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Plukenetia volubilis L. (Malpighiales: Euphorbiaceae), also known as Sacha inchi, is
considered a promising crop due to its high seed content of unsaturated fatty acids
(UFAs), all of them highly valuable for food and cosmetic industries, but the genetic basis
of oil biosynthesis of this non-model plant is still insufficient. Here, we sequenced the
total DNA of Sacha inchi by using Illumina and Nanopore technologies and approached
a de novo reconstruction of the whole nucleotide sequence and the organization of
its 164,111 bp length of the chloroplast genome, displaying two copies of an inverted
repeat sequence [inverted repeat A (IRA) and inverted repeat B (IRB)] of 28,209 bp,
each one separating a small single copy (SSC) region of 17,860 bp and a large single
copy (LSC) region of 89,833 bp. We detected two large inversions on the chloroplast
genome that were not presented in the previously reported sequence and studied a
promising cpDNA marker, useful in phylogenetic approaches. This chloroplast DNA
(cpDNA) marker was used on a set of five distinct Colombian cultivars of P. volubilis
from different geographical locations to reveal their phylogenetic relationships. Thus,
we evaluated if it has enough resolution to genotype cultivars, intending to crossbreed
parents and following marker’s trace down to the F1 generation. We finally elucidated, by
using molecular and cytological methods on cut flower buds, that the inheritance mode
of P. volubilis cpDNA is maternally transmitted and proposed that it occurs as long as it
is physically excluded during pollen development. This de novo chloroplast genome will
provide a valuable resource for studying this promising crop, allowing the determination
of the organellar inheritance mechanism of some critical phenotypic traits and enabling
the use of genetic engineering in breeding programs to develop new varieties.

Keywords: oilseed crop, de novo assembly, non-model plant, Sacha inchi, long reads ONT

Abbreviations: AMSL, above mean sea level; cpDNA, chloroplast DNA; DAPI, 4’,6-diamidino-2-phenylindole; 1AICc,
Akaike information criterion; 1BIC, delta of Bayesian information criterion; GC, generative cell; GM, germination media;
IR, inverted repeat; IRA, inverted repeat A; IRB, inverted repeat B; IS, intergenic sequence; LSC, large single copy; MCMC,
Markov chain Monte Carlo; MGU, male germination unit; mtDNA, mitochondrial DNA; oDNA, organellar DNA; ONT,
Oxford Nanopore Technologies; PBPI, potential biparental plastid inheritance; PIC, potentially informative character; SNP,
single nucleotide polymorphism; SNV, single nucleotide variant; SSC, small single copy; UFA, unsaturated fatty acid; UV,
ultraviolet; VC, vegetative cell.
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INTRODUCTION

Plukenetia volubilis L., also known as Sacha inchi, is a
climbing, perennial, semi-woody, twining oilseed plant of the
Euphorbiaceae family, endemic to tropical Peruvian Amazonia
that grows mainly in tropical forests at altitudes between 200
and 1500 meters above sea level (MASL) (Gillespie, 1993;
Krivankova et al., 2013). It is known that Sacha inchi has a
rapid growth ratio, an easy adaptation to growth in nutrient-
poor soils, short production cycles, high nutritional content,
and displays a potential capacity to become an essential dietary
source (Hamaker et al., 1992; Chirinos et al., 2013). For
instance, its amino-acid profile presents higher fractions of
tryptophan, cysteine, and tyrosine than other oil-seeds sources,
reaching the Food and Agriculture Organization’s (FAO) highest
standards for 2–5 years’ children dietary supplements, except
for leucine and lysine (Hamaker et al., 1992). Also, it has
been shown that the crop relevance of P. volubilis indeed
relies on its high seed unsaturated fatty acid (UFA) content,
particularly of α-linolenic acid or ω3 (12.8–16.0 g/100 g
seed) and linoleic acid or ω6 (12.4–14.1 g/100 g seed)
(Chirinos et al., 2016).

Likewise, it has been reported that the establishment of
commercial plantations of this species generates many positive
environmental impacts because it can be installed on degraded
soils (Bordignon et al., 2012). Thanks to all of the above,
the Sacha inchi industry has experienced a great demand in
tropical countries, among others, Colombia, Peru, Ecuador,
and Brazil, where the cultivation of this species has been
increasing (Valente et al., 2017), without developed varieties
and ecotypes with genetic stability. In those countries, the
ecotypes have been rudimentary and are too difficult to
track because of the lack of studies that have been made
to understand its genetic diversity (Ocelák et al., 2015).
This lack of studies makes it necessary to develop molecular
mechanisms that characterize the species, recognize ecotypes,
and generate successful seed marketing; responses can be
faced by knowing the Sacha inchi chloroplast genome. Insights
obtained from the complete chloroplast genome sequence
could enhance knowledge of plant biology and diversity
for this species.

Chloroplast genomes have assembled notable contributions in
diverse plant families, settling evolutionary relationships within
phylogenetic clades. Moreover, chloroplast genome sequences
have exposed considerable variation between plant species in
terms of both sequence and structural variation (Daniell et al.,
2016). This information advocates understanding the climatic
adaptation of economically important crops, facilitating the
breeding of closely related species, developing propagation
technologies, genetic engineering applications, and identifying
and conserving valuable traits (Wambugu et al., 2015). In
addition to improving our understanding of plant biology
and evolution, chloroplast genomics research has critical
translational applications, such as conferring protection against
biotic and abiotic stress and the development of vaccines and
biopharmaceuticals in edible crops plants (Brozynska et al.,
2016). All of them are significant aspects to be generated

in Sacha inchi. Contributing to baseline, Hu et al. (2018)
reported the first P. volubilis chloroplast genome sequence
(161,733 bp, still unverified GenBank accession number:
MF062253) from Xishuangbanna Tropical Botanical Garden
in China. However, P. volubilis chloroplast’s genetics have not
been deeply studied.

The chloroplast genome usually occurs in multiple copies
within the organelle. It consists of long circular or linear DNA
molecules, generally ranging from 120 to 180 kb in angiosperms
and 160 to 164 kb in the Euphorbiaceae family (Rivarola et al.,
2011; Tangphatsornruang et al., 2011; Zhang et al., 2019). It
has a quadripartite structure characterized by two copies of a
large inverted repeat A (IRA) and an inverted repeat B (IRB),
separating the small single copy (SSC) and the large single copy
(LSC) regions. Changes in chloroplast genomes’ composition and
structure, such as gene losses and rearrangements, have been
documented for Passiflora edulis, Cistanche deserticola, Hevea
brasiliensis (Tangphatsornruang et al., 2011; Li et al., 2013; Cauz-
Santos et al., 2017).

Based on CBOL (The Consortium for the Barcode of
Life) evidence, four coding sequences (matK, rbcL, rpoB, and
rpoC1) and three non-coding nucleotide inter-genic spacers
(ISs) (atpF-atpH, psbA-trnHGUG, and psbK-psbI) from the
chloroplast were suggested to be the adequate plant barcodes for
phylogenetic relationships (CBOL Plant Working Group, 2009).
Although DNA barcode has been adopted for decades as an
investigation system for interspecific taxonomic discrimination,
recent evidence suggests that this method may also be
applied to plant intraspecific identification and population
studies (Ünsal et al., 2019). Among these, psbA-trnHGUG

was used to establish the evolutive relationships in tribe
Plukenetieae, which used 153 accessions covering 93 species
(Cardinal-McTeague and Gillespie, 2016).

In the Euphorbiaceae family and P. volubilis, chloroplast
genes such as rbcL, matK, ndhF, and trnL-F have been used
to study evolutionary relationships at higher taxonomic
levels and distribution (Wurdack et al., 2005; Cardinal-
McTeague et al., 2019). Nowadays, it is possible to generate
entire chloroplast genomes and analyze entire chloroplast
gene sequences to determine high-resolved phylogenies
(Menezes et al., 2018). Third-generation sequencing technologies
producing longer DNA reads have begun to produce high-
quality assemblies for complex plant genomes (Li et al.,
2018). Oxford Nanopore Technology (ONT) sequencing
allows generating an entire chloroplast genome assembled
into a single large contig, with a high degree of accuracy
and much greater coverage due to longer read lengths
(Belser et al., 2018).

Chloroplast DNA (cpDNA) barcodes are also helpful to
prove the organelle’s inheritance combined with cytological
approaches. In all plant taxa, current evidence shows three
possible ways by which organellar DNA (oDNA) could
be inherited: maternally, paternally, or biparentally (Reboud
and Zeyl, 1994). Angiosperms seem to display mainly a
maternal inheritance mode of its chloroplasts (Corriveau
and Coleman, 1988; Greiner et al., 2015). However, recent
studies have shown that some of them are indeed showing a
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potentially biparental plastid inheritance (PBPI) mode (i.e., the
tendency of inheriting organelle genomes from both parents)
(Zhang and Sodmergen, 2010).

In the present study, we approached a de novo reconstruction
of the whole nucleotide sequence and the chloroplast genome
organization using short and long reads technologies. We
were able to localize genes, introns, and intergenic spacers
and compare the structure of the cpDNA of P. volubilis
from a Colombian cultivar with the cpDNA that has been
reported in China. We found a useful cpDNA marker
derived from a phylogenetic approach and used it on a
set of five distinct cultivars of P. volubilis from different
Colombian geographical locations. Thus, we evaluated if it
has enough resolution to genotyping cultivars, intending to
crossbreed parents and follow this marker in the F1 generation.
We finally elucidated the inheritance mode of P. volubilis
oDNA using both molecular and cytological methods on
cut flower buds.

MATERIALS AND METHODS

Plant Material
This research was performed at the Plant Biotechnology and
Molecular Biology Laboratories of the Department of Biological
Sciences at EAFIT University, located in Medellin, Colombia.
Both leaves and seeds were collected from five P. volubilis
cultivars from farms located in Antioquia (Colombia), showing
different environmental conditions and ranging in an altitudinal
gradient from 685 to 1501 MASL, having permission for this
gathering issued by the National Authority for Environmental
Licenses (ANLA), covered in resolution 1516 of 2014 (modified
through resolution 1312 of 2015). Those samples were selected
by their agronomic trials (Supplementary Figure 1) from
individuals at each cultivar. Then, samples were entirely
washed with distilled water, wiped and packed in bags to
avoid light degradation, and stored at −20◦C. Additionally,
flower buds from Santa Rosa’s Cultivar 1 (named C1) were
sampled in their first four developmental stages according
to Cachique (2006) for cytological observations because it
was regarded as promising cultivars after being assessed as
suitable to be grown in dry agroclimatic areas. Sacha inchi
cultivars C1–C5 are all deposited in the plant collection of the
EAFIT’s University Plant Biotechnology Lab and are listed in
Supplementary Table 1.

DNA Extraction
To evaluate the cpDNA psbA-trnHGUG IS resolution and
untangle the intraspecific variation in P. volubilis among
Colombian cultivars, total DNA was extracted from leaf tissues
of five plant cultivars across Antioquia, Colombia. This was
made by displaying ecological and altitudinal variation (C1–
C5, Supplementary Table 1) using the CTAB method (Doyle
and Doyle, 1990), with the addition of a washing step
with pure chloroform and the total elimination of isoamyl
alcohol; additionally, the centrifugation times in each step
were further reduced. The integrity of DNA was determined

through 1% agarose gel electrophoresis, and the concentration
was determined using Nanodrop 2000 (Thermo Scientific, Inc.,
CA, United States).

For ONT and Illumina sequencing, high molecular weight
genomic DNA from the C1 leaves was isolated following
Ramírez-Ríos et al. (2016) protocol, with some adaptations
for plant DNA, as described in Supplementary Methods 1.
Gel electrophoresis was used to evaluate the extract quality by
size estimation, spectrophotometry (A260/A280 and A260/A230
ratios) was used for purity estimation, and Qubit 3 fluorometer
(Invitrogen, Carlsbad, CA, United States) for total DNA
extracted. DNA samples with an A260/A280 ratio close to 2 and
an A260/A230 ratio above 1.5 were kept.

Next-Generation Sequencing and
Genome Assembly
Total DNA was sequenced using one lane of Illumina Hi-Seq 4000
paired-end per 150 nt and two flow cells of GridION (Oxford
Nanopore Technologies) at the High-Throughput Sequencing
Facility of the University of North Carolina at Chapel Hill,
United States. Raw whole-genome sequencing paired-end reads
were de novo pre-assembled using Norgal (Al-Nakeeb et al., 2017)
with default settings. The resulting scaffolds were filtered based
on the Norgal blast report: the best hit reference was a chloroplast;
minimum scaffold length of 1000 bp; minimum identity 95%;
and minimum alignment length of 200 bp. The filtered scaffold
was used as seed for NOVOPlasty (v2.7.2) (Dierckxsens et al.,
2016), which was used to assemble the same raw paired-
end reads, set with a 100–200 kb genome range, a kmer size
of 39, an insert size of 370, and the remaining parameters
by default. The quality of the resulting sequence was further
assessed using Pilon (v1.23) (Walker et al., 2014) as follows:
raw paired-end reads were trimmed using Trimommatic-PE
(v0.39) (Bolger et al., 2014) with a sliding window of width 4
and quality 25 and a min length of 50. All surviving (paired
and unpaired) reads were mapped using BWA-MEM (v0.7.17)
(Li et al., 2013). SAMtools (v1.9) (Li et al., 2009) were used
to filter the unmapped reads and sort the resulting alignments.
These were provided to Pilon, along with the generated sequence,
with options –fix all and min depth of 60 and the remaining
parameters as default.

Similarly, the structural quality of the assembly was assessed
with ONT reads. Nanopore raw reads were basecalled with
Guppy (v2.3.5+53a111f, Oxford Nanopore Technologies), using
the flip-flop model for DNA, yielding a total of 4.699.073 reads
with an N50 of 2 kbp. These reads were mapped with minimap2
(v2.17-r941) (Li, 2018) and visualized with Tablet (v1.17.08.17)
(Milne et al., 2013).

No changes were suggested by Pilon, which indicates that
every base in the assembled sequence is following the bases
on the reads. On the other hand, misassemblies can be
detected by inspecting the coverage profile of independent
data on the assembly, as there would be drops in coverage
in misassembled regions. A total of 956,508 mapped ONT
reads generated a continuous smooth coverage of an average
3917x depth, where the LSC, SSC, and IRs could be visualized
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(Supplementary Figure 2), indicating the structural correctness
of the assembly. The assembled chloroplast genome was hereafter
called SI_cpDNA_C1 (C1).

Chloroplast Genome Annotation and
Comparison
The chloroplast sequence (SI_cpDNA_C1) was uploaded as
a FASTA file to the Chlorobox portal and annotated using
GeSeq (Tillich et al., 2017) tool using the following parameters:
Circular and plastid sequence; annotate plastid IR, 85% protein
search identity, and 85% rRNA, tRNA, and DNA search identity
as BLAT search options; ARAGORN (v1.2.38) (Laslett and
Canback, 2004) was selected as third-party tRNA annotator,
with bacterial/plant chloroplast as genetic code, max intron
length set to 2500 bp, and fixing introns. Since the automated
annotation is error-prone, CDS were reviewed and manually
curated, checking for correct start codons, lengths, and stop
codons, and then the complete annotation was deposited under
the GenBank accession number MW591569. SI_cpDNA_C1 was
compared with MF062253.1 accession looking for nucleotide
variants. Genome alignment was generated in MUMmer 3
(Kurtz et al., 2004) using the suite NUCmer, then the alignment
output was filtered with delta-filter, and finally, single nucleotide
polymorphisms (SNPs) were calculated with Dnadiff using
default parameters. Scripts in Python and Biopython to filter
and resume the data were documented in Jupyter notebooks
and deposited in the Github repository for this work. All
these processes and parameters are clarified in the repository
associated with this article (Villanueva et al., 2020). To detect
structural variants, SI_cpDNA_C1 was aligned to NC_016736
using NUCmer. The resulting alignments were used as input
to MUMmerplot. Furthermore, SimpleSinteny (Veltri et al.,
2016) was made using the 60 longest genes present in
both chloroplasts.

CpDNA psbA-trnHGUG Marker
Amplification and Sequencing
To amplify the cpDNA psbA-trnHGUG IS fragment
from each cultivar of P. volubilis, trnHGUG (5’-
CGCGCATGGTGGATTCACAATCC-3’) (Tate and Simpson,
2003) and psbA (3’-GTTATGCATGAACGTAATGCTC-5’)
(Sang et al., 1997) primers were used (Supplementary Methods).
Amplified PCR products from psbA-trnHGUG IS (∼500 bp)
were sequenced using the Sanger method (Macrogen Inc.,
South Korea). Eventually, sequences were trimmed for base
scores below 18 Phred score in a 5 base window average using
Biopython libraries (Cock et al., 2009). Then, each trnHGUG was
locally aligned with the reverse complement of its psbA cultivar
sequence. Each cultivar consensus region was reconstructed
using the Smith and Waterman (1981) algorithm, with an
identity more significant than 95%. Therefore, the species
fragments’ identity was verified running the BLAST algorithm
in the NCBI database, and the sequences were deposited in the
GenBank database (Supplementary Table 1). Subsequently,
these sequences were aligned using ClustalW (Thompson et al.,

2003) on Geneious Pro ver. 11.1.5 and manually scanned the
polymorphic regions.

Phylogenetic Analyses Methods
Two main phylogenetic hypotheses were inferred using
maximum likelihood (ML) and Bayesian inference (BI). Analysis
of the aligned matrix with JmodelTest software ver. 2.1.10
(Darriba et al., 2012) showed that the TVM+I+G4 (Motoo,
1981) substitution model was the best model based on the delta
Akaike information criterion (1AICc) and delta of Bayesian
information criterion (1BIC) information criteria. Bayesian
information criterion (BIC) for the same matrix showed the
F81+G4 substitution model as the best choice. However,
topologies for both models did not change (see Supplementary
Table 4). RAxML-Ng ver. 0.9 (Kozlov et al., 2019) was used
to reconstruct the best ML topology using five independent
replicates; 1,000 bootstrap replicates were targeted to the best
topology using DendroPy ver. 4.0 (Sukumaran and Holder,
2010) in a non-parametric bootstrapping fashion and consensus
topology was visualized using FigTree ver. 1.4.3.

For BI, the aligned matrix file was edited using Beauti
ver. 2.0 and updated the substitution model to TPM1uf
+ I and the strict molecular clock. Then, to infer the
relationships, 1 × 107 generations were run using Markov
chain Monte Carlo (MCMC) algorithm, sampling one tree
every 1,000 generations in BEAST ver. 2.5. The adequate
sample size (ESS) values for all parameters were > 200, and
they reached convergence and stationarity as determined by
Tracer ver. 1.7.1 (Rambaut et al., 2014). Finally, the maximum
credibility tree was generated using TreeAnnotator ver. 2.5
implementing a 10% burn-in and visualized using FigTree
ver. 1.4.3. Both topologies (ML and BI) were summarized
and edited using Inkscape ver. 0.9. Branch lengths from BI
phylogeny were conserved, but both ML bootstrap (MLB)
and Bayesian posterior probability (BPP) support values were
depicted in the final tree.

Inheritance Determination Based on
Cytogenetic Analysis
Seeds of three cultivars (C1, C3, and C5) of P. volubilis were
brought into cultivation in a greenhouse at EAFIT University,
located in Medellin-Colombia. After germination, seedlings were
placed in 11 cm pots within a mixture of 50% sand and
50% potting soil. Afterward, those plants were placed under
controlled conditions (25◦C, 2 months at 12 h light/12 h
dark) before pollinations. Due to P. volubilis is an allogamous
species with a high percentage of self-pollination (Cachique,
2006), controlled hand pollinations were undertaken (between
November 13 and December 13, 2018) with C1, 3, and 5 (C1,
C3, and C5, respectively). Before the cross-pollinations, all open
flowers were removed from the inflorescence. The unopened
buds were emasculated, and when the stigma became receptive
(usually within two days), pollen was applied directly from the
anthers of the pollen parent, following the Soda Straw Method
(TNAU, 2015). The stigma of C5 was pollinated with pollen
from C1 and C3. Reciprocal pollinations were also undertaken
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TABLE 1 | Alignments of psbA-trnHGUG Inter-Genic Spacer sequences
(nucleotides 321–345) from Colombian cultivars of Sacha inchi.

Cultivar cpDNA Sequence (psbA-trnHGUG IS)

Parentals 321 345

C1 .......... - - - - - - ........

C5 ...G......T A T T T A......T A

C3 .........T - - - - - - ........

Generation 1 (F1) 321 345

♂C1 x C5♀ ...G......T A T T T A......T A

♂C3 x C5♀ ...G......T A T T T A......T A

♂C5 x C1♀ .......... - - - - - - ........

Parentals; Santa Rosa cultivar (C1), Yarumal cultivar (C3), and San Luis cultivar (C5).
Cross-pollinations were carried out between parentals (see section “Materials and
Methods”), and F1 generation was genotyped. Dots mean similar nucleotides in
the position, lines mean deletions, and letters are nucleotides with polymorphisms.

with C5 as male and C1 as female (Table 1). Once the first
generation was generated, five seeds were collected and placed
in 11-cm pots in a mixture of 50% sand and 50% potting soil.
Afterward, the plants were placed under controlled conditions
(25◦C, 2 months at 12 h light/12 h dark). The leaves from
the hybrids were collected and disposed of for DNA extraction
and subsequent sequencing of the chloroplast’s intergenic psbA-
trnHGUG region. Likewise, to visualize cpDNA, most developed
flower buds (i.e., stage IV, just before anthesis, Cachique,
2006) from different individuals from C1 were immersed in a
beaker with 5% sucrose overnight and later dried with towel
paper. Then, water excess was absorbed by laying out the
flower buds into silica gel inside a desiccation chamber for
30 min. Later, a Zeiss Stemi DV4 stereomicroscope was used
to observe, and to tape dehiscent flower buds anthers over
well depression slides to release the pollen. Afterward, two
drops of germination media (GM) [sucrose 10%, boric acid
(100 mg/L), magnesium sulfate (200 mg/L), nitrate (100 mg/L)]
(modified from Brewbaker and Kwack, 1963) were spilled into
the wells. Well depression slides were stored in a dark chamber at
25± 3◦C for 24 h.

Once the plants developed and opened their flowers, the
pollen was collected to slide preparation for DAPI (NucBlueTM

Fixed Cell ReadyProbesTM Reagent, ThermoFisher Scientific,
United States) staining following three approaches: (i) pollen
grains samples were left dried at room temperature before
staining in the GM, (ii) fixation process in which pollen
grains samples were treated sequentially with 10 and 30%
ethanol and then incubated at 36◦C to speed up evaporation,
and (iii) slide preparation flower buds in four developmental
stages were dehydrated by rinsing with glutaraldehyde and
successive 20, 40, 60, 70, and 96% ethanol solutions (20 min
each) and then dried in a BD23 Binder incubator at 37◦C.
Subsequently, histological sections of flower buds were carried
out, embedding them in paraffin (Paraplast, 39601006, Leica)
and cut at 10 µm with a microtome (RM2125 RTS, Leica).
Flower buds histological slides were dehydrated at 65◦C in
a BD 23 Binder incubator for 1 h and then immersed in a
succession of ethanol concentrations (60, 40, and 20%, 3 min
each) for rehydration. Finally, slides were dehydrated with a

succession of alcohols (20, 40, and 60%, 3 min each), rinsed
with one drop of DAPI solution, and dried for 1 h. Images
of pollen grains and histological sections were first processed
using ZEN software from AxioCam Carl Zeiss and finally
with FIJI R© (2012).

RESULTS AND DISCUSSION

Reconstruction of the Whole Chloroplast
Genome of P. volubilis Using
Next-Generation Sequencing
Technologies
The hybrid strategy of ONT combined with Illumina was
attempted for the first time in bacteria (Laver et al., 2015).
Currently, it is a conventional hybrid method for relatively short
genomes, such as cpDNA (Kang et al., 2019). This strategy of
using a combination linking long and short reads may be the
best approach to assembling chloroplast genomes due to its
capacity to combine the benefits of the length of long reads and
the accuracy of short reads (Wang et al., 2018). Previously, the
chloroplast genome sequence and assembly in Oryza coarctata
(Wang et al., 2018) and Eucalyptus pauciflora (Mondal et al.,
2018) were reported by using ONT and Illumina. In this research,
these NGS technologies were combined to reconstruct a whole
chloroplast genome; first, with the short reads technology, the
Illumina Hiseq 4000 system gave a total of 56.711.152 pairs
of reads (according to post chloroplast assembly mapping and
counting with BWA-MEM). Second, 4.699.073 reads resulted
from the ONT after subsequent base-calling, with an N50 of
2 kbp. After the assembly, the average depth of coverage of the
Illumina reads on the consensus sequence was 40,560x, and the
average GC content was 35.8%.

Organization and Comparative Analysis
of Chloroplast Genome of P. volubilis
The complete chloroplast genome of P. volubilis showed a
single-circular molecule (Figure 1) similar to most other higher
plants (Sato et al., 1999). The P. volubilis cpDNA resulted in
a 164,111 bp length, 2378 bp more than Hu et al. (2018;
Supplementary Table 2), displaying two copies of an inverted
repeat (IRA and IRB) of 28,209 bp, each separating an SSC
region of 17,860 bp and an LSC region of 89,833 bp (Figure 1).
During gene annotation, the use of the accession NC_016736.1 of
Ricinus communis as a reference, whose genome is the closest to
P. volubilis, revealed unexpected asymmetries in the orientation
of some rRNA genes on the IRs, in contrast to Arabidopsis
thaliana (Sato et al., 1999), Nicotiana tabacum (Shinozaki et al.,
1986), Glycine max (Saski et al., 2005), and others. Sequence
level comparisons of these genes showed misannotations of the
strand present in the R. communis chloroplast genome accession
(see rRNA_orientation.ipynb in Villanueva et al., 2020). After
reannotation without reference, the rRNA genes were found in
the expected orientation. Annotation using Aragorn identified
131 genes (87 single-copy); 36 tRNAs identified eight rRNAs (four
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FIGURE 1 | P. volubilis chloroplast genome map. Genes are represented as boxes inside or outside the large circle to indicate clockwise (inside) or counterclockwise
(outside) transcription. The color of the gene boxes indicates the functional group to which the gene belongs. IR regions are in a smaller circle, and the inner has the
GC content across the genome. LSC, large single-copy region; SSC, small single-copy region. Intron-containing genes are marked with an asterisk (“*”). Inversion
regions are represented as discontinuous lines between the two circles.

in each IR), 20 introns (in 18 genes), and 86 protein-coding genes,
and an additional one fragmented (Supplementary Table 3).

From the tRNAs found, the normally trnK-UUU, which
surrounds the matK gene, stands out as it presents an insertion
that disrupts its anticodon converting it to trnStop-UUA. It
is unclear if this tRNA is functional. However, as there is no
other trnK, its malfunction would imply either a shortage or
an alternative mechanism for lysine supply to the translation
process. Regarding other genes, atpF has a conserved intron of

718 bp, ycf1 has a fragmented copy of 1916 bp in IRB and ycf3.
Also, clpP has two introns, and rps12 presents trans-splicing as it
was also seen in Castor bean and found in bacterial and organellar
genomes and thought to be ancestors of spliceosomal introns and
retrotransposons in eukaryotes (Bonen, 2008; Lambowitz and
Zimmerly, 2011).

We also reannotated the MF062253.1 genome due to mistakes
assumed in the assembly with the reference R. communis, and the
annotation pipeline followed Mummer (Kurtz et al., 2004) and
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Autograph (Derrien et al., 2007) comparisons between Chinese
genome and Colombian C1 genome showed two inversions in the
LSC and SSC regions (Figure 1). Read coverage in this region was
highly supported, and ONT reads were mapped confirming these
inversions (Supplementary Figure 2). No duplications were
found in the genomes, but seven GAPs in the Colombian genome
summing 1782 bp were inserted, and six GAPs were deleted
summing 596 bp. The variant analysis found 52 SNPs flanked by
20 exact base pair nucleotides match on both sides. Transition A:
T→G: C and transversion A: T→C: G were the most abundant
into the genomes with 32.7% of occurrence each. The genes with
more SNPs relative to the Chinese accession were rpoC1, followed
by the ycf3 gene. We aligned the sequences of nucleotides and
amino acids for both rpoC1 and found several SNPs changing
the protein’s coding sequence. We also compared our rpoC1
with other Euphorbiaceae. We found that R. communis presented
an indel of 26 aa (FSFARPIAKKPTFLRLRGSFEYEIQS) in the
amino acid 145 N-terminal of the protein. Curiously, amino
acid alignment of rpoC1 with Jatropha curcas had a higher
identity than R. communis, and there was no indel detected
(see Snps_analysis.ipynb in Villanueva et al., 2020). rpoC1 and
rpoC2 are two genes that encode for two subunits of the
RNA polymerase (Bergsland and Haselkorn, 1991). Palenik and
Haselkorn (1992) proposed the rpoC1 as a valuable tool to clarify
phylogenetic relationships among plant groups (Liston, 1992).
Since that, it has been used together with other molecular markers
to resolve phylogenetic relationships in many plant families
(Downie et al., 1998; Messinger et al., 1999; Watson et al., 2000).

Two large inversions were identified in the P. volubilis cpDNA
when it was structurally compared with R. communis chloroplast
(Figure 2). The first inversion is located in the middle of the
LSC, spanning 39,426 bp, and flanking the genes rps4 and psbI.
A second more minor inversion of 17,493 bp changes the SSC
orientation (relative to R. communis). This inversion affects the
open reading frame of one of the ycf1 copies and thus fragments
it. This fragmented copy was annotated as a pseudogene. As no
misassemblies were detected in the assembly (see section “Next-
Generation Sequencing and Genome Assembly”), the observed
rearrangements are from biological origin. Further assessment
with Simple Synteny (Veltri et al., 2016) using the 60 longer
genes showed how these inversions affected gene order mainly in
the LSC (Figure 2). Both inversions are absent in the previously
reported chloroplast (acc MF062253.1) because the sequence was
generated with a guided assembly using R. communis chloroplast
as a reference (Hu et al., 2018).

We performed a phylogenomic study with the chloroplast
genomes available in the GenBank to the date for the
family Euphorbiaceae members using ML reconstruction
(Supplementary Figure 4). All of the Crotonoideae,
Euphorbioideae, and Acalyphoideae subfamilies members
were consistently grouped in the cladogram, and C1 was
inner the tribe Plukenetieae next to R. communis. This was
consistent with Hu et al. (2018), by suggesting that the general
features of P. volubilis chloroplast genome compared to other
phylogenetic relative chloroplasts have not been significantly
different in terms of size or number of genes, but indeed have
been significantly different in the structure of the genome

presenting rearrangements in some populations of SI as it has
been documented in other chloroplasts of the tribe Plukenetieae
(Cardinal-McTeague and Gillespie, 2016).

Phylogenetic Studies of Sacha Inchi
Cultivars From Colombia
Alignments of psbA-trnHGUG IS sequences revealed nucleotide
variation between SI Colombian cultivars (Table 1). The San Luis
cultivar (C5) sequence showed multiple insertions between the
nucleotides 321 and 345, while C1–C4 had a deletion in the same
region (Table 1). Other studies have shown that psbA-trnHGUG

IS could have potentially informative character (PIC) value
relative to other cpDNA regions because it presumably shows
considerable variability (>50%) between angiosperm lineages
(Shaw et al., 2007). However, the marker resolution to unveil
phylogenetics relationships has only been assessed at the tribe
level (Plukenetieae in Cardinal-McTeague and Gillespie, 2016).
At the genus level (Plukenetia), Cardinal-McTeague et al. (2019)
supported two major groups (the pinnately- and palmately-
veined clades) and five subclades within Plukenetia in perhaps
the most profound phylogenetic time-dependent evolutionary
framework study of the pantropical genus.

Authors mentioned above combined cpDNA (matK and
ndhF) and nDNA (KEA1 and TEB) markers to assess the
phylogenetic relationships of Plukenetia spp. as well as its
divergence in a geological time-scale. Our results in the
P. volubilis cpDNA complete sequence showed that matK is a
superimposed complex gene for the trnK-UUU and two antisense
introns that flank the trnK-UUU as seen in other species such
as P. edulis cpDNA (Cauz-Santos et al., 2017), and perhaps
this nature of the gene is contributing to its resolution at this
level. However, the single nucleotide variant (SNV) present in
the Colombian cultivars and its associate PIC values across
angiosperms lineages suggest that evolutionary changes might
occur within the Colombian population P. volubilis due to
domestication selection. Therefore, we hypothesize that the San
Luis cultivar (C5) diverges from all other cultivars and that its
evolutionary relationship with the other cultivars analyzed in
this study could be revealed using the psbA-trnHGUG IS as a
molecular marker.

To reveal intraspecific evolutionary relationships, we
performed a phylogenetic analysis with an aligned matrix of
11 taxa and 362 bp (the five Colombian cultivars + four South
American accessions + two Pterichis lehmanniana sequences
as an outgroup). We inferred the ML and BI trees (Figure 3).
Results showed that cultivars C1–C4 grouped in a unique
monophyletic group, while San Luis Cultivar (C5) was found to
diverge from the same ancestor as the Ecuador + Perú cultivars
(Figure 3); however, this group (C5 + Perú + Ecuador) was not
highly supported neither by MLB nor BPP values, indicating
that their relationships could not be revealed in this study.
Notwithstanding, a new supported clade (Colombia + Perú
+ Ecuador) suggests that cultivars diverged from an ancestor
shared with Bolivian cultivars, suggesting that Colombian,
Peruvian, and Ecuadorian cultivars might be sharing a common
evolutionary history based on the psbA-trnHGUG IS marker.
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FIGURE 2 | Synteny analysis between Plukenetia volubilis (top) and Ricinus communis (bottom) chloroplast genomes. Homolog genes are connected by arrows.
Two inversions are observed on the LSC (left) and on the SSC (right). Jagged edges and accompanying base pair numbers denote the start and end of a contig
region automatically collapsed by SimpleSynteny due to no genes being present to make the figure more compact.

FIGURE 3 | Phylogenetic hypothesis based on psbA-trnHGUG IS of the P. volubilis cultivars from Antioquia, Colombia, its relatives (KP794488-89 from Bolivia,
KP794491 from Perú, and KP794490 from Ecuador, see Cardinal-McTeague and Gillespie, 2016) and selected outgroups (KP794481-82 representing
P. lehmanniana). Phylogenetics methods were listed in Section “Materials and Methods.” Illustrations from Cathy Pasquale were adapted from Gillespie (1993).

According to this phylogenetic hypothesis, no differences
among Colombian cultivars are observed (Figure 3).
Notwithstanding, other relationships between Peruvian and
Bolivian and Equatorial accessions of P. volubilis seem to display
significant divergence. Furthermore, P. lehmanniana, as a sister
group, is consistent with preceding studies (Cardinal-McTeague
and Gillespie, 2016). Remarkably, the three main groups
diverged with posterior probability values greater than 0.98
(Figure 3), which illustrates psbA-trnHGUG proper resolution for
intraspecific relationships.

Determination of the Organellar
Inheritance Mode by Crossbreeding
Since cpDNA paternal contribution in angiosperms has not
been reported extensively, and mitochondria are crucial during
pollen tube germination (Twell et al., 2006), we assume that

P. volubilis cpDNA is maternally inherited and its mtDNA is
biparentally inherited. However, it is necessary to experimentally
determine the cpDNA inheritance mode in P. volubilis,
which is essential information for enabling successful genetic
improvement programs, avoiding unwanted crosses with wild
germplasm (Glick and Patten, 2017). It would appear suitable
to develop genetically modified cultivars, harboring cpDNA
modifications, avoiding gene scape. In cpDNA enhanced plants,
higher expression of proteins is manifested, allowing them to
overcome biotic and abiotic stress (Glick and Patten, 2017).
In order to determine the cpDNA mode of transmission,
psbA-trnHGUG IS was used as a chloroplast sequence marker
in crossbreeding experiments of the present study’s cultivars.
Therefore, solving cpDNA inheritance mode in P. volubilis
is a stepping stone to decide how to develop modified
cultivars eventually that could avoid unwanted crosses with wild
germplasm (Glick and Patten, 2017).
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As previously stated, psbA-trnHGUG IS sequences from
Colombian cultivars indicated nucleotide variation (Table 1).
Since then, the San Luis cultivar’s (C5) sequence has shown
multiple insertions between 321 and 345 nucleotides, while
C1–C4 have a deletion in the same region. This suggests the
suitability of the cpDNA marker to discriminate among the local
P. volubilis cultivars by the use of molecular techniques and
particularly the cultivar C5 as the main parent in crossbreeding
experiments. Many factors could be explaining the exhibited
variability of P. volubilis. Additionally, the Peruvian Amazonia’s
diverse ecological structure has allowed the domestication of
native plants (such as P. volubilis) by keeping a high genetic
variability during the last centuries (Rodríguez et al., 2010).
In this context, the movement of non-genotyped seed and

uncontrolled use of P. volubilis as a promising crop through
different varied regions of South America might be possible,
causing new varieties adapted to diverse habitat conditions
(Correa et al., 1990; Gillespie, 1993). Besides, spotted SNVs
(Table 1) can be tested for simultaneous occurrence in a
P. volubilis interbreeding population and serve as additional
statistical data supporting SNP discovery.

Sequences from the psbA-trnHGUG IS region in the
F1 generation, derived from genetic crosses between the
three parents (C1, C3, and C5), were obtained. Sequence
analysis showed a maternal inheritance of the cpDNA
since whenever the C5 was the maternal parental, the “.
. . G . . . . . . T A T T T A . . . . . . T A” sequence was
inherited to the F1 and the reciprocal crossing inherited the

FIGURE 4 | Germination stages of P. volubilis pollen grains using GM, stained using DAPI fluorochrome, and visualized under fluorescent microscopy. (A) (Stage 1),
pollen grains not completely germinated, lacking pollen tube and stained directly. (B) (Stage 2), pollen grains showing very conspicuous germination apertures.
(C) (Stage 3) pollen partially germinated with an observable migration of vegetative and germinative cells. (D) (Stage 4), pollen grains germinated and conspicuous
pollen tubes with male germination unit (MGU) migrating across the tube. Germinative cells are illustrated in vertical arrows, and vegetative nuclei are pointed by the
horizontal arrows. A and B were observed at 20X and C and D at 40X.
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FIGURE 5 | Six morphological stages of microsporogenesis and microgametogenesis are shown during the first four flower buds developmental stages of pollen
cells of P. volubilis using fluorescent micrograph and DAPI stain. (I) First meiosis and formation of tetrads, (II) microspore release, (III) microspore during interphase,
(IV) microspore undergoing the first pollen mitosis (PMI) and trafficked fluorescent oDNA granules (pointed out with the arrows), (V) formation of a generative cell
(GC) and vegetative cell (VC), and (VI) mature pollen and cytoplasmic DNA decay and formation of the final MGU before anthesis. All observations are at 100X.

genotype C1 (Table 1), indicating a maternal inheritance
mode of the cpDNA. This result is consistent with most
angiosperm plants where cpDNA is uniparentally transmitted

by the female parental, and thus it can be used to identify
the maternal genome donor (Feitosa, 2017). Therefore,
molecular understanding derived from cpDNA genome
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analysis suggests that the inheritance model P. volubilis is
uniparental maternal, which supports cytogenetic analysis
carried out in parallel.

Determination of the Organellar
Inheritance Mode by a Cytogenetic
Approach
Around 80% of angiosperms display maternal inheritance mode
of cpDNA, compared with the other 20% of angiosperms
studied, which show a strong bent for plastid transmission
from the male lineage, a phenomenon known as potential
biparental plastid inheritance (PBPI); results mainly based
on scanning plastid DNA in the male gametic cell with
DAPI (Corriveau and Coleman, 1988; Zhang and Sodmergen,
2010). On the other hand, paternal inheritance in angiosperms
has been observed in bare cases (Harris and Ingram, 1991;
Testolin and Cipriani, 1997).

A cytological approach using DAPI staining was implemented
in three steps to elucidate the oDNA inheritance mode of
P. volubilis: (i) direct DAPI satin into germinated pollen grains;
(ii) DAPI stain on alcohol fixed germinated pollen grains,
and (iii) DAPI staining on histological slices of four flower
bud’s developmental stages. During pollen grain germination,
three aperture furrows’ appearance is conspicuous; these furrows
expose feeble intine to the GM and are the proper places
for tube germination (Figure 4A). Besides, observations of
germinated pollen grains showed no evidence of plastid DNA
or any oDNA granules; mtDNA is also included in any of
the germination stages observed (Figure 4). Plant cytologists
agree with the DAPI staining method as a fundamental
approach, claiming that MGU migration through a pollinic
tube could be considered the gametophyte’s final and active
state (Twell et al., 2006). If plastids are absent throughout
MGU migration, the zygote will be missing paternal plastids
(Zhong et al., 2011). Therefore, adding molecular results,
this study reports for the first time that P. volubilis oDNA
is not paternally transmitted, making this scientific report
one of the first profound advances in organellar inheritance
for this species.

This experiment additionally shows that P. volubilis has a
binucleate male gametic cell based on the diagnosis of pollen
grains fixed with alcohol (Figures 4C,D). It exhibits a diffuse
nucleus (vegetative) and a more defined one (germinative cell)
at the end of gametogenesis. Notwithstanding, almost every
plant species shows binucleated stereotypical pollen grains (70%
of all plant spp.). According to Twell et al. (2006), trinucleate
or binucleate pollen is a random feature among Euphorbiaceae
(Brewbaker, 1967), therefore rendering a useful characteristic
regarding pollen-based taxonomy.

Considering plastid DNA or oDNA granules, mtDNA is also
included. Since DAPI staining is a non-selective DNA stained
method, and no stained plastids were observed (Figure 4), it
is suggested that P. volubilis mtDNA inheritance mode seems
to be non-paternally as well. The mtDNA is independently
trafficked from that of cpDNA. For instance, cpDNA and mtDNA
of Medicago sativa are inherited biparentally and maternally,

respectively (Forsthoefel et al., 1992), whereas those of Musa
acuminata (banana) are inherited maternally and paternally,
respectively (Fauré et al., 1994). These oDNA behaviors correlate
well with the degradation or amplification of DNA in each
organelle of the generative cell (Nagata et al., 1999); in the
generative cells of M. sativa, cpDNA is amplified while mtDNA
is degraded, whereas in M. acuminata, cpDNA is degraded while
mtDNA is amplified (Twell et al., 2006).

Histological slices of flower buds during four developmental
stages were stained with DAPI to analyze the course of oDNA
along pollen gametogenesis. Results showed oDNA decay during
the switch of flower buds developmental stages III and IV
(Figure 5). This decrease might be happening during pollen
mitosis (PMI). Loss mechanisms are several, from restriction
enzyme success to total cytoplasmic content suppression in a
male gametophytic cell (Sager and Lane, 1972). Indeed, many
cellular mechanisms controlling oDNA inheritance transmission
have been proposed clearly, for instance: (1) physical exclusion of
the organelle itself during PMI; (2) elimination of the organelle
by the formation of enucleated cytoplasmic bodies (ECB); (3)
autophagic degradation of organelles during male gametophyte
development; (4) digestion of the organelle after fertilization;
and (5) digestion of oDNA in generative cells just after PMI
(Nagata, 2010). However, hypotheses (1) and (5) may encompass
others and also explain better the maternally or non-paternally
transmitted mechanism of oDNA (Nagata, 2010).

Since results showed an organelle decay in the very early stages
of mitosis (Figures 5IV–VI), it is suggested that the oDNA loss
mechanism in P. volubilis is primarily due to an organelle physical
exclusion system. Indeed, many granular bodies are bordering
outside pollen grains (Figure 5IV), suggesting an oDNA
removal from pollen grains. Nonetheless, these observations
do not, by themselves, definitively support this hypothesis.
Additional evidence is needed, such as molecular studies showing
how actin filaments or microtubules traffic organelle during
microgametogenesis (Twell et al., 2006). Furthermore, loss
mechanisms may not be mutually exclusive, so that multiple
systems might be acting during pollen formation. It is reasonable
to think that later, between the last stage of pollen formation
(Figure 5VI) and pollen germination (Figures 4C,D), a second
mechanism such as organelle digestion may be happening.
Finally, histological slide observations should be taken carefully.
They could eclipse natural phenomena because tridimensional
bisected pollen grains may not accurately reflect what is inside.

CONCLUSION

Supported by cpDNA genome and cytogenetic analysis, this
study found that P. volubilis chloroplast’s inheritance model is
uniparental maternal. With 164,111 bp length displaying two
copies of an inverted repeat sequence (IRA and IRB), the
P. volubilis cpDNA was reported completely de novo for the first
time, filling a significant gap and need of studies for a species with
great demand due to its high UFAs seeds content. When it was
compared with R. communis cpDNA, two large inversions were
identified in the P. volubilis cpDNA: the first inversion located
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in the middle of the LSC and the second one between the genes
trnN-GUU. Furthermore, genomic analyses between P. volubilis
cpDNA and other Euphorbiaceae cpDNA showed significant
differences in the genome structure, including rearrangements.
Here we reported a cpDNA psbA-trnHGUG IS as a molecular
marker, which demonstrated the suitability to discriminate
intraspecific relationships among regional P. volubilis cultivars,
adding knowledge to understanding its genetic diversity. This
outcome is crucial to track all the rudimentary SI ecotypes
developed in tropical countries. Moreover, we consider that
this work will contribute to generating stands for plant genetic
improvement, primarily to further strategies based on chloroplast
genetic transformation and understanding of evolutionary
dynamics between organelle and nuclear genomes.
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