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Downy mildew, caused by the oomycete Plasmopara viticola, is one of the diseases
causing the most severe economic losses to grapevine (Vitis vinifera) production. To
date, the application of fungicides is the most efficient method to control the pathogen
and the implementation of novel and sustainable disease control methods is a major
challenge. RNA interference (RNAi) represents a novel biotechnological tool with a great
potential for controlling fungal pathogens. Recently, a candidate susceptibility gene
(VviLBDIf7) to downy mildew has been identified in V. vinifera. In this work, the efficacy
of RNAi triggered by exogenous double-stranded RNA (dsRNA) in controlling P. viticola
infections has been assessed in a highly susceptible grapevine cultivar (Pinot noir) by
knocking down VviLBDIf7 gene. The effects of dsRNA treatment on this target gene
were assessed by evaluating gene expression, disease severity, and development of
vegetative and reproductive structures of P. viticola in the leaf tissues. Furthermore,
the effects of dsRNA treatment on off-target (EF1α, GAPDH, PEPC, and PEPCK) and
jasmonic acid metabolism (COI1) genes have been evaluated. Exogenous application of
dsRNA led to significant reductions both in VviLBDIf7 gene expression, 5 days after the
treatment, and in the disease severity when artificial inoculation was carried out 7 days
after dsRNA treatments. The pathogen showed clear alterations to both vegetative
(hyphae and haustoria) and reproductive structures (sporangiophores) that resulted in
stunted growth and reduced sporulation. Treatment with dsRNA showed signatures of
systemic activity and no deleterious off-target effects. These results demonstrated the
potential of RNAi for silencing susceptibility factors in grapevine as a sustainable strategy
for pathogen control, underlying the possibility to adopt this promising biotechnological
tool in disease management strategies.
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INTRODUCTION

Since the late 1800s, Vitis vinifera has suffered damage from downy mildew, a disease caused by
the oomycete Plasmopara viticola, originating from Northern America. This biotrophic, obligate
parasite can infect all the green parts of grapevine plants, causing quantitative and qualitative
damage and leading to extensive yield losses (Yu et al., 2012). Non-vinifera species, such as those
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with center of origin in North America and Asia, are resistant to
P. viticola due to coevolution with the pathogen. This resistance
is mediated by different mechanisms that at first detect the
pathogen and then initiate a proper defense response (Gessler
et al., 2011). The first level of defense is called Pathogen-
Associated Molecular Pattern (PAMP)-Triggered Immunity
(PTI), a plant basal immune response activated by the recognition
of conserved molecules of the pathogen (Newman et al., 2013).
A second, more selective, plant defense mechanism is called
Effector-Triggered Immunity (ETI). ETI relies on a class of
highly specific receptors, the resistance proteins (R-proteins), that
recognize pathogen effectors. Activation of ETI leads to disease
resistance and is often associated with localized apoptosis at the
infection site (hypersensitive response) (Jones and Dangl, 2006).

Since effectors and receptors are codified by non-essential
genes, resistance genes (R-genes) undergo rapid evolution,
due to the strong selective pressure on both pathogen and
plant (Buonassisi et al., 2017). This phenomenon implies a
short duration of the resistance triggered by R-genes. For a
durable resistance, targeting susceptibility genes (S-genes) can
be a winning strategy in breeding (Zaidi et al., 2018). S-genes
facilitate the compatibility between plant and pathogen and are
essential for their interaction, especially for biotrophic pathogens.
Therefore, mutation or loss of S-genes can limit pathogenicity
toward the plant (Van Schie and Takken, 2014). MLO (Mildew
Locus O) genes are a striking example of S-gene usefulness
in breeding programs: their knockdown confers resistance to
powdery mildew in grapevine, reducing the disease severity by up
to 77% (Pessina et al., 2016). MLO-based resistance to powdery
mildew is, indeed, widely employed in barley breeding since few
decades even if the function encoded protein is not yet completely
established (Kusch and Panstruga, 2017).

To date, downy mildew-resistant grapevine varieties are
obtained by crossing V. vinifera cultivars with non-vinifera
species or hybrids. Nevertheless, to reduce the background
of non-vinifera species, several cycles of backcrossing with
susceptible cultivars are needed, which makes the breeding
process very lengthy. The identification of grapevine S-genes
against P. viticola opens new possibilities to breed for downy
mildew resistance because usually S-gene-mediated resistance
is durable and broad spectrum. The research of S-genes in
grapevine is still pioneering. Pessina et al. (2016) identified two
MLO genes responsible for V. vinifera susceptibility to powdery
mildew and some others were proposed for downy mildew
(Toffolatti et al., 2020; Pirrello et al., 2021). Recently, resistance
to P. viticola has been identified in Mgaloblishvili (Toffolatti
et al., 2016), a V. vinifera cultivar from Georgia (Southern
Caucasus). Studying its unique resistance mechanism, different
R-genes and an interesting candidate S-gene have been identified
(Toffolatti et al., 2018, 2020). The S-gene VvLBDp1 [from here on
called VviLBDIf7 based on Grimplet et al. (2017) nomenclature],
encoding for an LOB (LATERAL ORGAN BOUNDARIES)
domain-containing (LBD) protein, belongs to plant LOB family
of transcription factors. This family has been comprehensively
analyzed in many species, such as Arabidopsis thaliana (Liu
et al., 2005), Malus domestica (Wang et al., 2013), Glycine max
(Yang et al., 2017), Eucalyptus grandis (Lu et al., 2018), Brassica

rapa (Huang et al., 2018), Camellia sinensis (Teng et al., 2018),
Gossypium spp. (Yu et al., 2020), and Pyrus bretschneideri (Song
et al., 2020). LBD genes show a key role in the regulation
of plant organ development and in the response to abiotic
and biotic stresses (Xu et al., 2016). They are involved in the
establishment of organ boundaries (Rast and Simon, 2012), leaf
formation (Semiarti et al., 2001), pulvinus differentiation and
petiole development (Chen et al., 2012), regulation of lateral
root organogenesis (Okushima et al., 2007), root and stem
development (Yu et al., 2020), development of sepal and petal
primordia of flowers (Xu et al., 2008), pollen development
(Kim et al., 2015), regulation of light/dark-dependent hypocotyl
elongation (Mangeon et al., 2011), and secondary phloem growth
(Yordanov et al., 2010). Moreover, LOB genes are also involved
in pathogen and abiotic response (Thatcher et al., 2012; Grimplet
et al., 2017; Yu et al., 2020), and they can act as repressor of
anthocyanin biosynthesis and affect nitrogen response (Rubin
et al., 2009). Biological processes where LBD genes are involved
have been extensively reviewed by Zhang et al. (2020).

A genome-wide characterization has been performed in
grapevine as well, and up to 50 LBD genes have been identified
(Grimplet et al., 2017). Expression patterns across different
tissues, including both mature/woody and vegetative/green
tissues, indicate roles of LBD genes in organ differentiation,
in berry development and ripening (Fasoli et al., 2012), and
in response to abiotic (such as salt, cold and drought) and
biotic stresses (such as Botrytis cinerea attack and Bois noir
disease) (Albertazzi et al., 2009; Agudelo-Romero et al., 2015).
The S-gene VviLBDIf7 is the putative ortholog of an LBD
transcriptional factor acting as repressor of jasmonate-mediated
defense mechanisms during infection of A. thaliana roots with
Fusarium oxysporum. In this system, LBD disruption resulted in
an increased resistance to the pathogen (Thatcher et al., 2012).

Silencing plant S-genes represents a promising way to achieve
disease resistance as an alternative or in addition to breeding
for R-genes. However, gene silencing is usually obtained via
stable plant transformation, and the use of genetically modified
plants in Europe is strictly regulated, and in several countries,
they are not authorized for cultivation. A novel emerging
approach, which allows to overcome procedures for a stable
genome modification, is represented by RNA interference (RNAi)
triggered by the application of exogenous double-stranded
RNA (dsRNA) molecules (Dubrovina et al., 2019). The effect
of dsRNA treatment has been recently studied and proposed
as a new environmentally-friendly crop protection tool from
viruses, fungi, and insects (Konakalla et al., 2016; Luo et al.,
2017; Wang et al., 2017; Cagliari et al., 2019; Dubrovina and
Kiselev, 2019; Morozov et al., 2019; Vadlamudi et al., 2020).
RNAi has emerged as a technique with the ability to selectively
knock down target genes (Kerschen et al., 2004). RNAi is a
natural mechanism used by various organisms, including plants,
to regulate specific gene activities or to defend their genome
from invasions of exogenous nucleic acids. In the first case,
the plant specifically produces molecules called microRNAs
(miRNAs) serving as guides to selectively degrade the mRNA of
target genes. In the second case, the plant recognizes dsRNAs
introduced into the cytoplasm and produces short interfering
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RNA (siRNA) molecules that defend the plant from exogenous
nucleic acids (Meister et al., 2004). As a consequence, RNAi
mediated by post-transcriptional gene silencing can be stimulated
also by the addition of ad hoc designed dsRNA molecules. This
technique, although not yet regulated at European level, will
likely fall outside the strict GMO regulation, being transgene-
free. The exogenous application of polynucleotides that can affect
mRNA levels of important virulence-related plants genes without
modifying the host genome opens new opportunities for the
development of new scientific techniques and crop improvement
strategies (Dubrovina et al., 2019). This study evaluated the
efficacy of a dsRNA treatment in silencing, through RNAi,
VviLBDIf7, the candidate S-gene responsible for susceptibility
toward P. viticola in V. vinifera. For this purpose, Pinot noir
leaves were treated with synthetized dsRNA targeting VviLBDIf7
gene and then inoculated with the pathogen, to evaluate (i)
VviLBDIf7 gene expression in the plant tissues after dsRNA
treatment, (ii) disease severity and sporangia production on
dsRNA-treated leaves inoculated with P. viticola, and (iii) the
morphology of both vegetative and reproductive P. viticola
structures in the dsRNA-treated leaf tissues. Finally, a preliminary
investigation of the systemic effect of dsRNA and the evaluation
of dsRNA treatment on off-target and jasmonic acid metabolism
genes have been performed.

MATERIALS AND METHODS

Basal Expression of VviLBDIf7
The basal expression level of VviLBDIf7 (LOC100246173),
candidate S-gene, was evaluated on leaves collected from
three 6-year-old V. vinifera L. cv. Pinot noir plants, grown
in a greenhouse, as reported in Toffolatti et al. (2018), via
RT-qPCR. The first two well-developed leaves were collected
in June 2020 twice at 1-day intervals. Leaves were ground
with liquid nitrogen into a fine powder using mortar and
pestle. RNA was extracted using the SpectrumTM Plant
Total RNA Kit (Sigma-Aldrich, Germany) and then digested
with Amplification Grade DNase I (Sigma-Aldrich), according
to the manufacturer’s instructions. Quantity and quality of
RNA were checked by NanoDrop 1000 Spectrophotometer
(Thermo Scientific, United Kingdom) and 1% agarose gel
electrophoresis stained with Midori Green Advance R© (Nippon
Genetics, Japan). VviLBDIf7 real-time PCR primers (VvLBD_F
and VvLBD_R; Table 1) were designed on the available sequence
[VIT_13s0019g03750 according to Canaguier et al. (2017)] using
the Primer3 Plus software (Untergasser et al., 2007) and NCBI
Primer-BLAST (Ye et al., 2012). To avoid amplification of
eventual genomic DNA carried over, one of the primers was
designed to span across the exon–exon junction of the gene.
Ubiquitin (Fujita et al., 2007) and actin (Reid et al., 2006)
genes were used as references for data normalization. Total
RNA (500 ng) was reverse transcribed with SuperScript R©IV
Reverse Transcriptase (Invitrogen, United Kingdom), using a 1:1
mix of random primers and oligo(dT), following manufacturer’s
instructions. Real-time PCR reaction was carried out using
4 µl of cDNA diluted 1:10, 10 µl of PowerUpTM SYBRTM

Green Master Mix (Applied Biosystems, United Kingdom),
500 nM of primer forward and reverse and water up
to 20 µl. Each reaction was performed in triplicate on
QuantStudio 3 Real-Time PCR Systems (Thermo Fisher,
United Kingdom) using the following cycling conditions: 50◦C
for 2 min, 95◦C for 10 min, 50 cycles at 95◦C for 20 s,
60◦C for 45 s, and 72◦C for 30 s. Each thermal cycle
was followed by a melting curve stage, with temperatures
ranging from 60◦C to 95◦C. The VviLBDIf7 gene expression
at the two time points was calculated by comparing 2−11Ct

(Ct = cycle threshold) values (Livak and Schmittgen, 2001).
Geometric average of ubiquitin and actin was used to
normalize the Ct values.

VviLBDIf7 dsRNA Design and Synthesis
In order to synthesize the dsRNA molecules, VviLBDIf7 was
partially amplified. To allow the synthesis of dsRNA template
of proper dimension (400–500 bp) through PCR, new primers
of VviLBDIf7 (VvLBD_RNAi_F and VvLBD_RNAi_R; Table 1)
were designed on the available sequence (LOC100246173) using
the Primer3 Plus software and NCBI Primer-BLAST. In order
to reduce the probability of off-target amplicons, the partial
VviLBDIf7 sequence was amplified starting from cDNA samples
obtained in the Basal expression of VviLBDIf7 subsection. PCR
reaction was carried out using 4 µl of cDNA diluted 1:10, 5 µl
of 5X Colorless GoTaq Reaction Buffer (Promega, Wisconsin,
United States), PCR Nucleotide Mix 0.2 mM each dNTP
(Promega), 0.6 µM of primer forward and reverse, 0.125 µl
of GoTaq G2 (5 U/µl) (Promega), and water up to 25 µl.
To ensure the production of enough DNA template for the
next steps, the reaction was performed in five replicates using
the following thermal cycling conditions: 95◦C for 2 min,
35 cycles at 95◦C for 30 s, 60◦C for 1 min, 72◦C for
1 min, and a last step at 72◦C for 5 min. PCR fragments
were visualized on 1% agarose gel electrophoresis stained with
Midori Green Advance. The amplification products were used
as a template in another PCR reaction using RNAi primers
5′ attached with T7 RNA polymerase promoter sequences
(VvLBD_RNAiT7_F and VvLBD_RNAiT7_R; Table 1), as
requested by MEGAscript RNAi Kit protocol (Thermo Fisher
Scientific, United Kingdom). PCR reaction was carried out
using 1 µl of amplification product, 5 µl of 5X Colorless
GoTaq Reaction Buffer, PCR Nucleotide Mix 0.2 mM each
dNTP, 0.6 µM of primer forward and reverse, 0.125 µl of
GoTaq G2 (5 U/µl), and water up to 25 µl. To guarantee
a sufficient amount of dsRNA DNA template, the reaction
was performed in 50 replicates using the following thermal
cycling conditions: 94◦C for 5 min, 5 cycles at 94◦C for
45 s, 62◦C for 1 min, 72◦C for 1 min, 30 cycles at 94◦C
for 45 s, 65◦C for 1 min, 72◦C for 1 min, and a last
step at 72◦C for 5 min. PCR products were solved on
1% agarose gel electrophoresis stained with Midori Green
Advance. Replicates of PCR product were pooled and purified
through Wizard SV Gel and PCR Clean-Up System (Promega).
Purified samples were quantified using QubitTM 3.0 fluorometer
(Thermo Fisher Scientific), using the QubitTM dsDNA HS
Assay Kit (Thermo Fisher Scientific), and Sanger sequenced
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TABLE 1 | List of primers used in this work to synthetize the dsRNA.

Name Sequence (5′-3′) Tm (◦C) GC % Primer position (bp)

VvLBD_F GCCTGCAAAATCCTTCGTCG 60.18 55.0 196–215

VvLBD_R GACTCGGGAAGTTCCTGCAA 59.97 55.0 322–341

VvLBD_RNAi_F TATGGTTGTGCTGGTGCAAT 60.00 45.0 406–425

VvLBD_RNAi_R CACACGGCTCTCCTTTTTCT 59.50 50.0 798–817

VvLBD_RNAiT7_F TAATACGACTCACTATAGGGAG ATATGGTTGTGCTGGTGCAAT 71.30 41.9 406–425

VvLBD_RNAiT7_R TAATACGACTCACTATAGGGAG ACACACGGCTCTCCTTTTTCT 72.30 44.2 798–817

VvLBD_2_F CTTGCAGGAACTTCCCGAGTC 60.94 57.0 321–341

VvLBD_2_R GCCAAGAAGGCTCCAAGACGG 63.56 62.0 566–586

VvLBD_F and VvLBD_R primers were used to detect the basal gene expression of VvLBD in leaves of Pinot noir. VvLBD_RNAi_F and VvLBD_RNAi_R primers were used
to amplify partially the target gene to synthetize the dsRNA. VvLBD_RNAiT7_F and VvLBD_RNAiT7_R were used to perform MEGAscript RNAi Kit protocol. VvLBD_2_F
and VvLBD_2_R primers were used to evaluate the expression of VvLBD gene on dsRNA- and water-treated leaves. The primer position refers to the start of the sequence
(LOC100246173) annotated in NCBI (https://www.ncbi.nlm.nih.gov/).

by Macrogen Europe B.V. in two replicates, using RNAiT7
primers. Sequences were aligned to reference sequence using
ClustalW (Thompson et al., 1994). The obtained template was
used in the dsRNA synthesis reaction using MEGAscript RNAi
Kit, according to the manufacturer’s instructions. Synthetized
dsRNA was solved on 1% agarose gel electrophoresis stained
with Midori Green Advance and quantified by NanoDrop 1000
Spectrophotometer.

VviLBDIf7 dsRNA Treatment
Treatments with VviLBDIf7 dsRNA were carried out on 6-
year-old Pinot noir plants grafted onto SO4, maintained in a
glasshouse in 5-L pots filled with sand-peat mixture (7:3v/v),
regularly watered via a drip system and fertilized twice a year
with Osmocote Topdress fertilizer (ICL Specialty Fertilizers,
Italy), as reported in Toffolatti et al. (2018). The plants,
grown in a greenhouse, never came in contact with P. viticola
structures and were regularly inspected for disease symptoms
to be sure to work with healthy tissues. Three plants were
treated with 100 µg/plant of dsRNA dissolved in 1 ml of
sterilized water, and three were treated with only sterilized
water (1 ml per plant), as suggested by Nerva et al. (2020).
Treatments were performed with an airbrush on both sides
of the first five fully developed leaves of a single vine shoot
(from the second to the sixth leaf from the apex of the shoot)
per plant (Supplementary Figure 1). One sprayed leaf per
plant was randomly collected at 3, 5, 7, and 15 days after
treatment (dat) (Figure 1A). To validate the dsRNA treatment
data, the experiment was repeated, as previously described,
on self-rooted cuttings of Pinot noir grown in the same
conditions, to remove any possible effect of rootstock on scion
behavior. In this second experiment, leaves were collected at
5 and 7 dat (Figure 1B), corresponding to the time points
when, according to the first experiment, downregulation of
S-gene and response to the pathogen occurred. In the second
experiment, the possible systemic effect of dsRNA treatment
was investigated on the untreated leaf immediately above the
treated one at 7 dat (leaf S7, Figure 1B). From each leaf
(biological replication), three 1.5-cm-diameter disks (technical
replication) were excised and inoculated with the pathogen.
The remaining leaf tissue was frozen in liquid nitrogen and

stored at −80◦C until gene expression analysis and assessment
of P. viticola presence.

VviLBDIf7 Gene Expression Analysis on
dsRNA- and Water-Treated Leaves
Expression of the candidate S-gene on dsRNA- and water-treated
samples was evaluated through RT-qPCR. RNA extraction,
RT-qPCR, and comparison of Ct values were carried out
following the procedures described in the Basal expression of
VviLBDIf7 subsection, with some modifications: (i) to ensure the
specific retrotranscription of only functional mRNAs, oligo(dT)
primers were used in RT-PCR; (ii) qPCR was performed on
8 µl of cDNA; and (iii) to avoid possible amplification of
incomplete cDNA sequences due to amplification of small
RNAs resulting from degradation of the target gene mRNA
following dsRNA treatment, qPCR primers (VvLBD_2_F and
VvLBD_2_R; Table 1) were specifically designed, using Primer3
Plus software and NCBI Primer-BLAST. The forward primer
was designed to match the target gene sequence in the middle
of the region amplified by the first qPCR primer pair (see the
Basal expression of VviLBDIf7 subsection), and the reverse primer
was designed to match the same sequence region targeted by
the dsRNA fragment.

Inoculation of Plasmopara viticola on
Treated Leaves and Phenotypic
Characterization of the Plant–Pathogen
Interaction
Experimental inoculation of the leaf disks with the pathogen
were carried out by mixing P. viticola sporangia coming
from Western (S. Maria della Versa, Pavia) and Eastern
(Casarsa della Delizia, Pordenone) Italian field populations
(Maddalena et al., 2020; Sargolzaei et al., 2020). To verify
that the leaf tissues used for the experimental activities were
not previously contaminated by P. viticola, a PCR assay with
primers specific for the ITS region of P. viticola (Toffolatti
et al., 2012) was carried out on all leaf samples. Leaf
tissues were collected from each sample (dsRNA- and water-
treated) at all-time points. DNA was extracted using the
DNeasy Plant Mini kit (Qiagen Italia, Milano) and checked
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FIGURE 1 | Scheme of the treatment and sampling carried out in the first (A) and second experiment (B). Numbers indicate the number of days after treatments
(dat) at which the leaves were collected. S7 indicates the untreated leaves that were sampled at 7 dat for the evaluation of systemic activity of dsRNA in the second
experiment.

by NanoDrop for quantity and quality. PCR reactions were
performed using 2 µl of DNA template, 12.5 µl of DreamTaq
Green PCR Master Mix (2X) (Thermo Fisher Scientific),
0.5 µM of forward (AF_2F: 5′-TCCTGCAATTCGCATTACGT-
3′) and reverse (AF_2R: 5′-GGTTGCAGCTAATGGATTCCTA-
3′) primers (Toffolatti et al., 2012), and water up to 25 µl.
The thermal cycling conditions were as follows: 94◦C for
3 min, 30 cycles at 94◦C for 30 s, 57◦C for 30 s, 72◦C for
1 min, and a last step at 72◦C for 5 min. PCR products
were solved on 2.5% agarose gel electrophoresis and stained
with Realsafe nucleic acid staining solution (Real, Valencia).
Positive control consisted of DNA extracted from sporangia and
infected leaf disks and negative controls consisted of water and
B. cinerea DNA.

Leaf disks, sampled at each time point, were placed, lower
surface upward, in a Petri dish (9 cm diameter) containing
moistened filter paper. The leaf disks were airbrushed with
0.2 ml of a sporangia suspension (5 × 104 sporangia
ml−1) obtained by collecting sporangia in sterile distilled
water, and incubated in a growth chamber at 22◦C with

a 12-h photoperiod (Toffolatti et al., 2018). The effect of
dsRNA treatment on the pathogen’s ability to infect the
leaf tissues was evaluated at 7 days after inoculation by
combining quantitative (disease severity and the production
of sporangia) and qualitative traits, related to the morphology
of vegetative and reproductive structures of the pathogen.
Disease severity was evaluated in both experiments, while
sporangia production and microscopy were performed in the
first experiment only. The disease severity of each biological
replicate was estimated from the percentage of leaf disk area
covered by sporulation (PSA) (Toffolatti et al., 2012). The
number of sporangia produced by the pathogen per leaf unit
(sporangia cm−2) was determined as described by Toffolatti
et al. (2016) by collecting the sporangia from each leaf disk
in 1 ml of 20% glycerol:water (v:v) and counting them in
Kova chambers. Microscopy observations were performed by
aniline blue staining (Wick, 2009) on leaf disks fixed in
absolute ethanol and cleared as described by Alexander et al.
(2005) with some modifications: samples were boiled in 85%
ethanol:water (v:v) for 10 min, and incubated in pre-warmed
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lactic acid at 70◦C for 30 min, following the procedure
reported by Ricciardi et al. (2021). Reagents were purchased
from Sigma-Aldrich. Samples were observed under an EasyLab
CX40 (Olympus) bright-field optical microscope equipped with
Primo Cam HD5 camera (Tiesselab, Milano, Italy). Pictures
were taken as Z sections and overlapped by using ImageJ
software1.

Evaluation of dsRNA Treatment on
Off-Target and Jasmonic Acid
Metabolism Genes
In order to evaluate the effect of dsRNA treatment on
off-target genes, the following genes were evaluated
via RT-qPCR: EF1α (elongation factor 1α; EF1α_F: 5′-
GAACTGGGTGCTTGATAGGC-3′; EF1α_R: 5′-ACCAAAATA
TCCGGAGTAAAAGA-3′) and GAPHD (glyceraldehyde-3-
phosphate dehydrogenase; GAPHD_F: 5′-TCAAGGTCAAGGA
CTCTAACACC-3′; GAPHD_R: 5′-CCAACAACGAACATA
GGAGCA-3′) (Figueiredo et al., 2015); PEPC
(phosphoenolpyruvate carboxylases; PEPC_F: 5′-CATGAAGG
GTATTGCTGCTG-3′; PEPC_R: 5′-AGAGGATTTGA
TTTTGGTACGG-3′) and PEPCK (PEP carboxykinases;
PEPCK_F: 5′-TGGCTGGTCAACACTGGTTG-3′; PEPCK_R:
5′-CTTCAGAAGGCTTCCAGAGTG) (Sweetman et al., 2012).
Gene expression analysis was performed on dsRNA- and
water-treated leaves at 3, 5, 7, and 15 dat (first experiment).
On the same samples, the COI1 (coronatine insensitive
1; COI1_F: 5′-ATGCCCATAGTATTCCCTTTT; COI1_R:
5′-GAACTTCTAATCCTCTGTCTC-3′) and JAR1 (jasmonate-
resistant 1; JAR1_F: 5′- GAGAATTGCGGATGGTGATA-3;
JAR1_R: 5′-CTAAAGGCGAAAGAGGTT-3′) (Figueiredo et al.,
2015) genes, involved in the jasmonic acid metabolism and
modulated by P. viticola infection, were investigated via RT-
qPCR. For more details about the reaction conditions, please
refer to the Basal expression of VviLBDIf7 subsection. Annealing
temperature was set to 58◦C.

Statistical Analysis
The 2−11Ct values were subjected to Levene’s test to assess
homogeneity of variance in R software. LSD (least significant
difference) test was performed in R to evaluate (i) VviLBDIf7
basal expression in leaves, (ii) differences among dsRNA- and
water-treated leaves in VviLBDIf7 gene expression values,
and (iii) differences among dsRNA- and water-treated
leaves in expression values of off-target and jasmonic acid
metabolism genes.

ANOVA was carried out with IBM SPSS v.25 software on (i)
transformed PSA values [asin(

√
PSA

100 )] to establish the existence of
significant differences among dsRNA- and water-treated samples
at each sampling time, and (ii) sporangia cm−2 values to establish
the existence of significant differences between dsRNA- and
water-treated samples at each dat.

All the results were plotted in bar plots generated by
SPSS v.25 software.

1https://imagej.nih.gov/ij/index.html

RESULTS

dsRNA Treatment Decreases VviLBDIf7
Gene Expression
To assess the basal expression level of VviLBDIf7 gene, RT-qPCR
was performed on Pinot noir leaves collected at 1-day intervals.
Results highlighted that the VviLBDIf7 gene is constitutively
expressed in leaves of Pinot noir plants grown in the glasshouse:
there was no significant variation in basal expression level in
the examined time points (0.45 ± 0.11 versus 0.83 ± 0.23,
for first and second sampling, respectively, p value > 0.05),
suggesting a relatively constant expression of the candidate
S-gene. A dsRNA 412-bp long has been synthesized on the
VviLBDIf7 gene sequence of Pinot noir to be applied in the RNAi
experiment (Supplementary file 1). Pinot noir plants grafted
onto SO4 were treated with the dsRNA and the knocking down
of the target gene was assessed at 3, 5, 7, and 15 days after
dsRNA treatment (dat). A decrease in VviLBDIf7 expression,
even if not statistically significant, was observed between dsRNA-
and water-treated leaves at 3 dat, and a statistically significant
expression reduction was observed at 5 dat (Figure 2A). At 7
and 15 dat, no significant differences were detected between
samples, indicating a progressive end of the transient dsRNA
effect (Figure 2A). The experiment was repeated treating self-
rooted cuttings of Pinot noir and collecting leaves at 5 and 7
dat. Statistically significant differences in the expression levels
of VviLBDIf7 gene were observed between dsRNA- and water-
treated leaves at 5 dat also in the second trial (Figure 2B). No
significant difference was observed at 7 dat (Figure 2B).

The dsRNA treatment induced no visible negative effects
on grapevine plants, which kept their normal phenotypic
traits and vigor.

dsRNA Treatment Reduces Pathogen
Infection and Sporulation
The complete absence of pathogen DNA was observed in the
analysis of the leaves used for the experimental inoculations
with P. viticola, confirming that the samples were healthy before
inoculation. An example of the results obtained is reported in
Supplementary Figure 2. To investigate whether the dsRNA
treatment induced changes in the downy mildew disease extent,
dsRNA- and water-treated leaf tissues were experimentally
inoculated with P. viticola to evaluate phenotypic traits such as
disease severity, estimated through PSA, sporangia production,
and morphology of pathogen structures. In the first experiment,
phenotyping was carried out at 3, 5, 7, and 15 dat; in the
second, at 5 and 7 dat.

Percentage of leaf disk area covered by sporulation values of
water-treated samples ranged from 41 to 52% (Figure 3A) and
from 70 to 73% (Figure 3B) in the first and second experiment,
respectively. No significant differences (0.8 < F < 2.5; df = 1–
4; p > 0.22) were found among PSA values of dsRNA- and
water-treated samples inoculated at 3, 5, and 15 dat (Figure 3A).
Instead, the PSA values of the water-treated leaves inoculated
at 7 dat were four times higher, with statistical significance
(9.7 < F < 29.6; df = 1–4; p < 0.036), than those recorded on
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FIGURE 2 | Effect of dsRNA treatment on VviLBDIf7 gene expression. VviLBDIf7 gene expression analysis determined based on the 2−11Ct method at 3, 5, 7, and
15 days after treatment (dat) on Pinot noir plants grafted onto SO4 (A), and at 5 and 7 dat on self-rooted Pinot noir plants (B). Bars represent standard errors.
Asterisks indicate statistically significant differences among the dsRNA- and water-treated conditions at each time point (*p value = 0.05).

FIGURE 3 | Effect of dsRNA treatment on percentage of sporulating area (PSA) evaluated 7 days after Plasmopara viticola inoculation. PSA evaluated on Pinot noir
plants grafted onto SO4 at 3, 5, 7, and 15 days after treatment (dat) (A), and on self-rooted Pinot noir plants at 5 and 7 dat (B). Bars represent standard error.
Asterisks indicate statistically significant differences among the dsRNA- and water-treated conditions at each time point (*p value < 0.036).

dsRNA-treated samples inoculated at 7 dat in both experiments
(Figures 3A,B).

Sporangia production in the water-treated leaf disks
ranged from 13,683 ± 2959 (average ± standard error) to
36,801 ± 17,849 sporangia cm−2 and did not significantly differ
from those of the dsRNA-treated samples at any time from
treatment (F < 4.9; df = 1–4; p > 0.09) apart from 7 dat (F = 31;
df = 1–4; p = 0.005), when sporangia production was significantly
reduced to 1,486 ± 316 sporangia cm−2 in the dsRNA-treated
samples (Figure 4).

The development of vegetative and reproductive structures of
P. viticola in the leaf tissues was observed at the microscope by

using a staining procedure with aniline blue dye, which allowed
us to observe the pathogen structures in bright field. Hyphae
with numerous haustoria, also clearly visible at low magnification
(Figures 5A,B), regularly developed in the intercellular spaces of
the lacunose space of the water-treated leaf tissues (Figures 5A–
C). Sporangiophores emerged from the stomata (Figure 5C)
and numerous sporangia could be observed on the leaf surface
(Figure 5A). Alterations in the pathogen structures were clearly
visible in the dsRNA-treated leaves only at 7 dat (Figures 5D–
G): hyphae had a reduced diffusion (Figure 5G) and appeared
lightly colored and highly vacuolated (Figure 5D); haustoria were
lightly colored and visible only at high magnification (Figure 5F);
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FIGURE 4 | Production of sporangia (number of sporangia cm−2) evaluated
7 days after Plasmopara viticola inoculation on dsRNA- and water-treated
leaves at 3, 5, 7, and 15 days after treatment of Pinot noir plants grafted onto
SO4. Bars represent standard error. Asterisks indicate statistically significant
differences among the dsRNA- and water-treated conditions at each time
point (**p value 0.005).

short, hyperbranched, and sterile sporangiophores emerged from
the stomata (Figure 5E). The same alterations were seen in all
the points where the pathogen attempted penetration, indicating
a uniform response of the leaf tissues to dsRNA treatment and
pathogen inoculation.

The PSA values of the untreated leaves sampled immediately
above the dsRNA-treated leaves (leaf sample S7; Figure 1B) at
7 dat in the second experiment (PSA = 21.4% ± 7.1 SD) did not
significantly differ (F = 5.3; df = 1–4; P = 0.08) from the PSA
values recorded in the dsRNA-treated leaves (PSA = 14.6% ± 8.4
SD) and significantly differed (F = 15.8; df = 1–4; P = 0.016) from
the PSA values of the water-treated leaves (PSA = 69.8% ± 11.4
SD) sampled at the same time point.

Treatment With dsRNA Does Not Reduce
Expression of Off-Target Genes
The effect of dsRNA treatment has been evaluated in the
gene expression of some off-target genes: EF1α, GAPHD,
PEPC, and PEPCK (Figure 6). Relative gene expression of
PEPC and PEPCK genes did not show statistical significant
differences between dsRNA- and water-treated leaves at any time
points (Figures 6C,D). Statistical significant differences between
dsRNA- and water-treated leaves have been detected at 3 and
7 dat for EF1α gene (Figure 6A) and at 5 and 7 dat for GAPHD
gene (Figure 6B), with expression values of dsRNA-treated leaves
higher than the water-treated ones.

Regarding the effect of dsRNA treatment on jasmonic acid
metabolism genes, the relative gene expression of two genes
(COI1 and JAR1) has been investigated. JAR1 primers did not

amplify any fragments at our amplification conditions (annealing
temperature = 58◦C), while aspecific fragments have been
amplified at lower annealing temperature (data not shown).
Amplification of COI1 gene showed statistically significant
differences between dsRNA- and water-treated leaves only at 5
dat, with expression values of dsRNA-treated leaves lower than
the water-treated ones (Figure 6E).

DISCUSSION

Foliar-Applied dsRNA Reduces
Expression of VviLBDIf7 Gene
All plant genes involved in facilitating pathogen infection
and supporting a compatible plant–pathogen interaction are
considered S-genes (Van Schie and Takken, 2014); therefore,
silenced S-genes no longer support a compatible plant–pathogen
interaction and can cause pathogen-specific resistance (Pavan
et al., 2010; Thatcher et al., 2012).

RNAi is a post-transcriptional gene silencing mechanism
triggered by dsRNA molecules to prevent the expression of
target genes (Kim and Rossi, 2007). The exogenous application
of dsRNAs targeting essential interaction genes in plants (S-
genes) or plant pathogens and pests has been successfully used
to both control diseases and induce gene silencing as a valid
alternative to genetic transformation (Mitter et al., 2017; Ghosh
et al., 2018; Rosa et al., 2018; Dubrovina and Kiselev, 2019; Gu
et al., 2019; Dalakouras et al., 2020). In this work, the efficacy of
RNAi approach in knocking down the putative grapevine S-gene
(VviLBDIf7) identified by Toffolatti et al. (2020) in grapevine–
P. viticola interaction has been investigated. A prerequisite
for setting up a successful foliar RNAi experiment to knock
down the target gene is the expression of the target gene in
leaves at any stages, regardless of environmental conditions.
Therefore, the first step of this study was the evaluation
of S-gene basal expression. RT-qPCR data showed that the
expression of VviLBDIf7 in Pinot noir leaves did not change
significantly over time in the absence of perturbing conditions,
confirming that S-genes can show a constitutive expression
(Eichmann et al., 2004).

Foliar-applied dsRNA molecules targeting plant VviLBDIf7
gene proved to knock down VviLBDIf7 gene expression in Pinot
noir, a grapevine cultivar susceptible to P. viticola infection, at
5 dat. The RNAi triggered by exogenous dsRNA is known to
be transient, lasting from a few days up to a couple of weeks
(Dalakouras et al., 2016, 2020; Niehl et al., 2018; Dubrovina
and Kiselev, 2019; Nerva et al., 2020). In this interval, the
efficiency peak of the dsRNA treatment is affected by several
factors, determining the absorption rate of the exogenous
molecules by plant cells, including dsRNA concentration,
dose and length, application method, delivery technique, plant
organ-specific activities, and stability of the molecule under
unfitting environmental conditions (Das and Sherif, 2020).
In our experimental conditions, evaluations performed at 7
(both experiments) and 15 (first experiment) dat indicated a
progressive reduction of the transient dsRNA effect in knocking
down the expression of VviLBDIf7 gene. Instead, knockdown
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FIGURE 5 | Development of Plasmopara viticola structures inside untreated (A–C) and treated (D–G) leaf tissues inoculated at 7 dat. (A) Hyphae with haustoria
developing in the mesophyll cells and sporangiophores emerging from the stomata. (B) Mycelium with haustoria; (C) detail of sporangiophores emerging from a
stoma; (D) degenerating hyphae, slightly colored and vacuolized, with no visible haustoria, and hyperbranched sporangiophores emerging from the stoma; (E) short,
hyperbranched and sterile sporangiophores; (F) light-colored haustoria; (G) hypha developing from the substomatal vesicle with no visible haustoria. S = stoma;
H = hypha; HA = haustorium; SP = sporangiophore; SPO = sporangium; SV = substomatal vesicle. Scale bar, 20 µm.

at 5 dat has been confirmed by the second experiment as well,
when self-rooted plants were used. This second approach was
used to validate the results, avoiding any rootstock interference.
Rootstock can affect the scion behavior at different levels, such
as plant development, biomass accumulation and phenology

(Ollat et al., 2015). These results demonstrated that the transient
effect of dsRNA was not affected by rootstock and that in our
conditions, the RNAi is terminated by 15 dat.

Fifty LBD genes have been identified in grapevine genome
(Grimplet et al., 2017), expressed in different tissues (such as
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FIGURE 6 | Effect of dsRNA treatment on EF1α [elongation factor 1α; (A)], GAPHD (glyceraldehyde-3-phosphate dehydrogenase; B), PEPC [phosphoenolpyruvate
carboxylases; (C)], PEPCK [PEP carboxykinases; (D)], and COI1 [coronatine insensitive 1; (E)] gene expression at 3, 5, 7, and 15 days after treatment (dat) on Pinot
noir plants grafted onto SO4. Gene expression analysis determined based on the 2−11Ct method. Bars represent standard errors. Asterisks indicate statistically
significant differences among the dsRNA- and water-treated conditions at each time point (*p value = 0.05).

young leaves, developed tendril, and inflorescences), in berry
development and ripening and in response to abiotic and biotic
stresses (Albertazzi et al., 2009; Fasoli et al., 2012; Agudelo-
Romero et al., 2015). VviLBDIf7 seems to be expressed at low
levels in all mature/woody and vegetative/green tissues, while
it appears to be up-regulated in berries upon B. cinerea attack
(Agudelo-Romero et al., 2015). In our experimental conditions,
no negative effects could be observed in grapevine plants treated
with dsRNA: this could be due to the transient effect of RNAi.
The presence of pleiotropic effects on biological processes and
in response to abiotic and biotic stresses (not yet investigated)
associated with VviLBDIf7 silencing should be better investigated
in future studies on stable grapevine transformants.

Reduction of VviLBDIf7 Expression Is
Followed by Reduced Susceptibility to
Plasmopara viticola
The developed staining protocol has two main advantages:
firstly, the staining is stable and does not fade away rapidly,
as normally occurs when using aniline blue staining techniques
for fluorescence microscopy (Díez-Navajas et al., 2007), allowing
the operator to perform a more thorough investigation of the
pathogen structures; secondly, the observations can be performed
with a microscope that is normally present in a basic mycology

laboratory, without the need for a fluorescence microscope.
Aniline blue binds to β-glucans (β-1,3-glucans in particular)
located in the P. viticola cell wall, staining the pathogen structures
in blue. However, also plant cell walls can be stained, especially
callose depositions (Hood and Shew, 1996) that are frequently
found as a defense reaction to the invading pathogen (Trouvelot
et al., 2008), causing some faint blue staining also in plant
tissues. No differences could be observed between treatments
in pathogen growth and sporulation at all time point except
at 7 dat (2 days after downregulation of VviLBDIf7), when
Pinot noir leaves treated with dsRNA showed a significant
reduction in disease severity as well as impairment in P. viticola
growth and sporulation, compared to the water-treated leaves.
In the dsRNA-treated samples, the alterations in the vegetative
structures of the pathogen were evident. The hyphae did not
freely diffuse inside the leaf tissues but developed only in the
area immediately surrounding the infection point and led to the
differentiation of hyperbranched, partly sterile, sporangiophores.
Analogous alterations were observed as a consequence of
resistance response in Mgaloblishvili (Toffolatti et al., 2018)
and in response to environmental (Rumbolz et al., 2002) and
chemical (Ricciardi et al., 2021) stresses. The vacuolation of the
hyphae underneath the sporangiophore could be associated with
the necessity of the mycelium to provide material to support
sporulation, as occurs in true fungi (Thrane et al., 2004), or to
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a degradation of the mycelium. Abnormal hyphal vacuolation
has been observed in hyphae of the oomycete Saprolegnia ferax
following the application of growth inhibitors (Bachewich and
Heath, 1999). Moreover, the vegetative structures of the pathogen
in the dsRNA-treated samples appeared more lightly colored
compared to the water-treated samples. Since aniline blue binds
to β-glucans, this discoloration could indicate an alteration in
the cell wall composition. While this altered mycelium was
clearly visible following aniline blue staining, haustoria were
less colored and hardly recognizable. This could indicate that
the dsRNA treatment primarily affected the haustoria, which
are the only structures of the pathogen that actively interact
with the host cell (Toffolatti et al., 2011). P. viticola is an
obligate parasite of grapevine and does not directly damage the
host cell, the activity of which must be preserved to allow the
absorption of nutrients. Alterations at haustoria level can induce
a reduced pathogen growth not only because they have a role
in nutrient uptake, but also because they represent a specialized
interface for delivering effectors to plants that are associated
with resistance (Judelson and Ah-Fong, 2019). More accurate
investigation on the haustoria ultrastructure is needed to confirm
these preliminary results. The alteration in the differentiation of
sporangiophores was associated with a significant reduction in
the sporangia production.

The analogous disease severity of the pathogen observed in the
second experiment both on the leaves that were directly treated
with dsRNA and those directly above the treated leaves (systemic
diffusion), which was significantly lower than that achieved in
the water-treated samples, indicates the presence of a systemic
effect of the treatment that should be more deeply investigated
in future studies. Systemic RNAi has been observed in other
plants, such as A. thaliana (Melnyk et al., 2011), Hordeum vulgare
(Biedenkopf et al., 2020), and Nicotiana benthamiana (Chen
et al., 2018), but to the best of our knowledge, no information
is reported for grapevine.

VviLBDIf7 Is a Candidate Gene to Be
Silenced to Reduce Downy Mildew
Susceptibility
A potential limitation of RNAi approach can be the possible effect
on off-target genes. Off-target effects occur when a siRNA down-
regulates unintended targets. For this reason, it is useful to assess
off-target potential in order to avoid undesirable phenotypes
(Rosa et al., 2018). In this work, dsRNA treatment did not reduce
the expression of EF1α, GAPHD, PEPC, and PEPCK off-target
genes. The up-regulation of EF1α and GAPHD genes in dsRNA-
treated leaves at some time points can be a consequence of the
knockdown of the VviLBDIf7 gene (the plant reacts to the gene
silencing by improving its basal metabolism).

In A. thaliana, the lbd20 mutant showed a reduced disease
severity after F. oxysporum infection and a modulation of
jasmonic acid-mediated defense genes (Thatcher et al., 2012).
In grapevine, some evidences of jasmonic acid involvement in
resistant cultivar in response to P. viticola infection have been
described (Figueiredo et al., 2015; Li et al., 2015). After P. viticola
inoculation, Figueiredo et al. (2015) observed an up-regulation

of jasmonic acid biosynthesis-related genes (LOXO, AOS, AOC,
and OPR3) at 6 and 12 hpi (hours post-infection), and an up-
regulation of genes involved in the jasmonic acid activation and
signaling (JAR1 and COI1, respectively) at 18 and 24 hpi. In this
work, due to the sampling times (3, 5, 7, and 15 dat), only the gene
expression profile of JAR1 and COI1 genes has been investigated.
Although we have to refer to only COI1 gene expression data
(no amplification fragments were detected for JAR1 gene), the
jasmonic acid pathway appears to be down-regulated, as COI1
gene expression values at 5 dat in dsRNA-treated leaves were
lower than in the water-treated ones. These data confirm what has
been observed for LBD20 gene in A. thaliana, where coi1 mutants
did not induce LBD20 gene expression, and support the role of
LBD genes in jasmonic acid signaling (Thatcher et al., 2012).

CONCLUSION

The results reported in this work highlight the great potential of
RNAi-based strategies in sustainable defense management. In the
current scenario, the treatment with fungicides still represents
the most effective agronomical practice to defend vineyards
by P. viticola attack. Nevertheless, Directive 2009/128/EC and
Regulation (EC) No. 1107/2009 of the European Parliament
and of the Council concerning the placing and use of plant
protection products on the market impose to the farmers the
reduction of fungicide applications, due to their negative impact
on human health and environment. In this view, the development
of novel and sustainable disease management strategies is
essential. Numerous efforts are ongoing with the aim to obtain
resistant varieties, exploiting alternative strategies to classical
biotechnological tools, such as GMOs (genetically modified
organisms), which are currently subjected to strict regulation
(Capriotti et al., 2020). For this purpose, the use of RNAi for
silencing plant susceptibility genes, which facilitate infection and
support compatibility (Van Schie and Takken, 2014), represents
a promising alternative to traditional means, such as fungicides,
for disease control. Indeed, the phenotypic characterization
of quantitative and qualitative P. viticola traits allowed us to
establish the efficacy of exogenous dsRNA application in silencing
the VviLBDIf7 gene, which led to a reduced pathogen growth and
sporulation rate in Pinot noir, a cultivar that is normally highly
susceptible to the pathogen. Based on gene expression and PSA
values, the RNAi effect is concluded by 15 dat indicating that
further treatments are needed for the subsequent disease control.
The signatures of systemic activity shown in the present study
suggest that the dsRNA treatment could also reach untreated
parts of the plant, a feature that is highly desirable since grapevine
has an important growth in open field and systemic properties of
RNAi could allow the protection of the newly formed vegetation
not covered by the treatment. Further investigation is, however
needed to clarify the movement inside the plant as well as the
duration and the efficacy of dsRNA on untreated parts of the
plant. Moreover, considering the high heterozygosity and the
varietal rigidity imposed by registered designations of origin that
affect development and cultivation of resistant varieties obtained
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by crossing non-vinifera species with V. vinifera, the use of
RNAi approach in grapevine could represent a valid tool for
specifically targeting a known gene. Further implementation of
the method is, however, needed to improve the delivery of the
dsRNA and achieve a more rapid silencing of the gene that
could be compatible with a field use, although an appropriated
regulation of topical RNAi applications is still missing (Mezzetti
et al., 2020). For an effective field application of dsRNAs as
a disease management tool, the following aspects need to be
optimized: (i) the concentration and length of dsRNA molecules,
(ii) the formulation that should prevent dsRNA degradation
(encapsulation could solve this issue) and allow the uptake
of dsRNAs into cells, (iii) the delivery strategy (high-pressure
spraying or brush-mediated leaf applications), and (iv) the
efficacy of dsRNA recognition by the RNAi pathway of the target
organism. Furthermore, this approach that uses dsRNA to silence
the susceptibility gene of the plant instead of targeting an essential
gene of the pathogen should reduce the possible cross-species
effect of the dsRNA (e.g., on beneficial microorganisms) and the
development of resistances in the pathogen population. Overall,
RNAi-mediated silencing could make a great contribution toward
integrated pest management, which, taking a holistic approach
that exploits all the available disease management tools (i.e.,
resistant varieties, agronomic practices, and chemical and non-
chemical pathogen control), represents the most effective way to
manage diseases.
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