels as expected. The proteomics data also
showed that few peptides from ADTs were identifiable in the high
throughput analysis here, which indicated that the ADTs were
likely low in abundance relative to the entire proteome in the
leaves. By contrast, in stem tissues, more ADT transcripts and
peptides were generally identifiable, supporting the hypothesis
that ADT genes, as well as proteins, were relatively higher in
abundance in stem tissues compared to leaves. This is likely due
to stem tissues needing to biosynthesize lignin in greater relative
amounts compared to leaves.

We next examined what proportion of each KEGG functional
category, on average, contained the most significantly (p-
value < 0.05) changed proteins and transcripts in both
leaf and stem tissues in all ADT KO lines (Supplementary
Figure 6). Categories with the greatest proportion of significantly
changed proteins/transcripts were involved in glucosinolate
biosynthesis, α-linolenic acid metabolism, nitrogen, carotenoid
and phenylpropanoid biosynthesis, as well as aromatic amino
acid metabolism. These findings are in high agreement with
the significant changes observed in the metabolomics data
(Supplementary Figures 2, 3).

Protein and transcript analyses of the putative carotenoid
biosynthesis pathway showed a high degree of significantly
changed (p-value < 0.05) protein/transcript members
(Supplementary Figure 6) when ADT content was reduced.
Metabolite measurements of putative carotenoids also showed
an almost universal increase in abundance in all ADT KO
lines in both leaves and stems (Supplementary Figure 3).
Carotenoids function in plants as accessory pigments in plastid
membranes and in chloroplasts they are thought to contribute
to energy dissipation and can act as protective agents against
reactive oxygen species (ROS) (Nisar et al., 2015). Carotenoids
and their cleavage apocarotenoid products, which may also
serve as signaling molecules, are important in assembly of
photosynthesis and antenna proteins for photosynthesis and
photoprotection (Cazzonelli and Pogson, 2010). Protein analysis
of photosynthesis and antenna protein biosynthesis pathways
showed a relatively high proportion of significantly changed
proteins (p-value < 0.05) (Supplementary Figure 6A) in ADT

9https://gist.github.com/brwnj/de6007a9a4c652d05028e381be4c7207
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KO mutants suggesting that knocking out ADTs in plants also
affects photosynthesis.

While increases in the proportion of significantly changed
proteins were observed in photosynthesis and carbon fixation
pathways, especially in stems, such large changes were not seen
at the corresponding transcript level. The fact that mRNA pools
related to photosynthesis and carbon fixation were not changed
much, whereas translation copy numbers were largely increased,
raises the possibility of a post-transcriptional regulatory
mechanism. Other categories which were markedly different
between protein and transcript data included those involved in
Phe metabolism, and glycolate/decarboxylate metabolism. These
were found to be highly changed in the protein data, especially
in stem tissues, but less so at the transcript level. Categories
that showed relatively high changes at the transcript level, but
did not seem to translate to higher changes at the protein level,
included those pathways involved in alanine/aspartate/glutamate,
propanoate, and galactose metabolism, respectively. This was not
surprising given that ADTs biosynthesize Phe.

We also observed that shikimate-chorismate derived
metabolism pathways (i.e., to Phe, Tyr, and tryptophan) were
highly changed at both transcript and protein levels. It is known
that Phe, Tyr, and Trp produced via the shikimate-chorismate
pathway contribute to feedback inhibition mechanisms of various
shikimate pathway enzymes upstream of ADT (Tzin and Galili,
2010), and that ADT KOs can alter not only Phe levels but also
levels of Tyr and Trp (Corea et al., 2012a). We thus hypothesize
that in ADT KO mutants there likely may be alterations in
the levels of other metabolites synthesized from Phe/Tyr/Trp
precursors. These could potentially affect metabolites including
phytohormones, which could, in turn, produce system-wide
effects. For instance, phytohormone indole-3-acetic acid (IAA)
is synthesized from Trp, and IAA can affect changes in growth,
development and metabolism (Zhao, 2010).

Another phytohormone potentially altered in ADT KO
mutants may be jasmonic acid (JA). While we did not specifically
detect JA or any other phytohormone in the untargeted
metabolomics data, changes in JA precursors may be indicative of
potential changes in the downstream phytohormone levels. JA is
derived from α-linolenic acid (Weber, 2002) and α-linolenic acid
metabolism pathways were highly changed at both the transcript
and protein level (Supplementary Figure 6). α-Linolenic acid
is not only a precursor to JA, but also aids in photosynthetic
thylakoid membrane fluidity (Yashroy, 1987) potentially acting
as another contributor to alterations affecting photosynthesis.
Other studies indicated that JA levels have a strong relationship
to lignin levels. Denness et al. (2011) showed that both JA-
isoleucine production and ROS production could form a negative
feedback loop which can then repress each other’s production
and influence lignin accumulation. Given there were lower levels
of ascorbate and dehydroascorbate levels in the metabolomes
derived from both leaf and stem tissue of ADT KO mutants
compared with WT, it may be that ROS is higher in concentration
in ADT KO mutants given that there is less ascorbate to scavenge
ROS. This along with altered levels of JA could potentially be
contributing signals affecting lignin biosynthesis. Ascorbate is
also a cofactor for biosynthesis of several other phytohormones,
such as ethylene, gibberellins, and abscisic acid (Pastori et al.,

2003). Due to the potential for all these various phytohormones
to be altered in amounts when ADT is knocked out, we
hypothesize this may be why we see multiple pathway enzymes
and metabolite levels affected and not just those directly upstream
or downstream of ADT.

Integrated Metabolome, Proteome, and
Transcriptome Analysis
Figure 2A shows Pearson’s Pairwise log2 abundance dataset
correlations between each WT and ADT KO mutant, as
compared to every other ADT KO mutant between both proteins
and transcripts at the gene product (protein or transcript) and
KEGG ortholog (KEGO) enzyme family levels. Transcripts and
proteins had an average correlation of 0.394 and 0.369 in leaf
and stem data, respectively. Correlations increased, however,
when data were further collapsed into KEGO comparisons, with
abundance correlations on average being 0.615 and 0.645. Only
about 30 and 28% of the transcriptome was detected at the
protein level in leaf and stem data (Figure 2B), respectively,
whereas KEGO level coverage was about 65%. About 17% of
proteins had no detectable transcript, and about 8% of protein
KEGOs had no corresponding detectable transcript KEGOs.
Overlap percentages between detectable transcripts and proteins
also varied due to the KEGG functional category of which they
were a member (Figure 2C). Proteins present which no longer
have a detectable transcript might represent long-lasting proteins
or protein degradation products remaining in the cells after
degradation of the corresponding mRNA have occurred.

To integrate transcript, protein and metabolomics data for a
more direct comparison, KEGO values were compared. In this
way, since protein and transcript values reflect an overall summed
contribution to each enzymatic reactions, their comparisons are
likely closer to metabolite abundance changes which themselves
are tissue-wide summed values. Z-scores of each log2 abundance
ratio transcript-metabolite-protein reaction set are displayed in
Figure 3 (leaf data) and Supplementary Figures 7, 8 (stem
data), respectively, with corresponding data in Supplementary
Tables 2, 3. As shown in the transcript-metabolite-protein
heatmaps, there are multiple enzyme KEGOs that can utilize the
same substrate, but which could produce different metabolite
products. Moreover, sometimes there are multiple KEGOs which
carry out the same reaction.

We further clustered reactions into four groups: Cluster 1
(Figure 3A, and Supplementary Figures 7A, 8A) represent
reactions which on average all increased or decreased in
abundance in ADT KO mutants compared to WT samples for
transcript, protein and metabolite data; Cluster 2 (Figure 3B
and Supplementary Figures 7B, 8B) depict KEGO reactions
where metabolites and protein KEGOs either both increased or
decreased together in abundance in ADT KO lines compared
to WT, and where transcripts had an opposite abundance
change to metabolites; Cluster 3 (Figure 3C and Supplementary
Figures 7C, 8C) are of reactions where transcripts and
metabolites either both increased or decreased together in
abundance in ADT KO lines as compared to WT, and where
proteins showed the opposite abundance change; and Cluster 4
(Figure 3D and Supplementary Figures 7D, 8D) are of KEGO
reactions where protein and transcript abundance changes
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FIGURE 2 | Proposed correlations of transcript and protein data. (A) Pearson pairwise correlation plots of each log2 abundance ratio data between each ADT KO
mutant versus WT dataset compared with all others in both the transcript and protein data. The two leftmost plots are from transcript and protein data, and the last
two plots represent collapsed transcript and protein KEGG ortholog data (KEGO) for leaf or stem sample sets. (B) Venn diagram transcripts and proteins, and
transcripts and protein KEGOs identified in leaf and stem data. (C) Transcript and protein overlap in all protein and transcript data according to KEGG functional
category.
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FIGURE 3 | Transcript-metabolite-protein heatmap displaying z-score comparisons of the log2 ratio pairs (ADT KO mutant/wild type, WT) of identified metabolites
found to have a corresponding KEGG Ortholog Gene Family (KEGO) member which utilizes that specific metabolite as a substrate, and which were detected in both
transcript and proteomics data. Each KEGO is displayed with substrate and product metabolite formed by that KEGO enzyme family. Data is further sorted into
clusters that show: (A) Cluster 1–Transcripts, metabolites and proteins which all on average increased or decreased in the ADT KO mutants together compared to
WT. (B) Cluster 2–Transcripts decreased, while metabolites and proteins in the ADT KO lines, on average, increased in abundance. (C) Cluster 3–Transcripts and
metabolites on average in the ADT KO lines increased, and proteins decreased in abundance compared to WT. (D) Cluster 4–Transcripts and proteins decreased,
and metabolites on average increased in the ADT KO mutants compared to WT. In each cluster, entries are further grouped by whether or not Metabolite 1 is a
substrate or product in a unidirectional reaction or if it can be utilized in a reversible reaction. Reactions are then ordered from highest average metabolite z-score to
lowest metabolite z-score. Red represents metabolites higher in abundance in the ADT KO mutant compared to WT, blue represents metabolites higher in
abundance in WT compared to the ADT KO mutant, white represents metabolites unchanged in abundance between WT and the ADT KO mutant, and grey
represents constituents not detected. Green squares indicate the highest average KEGO value associated with each detected metabolite. Grey circles represent
KEGO reactions where there was only a single known reaction for that given substrate-product reaction. Blue circles represent log2 transcript data that is most highly
correlated to log2 metabolite data across ADT KO mutants, i.e. if ratio abundances between transcripts and metabolites both showed profile increases across
single, double, triple and quadruple ADT KO mutants, those would have a positive correlation regardless if the z-score values themselves were negative or positive.

(Continued)
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FIGURE 3 | Continued
Orange circles represent log2 protein data that are most highly correlated to log2 metabolite data across ADT KO mutants, i.e. if ratio abundances between proteins
and metabolites both showed profile increases across single, double, triple and quadruple ADT KO mutants, those would have a positive correlation regardless if the
z-score values themselves were negative or positive. Abbreviations: rtm = Pearson’s Correlation between transcript and metabolite profiles. rpm = Pearson’s
Correlation between protein and metabolite profiles. rtp = Pearson’s Correlation between transcript and protein profiles.1-Acyl-sn-G3P, 1-Acyl-sn-glycerol
3-phosphate; 2-HTD, 2-(α-Hydroxyethyl)thiamine diphosphate; 3-IA, 3-Indole acetonitrile; 9(S)-HPODE, 9(S)-Hydroperoxy octadecadienoic acid; 13(S)-HPODE,
13(S)-Hydroperoxy-(9Z,11E)-octadecadienoic acid; (2S,4S)-4-HTH,(2S,4S)-4-Hydroxy-2,3,4,5-tetrahydrodipicolinate; α-APN, aAminopropiononitrile; DHA,
Dehydroascorbate; GABA, 4-Aminobutanoate; MDHA, Monodehydroascorbate; 4-AB-ate, 4-Acetamidobutanoate; 4-AB-nal, 4-Acetamidobutanal; Oleoyl-acp,
Oleoyl-[acyl carrier protein]; O-SHS, O-Succinylhomoserine;(S)-AMDLP, (S)-Aminomethyldihydrolipoylprotein; Succinate SA, Succinate semialdehyde.

moved in an opposite direction to metabolite abundance changes
between ADT KO mutant and WT lines.

Alongside z-score values for each KEGO and metabolite,
indicators were added to show the reaction that represented
the most abundant KEGO for multiple KEGO reactions for
a given metabolite. Indicators were also added for which
KEGO abundances were most highly correlated to metabolite
abundances. Additionally, KEGO reactions were further grouped
into categories of whether or not the detected metabolite was
either substrate or product in each reaction, or if it could be
involved in a reversible reaction (i.e., a metabolite that can serve
as both substrate and product).

Figure 4 shows distribution of reaction types (unidirectional
substrate to product, or reversible) and proportion of each
reaction type with KEGOs most correlated to metabolite levels,
and KEGOs of greatest abundance (when there are multiple
KEGOs for a given metabolite). Interestingly, for the protein
KEGO data, where a given reaction type showed highest
proportion of the most abundant KEGOs, it then had the
least proportion of highest correlations between protein and
metabolite abundances (Figures 4B,C). When comparing protein
KEGO and metabolite abundance changes, we also observed
that the most highly abundant KEGOs were not usually the
most correlated with detected metabolite level (Figure 4),
i.e., most abundant enzymes did not necessarily produce
the most metabolite. Given that metabolite abundances are
determined by multiple factors not represented by enzyme
abundance alone (i.e., enzyme kinetics, differential degradation
rates, and post-translational de/activation of enzymes), this
observation is not surprising. Indeed, we can generalize that only
∼45–50% (Figure 4D) of the most abundant KEGOs produced
metabolite levels that were most highly correlated to KEGO
abundances. Metabolite levels controlled by other KEGOs, with
low correlations to metabolite levels, may also be influenced by
enzyme kinetics and post-translational activation/deactivation.
Figure 4E showed that in Cluster 2 (i.e., transcripts are negatively
correlated to proteins and metabolites) of the transcript-
metabolite-protein comparisons, the most abundant KEGOs
were present in both the leaves and stems. In contrast, Figure 4F
had a negative correlation in both the leaves and stems, and
in both transcript and protein data. Cluster 1 (i.e., transcript,
proteins and metabolites are all positively correlated), and had
the highest correlated KEGOs profiles to metabolite profiles.

Network Analysis
Lignin levels were measured previously in the ADT KO mutant
and WT lines by Corea et al. (2012c) A Spearman’s rank
correlation between the ADT KO mutant and WT log2 ratios to

these lignin levels in 4 week old stems was thus calculated here,
with proteins identified with a non-parametric measure of rank
correlation (rho) of at least ±0.85. Proteins identified as having
a high positive or negative correlation to varying lignin levels
across ADT KO mutants were entered into the on-line network
analysis tool STRING (see text footnote 7) (Szklarczyk et al.,
2017). Protein-protein interactions and associations identified
from STRING were then used as input data into the network
software Cytoscape (Smoot et al., 2011).

Z-score data representing abundance changes between ADT
KO mutants and WT were overlaid on proteins (nodes), with
line thicknesses (edges) of connecting proteins representing
potential protein association strength as calculated by STRING
analysis. Proteins found to be proximal in the initial Cytoscape
network analyses were further manually grouped into KEGG
functional categories to highlight relationships between
functional categories. Supplementary Figure 9B shows a stem
network analysis showing the z-score changes of multiple
ADT KO mutant versus WT analyses. As more ADTs (and
specifically as ADT3, ADT4, and ADT5) were knocked out
and lignin levels decreased (Supplementary Figure 9A),
protein abundances deviated further away from WT levels
as indicated by nodes appearing darker red or blue in color
(Supplementary Figure 9B).

Figure 5A specifically shows the network analysis of adt3/4/5
stem data as compared to WT, with the ADT KO mutant having
greatest reduction in lignin (cleavable monomeric G + S) levels
as measured in 4 week old Arabidopsis stems (Supplementary
Figure 9A)–although the lignin level difference between adt3/4/5
and adt3/4/5/6 was not statistically different. Enzymes associated
with aromatic amino acid, photosynthesis, carotenoid, and
α-linolenic acid metabolism were found to be apparently
correlated with reduced lignin levels, and this corroborated
well with KEGG functional categories identified as being
significantly changed (Supplementary Figure 6A). As our focus
was in identifying potential lignin-associated proteins in post-
transcriptional regulation, known and predicted interactions
between mRNA processing and translation machinery proteins
were highlighted (see Figure 5B). Figure 5C displays the heat
map of corresponding log2 z-scores of transcript and protein
data scrutinized from the mRNA processing and translation
machinery for all 8 ADT KO lines (Figure 5B).

DISCUSSION

To begin to put the analyses and discussion below in needed
context, it is well known that transcripts and proteins are
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FIGURE 4 | Distribution plots for KEGO reaction heat maps displayed in Figure 3, and Supplementary Figures 7, 8. Distribution of KEGO-metabolite reactions for
detected metabolites which are substrates or products in unidirectional reactions or reversible reactions (A). (B) Proportion of each KEGO-metabolite reaction type
containing the most abundant KEGO. (C) Proportion of each reaction type containing the most correlated KEGO to metabolite, when there are multiple KEGOs
which react with a metabolite. (D) Proportion of highest abundant KEGOs which also are most correlated to metabolite level. (E) Proportion of each cluster (defined
in Figure 3 and Supplementary Figure 7) which contain the most abundant KEGOs. (F) Proportion of each cluster which contained the highest correlated KEGOs
to metabolite, when there are multiple KEGOs which react to metabolite level.

linked biologically by the central dogma which purports
unidirectional flow of genetic information from DNA to RNA to
proteins (Crick, 1958). Indeed, comparisons between proteomic
and transcriptomic data can highlight which proteins and
transcripts have a co-regulatory response (i.e., a high transcript
level with a high protein level). The central dogma though
is extended in this study to include metabolomics, as many
metabolites represent the final product(s) biosynthesized
by specific cells/tissues under various environmental
conditions or through stresses at specific times during the
lifespan of an organism.

Protein and Transcript Comparisons
In this study, it was found that transcript and protein data
between ADT KO mutants correlated well within their own
groups (i.e., transcript to transcript or protein to protein
comparisons). However, correlations on average were quite
low for transcript to protein comparisons, being better but

still relatively low for transcript to protein KEGO/gene family
comparisons. Venn diagrams which depict the overlap between
proteins and transcripts revealed that (a) most transcripts
detected did not correspond to a detectable protein, likely
due to dynamic range and sampling limits of the proteomics
technology compared to the depth of coverage capable with
RNA-Seq and (b) not all proteins detected corresponded to a
detectable transcript (Figure 2) as could arise from differential
mRNA and protein degradation rates. Lack of high correlations
though between transcripts and proteins have been found to
be typical. In many multi-omics evaluations, across eukaryotic
and prokaryotic systems, transcripts and proteins are only
modestly correlated (Foss et al., 2007; Ghazalpour et al., 2011;
Battle et al., 2015; Chick et al., 2016; Hasin et al., 2017). Two
examples from plant and animal organisms highlight this point.
In a multi-omics investigation of maize, Walley et al. (2016)
observed that transcriptome and proteome abundance profiles
showed little overlap. In a comparable study of human disease,
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FIGURE 5 | Network analysis and related correlations. (A) Network analysis of relative protein abundances determined to be highly correlated in a Spearman rank
correlation analysis (rho > 0.85) to lignin cleaved guaiacyl (G) + syringyl (S) monomer levels in 4 week old stem tissues of adt3/4/5. Nodes are represented by
rectangles colored by the z-score of the log2 ratios (ADT KO mutant/WT), where red represents proteins higher in abundance in the mutant compared to WT, blue
represents proteins higher in abundance in WT compared to the ADT KO mutant, and white represents proteins unchanged in abundance between WT and the ADT
KO mutant. (B) STRING analysis with solely highly correlated proteins identified in KEGG functional categories associated with ribosomes, spliceosome, and RNA
transport showing the direct known and predicted interactions. (C) Heatmap showing log2 ratio distribution (ADT KO mutant/WT) for proteins associated with the
ribosome, spliceosome and RNA transport for each plant line for transcript and protein data.

Hasin et al. (2017) found that transcript levels often exhibited a
poor correlation with protein levels, although it was considered
that the proteomics data alone was more proximal to the
disease mechanisms.

Furthermore, metabolite levels did not show a dominant
correlation with either transcripts or proteins. These data

illustrate the limitations in using only a single omics evaluation to
make systems level biological assessments. Comparisons between
these omics datasets may thus reveal (a) what transcripts are
actually translated and in what copy number, and (b) what
metabolomics data help reveal which proteins or protein families
are more or less active in producing the observed metabolites.
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The integrated “omics” analysis, as presented here, provides
over-arching and molecule specific information, which is useful
for understanding general molecular pathway trends, and for
identifying targets of interest for bioengineering purposes or for
follow-on analyses.

Network Analysis Reveals
Lignin/Phenylpropanoid Biosynthesis
Associated Proteins
Network analysis is a powerful tool for understanding systems
biology effects, drawing from known and predicted direct
(physical) and indirect (functional) interactions from multiple
data and literature sources. Such analyses can utilize enzyme
relationships derived from hundreds of sources (e.g., yeast two
hybrid, co-localization, co-expression, literature text mining,
etc.). In turn, this can help provide new insights into
interconnections and significant relationships of proteins with
known and as-of-yet unknown function. Since our main focus
was on proteins potentially related to altered lignin levels (as
determined by thioacidolysis analysis), we selected those with
greatest positive and negative correlative trends to lignin amounts
present in Arabidopsis stems of each line.

Centrally located in the lignin correlated protein network
data created (Figures 5A,B) were eleven ribosomal subunits that
correlated with reduced lignin levels. This raised the possibility
that lignin levels may be in part regulated by a ribosome filter
or “ribocode” (Mauro and Edelman, 2002; Xue and Barna, 2012).
That is, lignin biosynthesis regulation may be associated with
presence of specific ribosomal subunits involved in translation of
lignin-biosynthesis-associated mRNA.

Recent studies have documented evidence for ribocodes, the
concept of which suggests differential, temporal and spatial
presence of specific ribosomal subunits which preferentially
translate specific mRNAs, thus representing regulation at
translation. Other observations of possible plant ribocodes
include phosphate and Fe-deficiency studies by Rodríguez-
Celma et al. (2013) and Wang et al. (2013), who both showed
evidence for remodeled translational machinery in response
to environmental signals in Arabidopsis. Liu et al. (2012)
also reported that translational control was mRNA abundance
independent, concluding that mRNA levels had less effect on gene
activity than translational control mechanisms in Arabidopsis.

Other potential targets of lignin biosynthesis regulation
identified included those associated with purine metabolism,
the spliceosome, RNA degradation, mRNA surveillance
and general mRNA processing proteins. Post-translational
modifications, protein transport, and targeting mechanisms also
appeared correlated with varying lignin levels. Additionally,
post-translational related protein processing involving the
endoplasmic reticulum was identified, as well as ubiquitin
proteolysis, phosphorylation, autophosphorylation, and
phosphatase proteins which may be connected to important
processes related to lignin biosynthesis.

In our analysis as to what connects the spliceosome,
which edits native mRNA into mature translatable mRNA
and the ribosomal subunits, was the spliceosome protein
DRH1 (At3g01540) to the large ribosomal subunit RPL2.1

(ATCG00830) (Figure 5B). DRH1 is a ATP/dATP-dependent
RNA helicase and polynucleotide-dependent ATPase
(Okanami et al., 1998). Export of poly(A)(+) RNA has been
shown to be greatly blocked in DRH1 mutants (Du et al.,
2016). Presence or absence of this helicase could thus serve
as a level of regulation, blocking or allowing export of mRNA
into the cytosol.

Connected to the identified spliceosome proteins was SAP18
(Song and Galbraith, 2006). In plants, this functions as a
transcriptional repressor and associates with ethylene-responsive
element binding factors to create a hormone-sensitive multimeric
repressor complex under conditions of stress. A SAP18 loss of
function mutant produces a plant both more susceptible to salt
and impaired in chlorophyll synthesis.

These data indicate what we generally observed with our
multi-omics data, namely that: (a) despite any significant
presence of mRNA, there are additional factors which may
prevent proper processing of mRNA into mature translatable
form; (b) there are also other factors which may prevent any
mRNA present from ever leaving the nucleus to be translated.

Together, these data also highlight the importance of
proteomics to illuminate what protein products are actually
present and which are potentially functional.

Furthermore, the vast majority of lignin biosynthesis
regulation research thus far has focused on genes and
transcriptional control (Nakano et al., 2015). From this body of
knowledge, we know that lignin biosynthesis is influenced by
a series of transcription factors, such as NAC master switches,
which can activate or repress an array of other downstream
transcription factors (e.g., MYBs). What is lesser known are
what additional post-transcriptional controls of lignin or other
phenylpropanoids exist. Due to our discovery that modulating
ADTs produces differential lignin contents in Arabidopsis, the
opportunity was presented where–through this multi-omics
study–we could investigate molecular profiles with step-wise
decreases or increases in lockstep to varying lignin levels. These
results of our investigation suggest that there are potentially
multiple processes, phytohormones and layers of regulation
involved in lignin biosynthesis or in response to decreased
carbon flux through the phenylpropanoid pathway.

Since this study was focused on correlations specific to lignin
deposition, most attention was paid to correlative levels found
in stems, although other phenylpropanoid-derived biomolecules
and other pathways were also affected by ADT composition
changes in leaves. It may be an interesting and informative
exercise to further explore correlative enzyme abundances to
other phenylpropanoids that may play a more central role in
leaf tissue function. For example, those associated with UV
protection (e.g., flavonoids and sinapate esters) (Stapleton and
Walbot, 1994; Landry et al., 1995; Mazza et al., 2000; Clé et al.,
2008; Sullivan et al., 2014), in order to tease out specific post-
transcriptional biosynthesis regulation of formation of these
other phenylpropanoids.

Ultimately, the multi-omics investigation and network
analysis presented here proved invaluable for understanding
systems level changes that modulated ADTs evoke in a model
vascular plant. Importantly, it highlighted potentially new levels
of post-transcriptional regulation of lignin/phenylpropanoids
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that can provisionally serve as biomolecular targets for follow-
on analyses and/or for bioengineering purposes, i.e., aimed at
modulating or modeling lignin/phenylpropanoids in vascular
plants. These proteins can thus be used in follow-on lignin-
associated enzyme validation studies and/or can potentially
serve as truly novel bioengineering targets for manipulation of
lignin/phenylpropanoid levels in vascular plants.

Potential of a Lignin Regulating
“Ribocode”
Ribosomes are the effectors in the final steps of gene expression,
and it has emerged recently that ribosomes themselves could
contribute to regulation via differential ribosomal subunit
abundance. Evidence recently has also shown that according
to developmental, environmental and pathological conditions,
cells can produce different populations of ribosomes which
differ in their ribosomal protein and RNA composition. These
“specialized ribosomes” suggest that the unique ribosomal
composition determines the translational activity of the ribosome
and thus controls the biosynthesis of specific proteins and
enzymes. For many years, ribosomes were thought to consist
of a set number of ribosomal proteins (RPs) and rRNAs, with
each RP present as a single copy with resulting conserved
stoichiometry and homogeneity. One of the first indications
that different types of ribosomes existed was from the study
of RP paralogs in plants. In work done by Williams and
Sussex (1995), it was found that RPL16 paralog gene expression
patterns in Arabidopsis were mutually exclusively expressed
in different organs of the plant. In yeast studies, deletion of
specific RP paralogs also gave rise to unique phenotypes (Ni and
Snyder, 2001; Enyenihi and Saunders, 2003). In human studies,
evidence came from patients displaying genetic diseases (i.e.,
ribosomopathies) caused by haploinsufficiency of genes encoding
key factors in ribosome biogenesis or RPs (Draptchinskaia
et al., 1999). Proteomic-driven analyses exploring composition
of purified ribosomes under various conditions identified all
RPs differentially expressed between conditions in murine
embryonic stem cells, suggesting that different translational
statuses were associated with differential stoichiometry among
RPs (Slavov et al., 2015).

In our study, we used the STRING (see text footnote 7)
algorithm to identify connections/associations between lignin
profile correlated proteins. Our results returned interactions
between nucleus and plastid proteins (e.g., RPL2.1 and DRH1).
While there is currently no direct evidence inArabidopsis that this
association exists, there is growing documentation of interactions
between homologs of these proteins in other organisms (e.g.,
humans, yeast, Escherichia coli and Helicobacter pylori) (Garcia-
Gomez et al., 2011; Havugimana et al., 2012). Additional studies,
however, would need to be performed to verify the actual

association, if any, between eukaryotic and plastid translation-
associated proteins in Arabidopsis.

These studies indicating the influence of differential ribosomal
subunit stoichiometry on differential phenotypes and/or
translational products suggest that the ribosome has the ability to
function in a regulatory fashion in translation. These supporting
data, along with observations of correlative associations between
specific ribosomes and lignin production in this study here,
support the hypothesis that lignin levels in vascular plants may
be partially controlled by specialized ribosome compositions or a
lignin “ribocode.”
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