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INTRODUCTION

Favorable variation from genetic resources is anticipated to play a key role in the adaptation of crops
to the increasingly unfavorable production conditions resulting from climate change (FAO, 2015).
Weather extremes lead to more frequent occurrences of abiotic stress and facilitate the emergence
and spread of diseases. While there is no doubt that alleles and haplotypes offered by accessions
from germplasm banks are of enormous value, the integration of beneficial alleles into elite material
poses three major challenges:

1. the identification of promising germplasm bank accessions,
2. the separation of beneficial major effect alleles from undesired linkage drag,
3. the repackaging of polygenic variation into elite and adapted materials.

Identifying promising germplasm bank accessions, which may offer single alleles with major effects
or beneficial quantitative variation, often resembles looking for a needle in a haystack. In practice,
it is almost never possible to phenotype a large portion of the available germplasm due to high
costs, challenges with adaptation, restricted facility resources and time pressure. An informed
prescreening of the available accessions will be necessary.

Moreover, when accessions with putative alleles for desired traits are identified, the mission is
not yet accomplished, since the beneficial variation must be integrated into elite germplasm. In the
case of a simple genetic architecture such as an identified major effect gene, the novel allele can
be introgressed by marker assisted backcrossing (MABC) or can be approached by gene editing.
However, preceding discovery research is required to identify the genetic variation associated
with the phenotypic variation. In particular, gene editing requires very precise information on the
causative variation. The availability of a trait-associated marker, which may be sufficient for an
application in MABC, may be insufficient for a gene editing approach. This research is resource
and time consuming and carries the inherent risk of unsuccessful validation experiments due an
altered effect of the allele when in combination with the genetic background of elite material.

When dealing with quantitative variation, dedicated mapping experiments are not required.
However, it is more difficult to bring quantitative variation into an elite background and have a
product acceptable to breeders. Landraces carry many deleterious and inferior alleles which can
quickly disrupt the positive linkage blocks painstakingly constructed by breeders over decades.
Diminished agronomic performance makes the breeding community reluctant to include such
germplasm in their elite breeding programs.
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Prediction approaches can help the effective use of genetic
resources in two ways. First, predictions can identify the most
promising candidate accessions for a certain trait, thus restricting
the number of accessions to evaluate in experiments (Yu et al.,
2016). Second, predictions can accelerate the pre-breeding (or
“germplasm enhancement”) process by helping to target the
desired alleles for transfer to an elite germplasm background,
saving resources and time.

In this commentary, we summarize some activities related to
predictive breeding in the context of genetic resources conducted
at the International Maize and Wheat Improvement Center
(CIMMYT). We then discuss differences between predictive
breeding approaches for genetic resources and genomic
selection for elite breeding programs. We propose that research
on predictive methods for genetic resources should explore
approaches which are “enriched” by external information; for
example, knowledge of molecular biological mechanisms, or
accession “passport” data that provides information on the
environmental conditions in which the accession was originally
cultivated. Passport data comprising latitude, longitude, and
altitude are fundamental initial information for each accession
stored in the bank. The inclusion of external information may
increase the power of predictive breeding approaches, especially
in the context of harnessing genetic resources.

PREDICTIVE BREEDING FOR GENETIC

RESOURCES AT CIMMYT

Genotyping of Accessions of CIMMYT’s

Germplasm Bank
CIMMYT has genotyped most of its maize and wheat collections
as part of the Seeds of Discovery Project (SEED). For maize, more
than 98% of the CIMMYT and IITA (International Institute of
Tropical Agriculture) maize collection have been genotyped. For
wheat, 37 and 66%, respectively, of the CIMMYT and ICARDA
(International Center for Agricultural Research in the Dry Areas)
wheat collection have been genotyped (Sansaloni et al., 2020).
The smaller percentages for wheat, compared to maize, are due
to the larger size and differing composition of the combined
collections. CIMMYT’s germplasm bank has ∼28,000 maize, but
more than 140,000 wheat accessions. The available genotypic
data provides a solid foundation for prediction approaches for
screening the collections more systematically.

Genetic Resources for Breeding for Maize

Lethal Necrosis Resistance
A recent example of the successful use of germplasm bank
material in response to an emerging threat was the development
of germplasm tolerant to Maize Lethal Necrosis (MLN).
Thirteen out of 1000 screened landraces were identified as
showing low susceptibility to Maize Chlorotic Mottle Virus
(MCMV), the major causal component of MLN disease (for a
review on CIMMYT’s activities related to MLN, see Boddupalli
et al., 2020). The pre-screening in this study was based
on geographical distribution, racial structure, and genomic
distance data calculated as described in Franco-Duran et al.

(2019). The performance of the developed inbred lines in
hybrid combinations is currently tested, in particular under
MLN pressure.

Prediction of Wheat Landraces Accessions
For wheat, Crossa et al. (2016) considered genomic prediction
on a large set of Mexican (∼8,400) and Iranian (∼2,400) bank
accessions for several traits including thousand-kernel weight,
grain hardness, grain protein, and plant height. The predictive
abilities obtained were mostly between 0.39 and 0.68, when using
20% of the data as training set (Crossa et al., 2016, Table 2).
An exception was plant height for the Iranian landraces, which
showed a predictive ability of only 0.17. These results indicated
that genomic prediction has a potential for (1) fast screening of
the whole GB for different traits, and (2) a rapid and efficient pre-
breeding method for introgression useful alleles (and haplotypes)
into advance breeding lines while not eroding genetic diversity.

Association Studies With Environmental

Covariates as Phenotype
A novel approach to use “passport” data of accessions
is “environmental genome-wide association studies”
(environmental GWAS or EnvGWAS). This approach treats
environmental variables of the sites where accessions were
collected as phenotypes, and combines this information with
genotypic data for the accessions in an association study. The
objective is to identify genetic variation which is associated
with the adaptation to certain environmental conditions (Lasky
et al., 2015; Romero Navarro et al., 2017; Gates et al., 2019).
Though this approach conceptually could lead to high false
positive rates due spatial distribution impacting phylogeny
and environmental variables, this problem can be controlled,
as in standard GWAS, by introducing a random polygenetic
effect with the genomic relationship as covariance (Yang et al.,
2014). Proof of concept work in drought using collection site
precipitation data has demonstrated the power of EnvGWAS to
detect variants of potential interest in maize landraces (Gates
et al., 2019). Validation of the role of these variants in drought
response, conducted through independent in silico analysis
of transcriptome data and analysis of phenotypic data, has
confirmed the value of EnvGWAS for identifying variants and in
turn landraces containing variants for further analysis and use
in breeding.

DIFFERENCES BETWEEN PREDICTIVE

APPROACHES IN THE CONTEXT OF

GENETIC RESOURCES AND GENOMIC

SELECTION IN AN ELITE GERMPLASM

POOL

Although we have witnessed promising results for both maize
and wheat, we see conceptual limitations of standard genomic
prediction methods when looking for novel beneficial alleles.
Standard prediction approaches predict from a training to a
prediction set and can only predict the effect of new combinations
of already known segments (Meuwissen et al., 2001). Indeed,
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this is also the major application of genomic selection in an
elite breeding pipeline where most alleles have already been
sampled in different combinations. In this situation, one aims
at recombining the positive alleles which have already been
observed. This differs fundamentally from a prediction where
the objective is to find novel beneficial variation. Therefore,
when screening for novel diversity which is not present in the
training set, we see the main value of the prediction in its
indirect information: a strong accumulation of beneficial alleles
that are already present in the training set may be a result of
selection pressure in the accession’s history. Thus, the probability
of finding additional novel alleles for the trait of interest may
be increased.

Approaches to Incorporate External

Information
To address this conceptual discrepancy between the nature
of statistical prediction and the objective of predicting novel
diversity, and to go beyond the indirect information provided
by a standard genomic selection as described above, we believe
different sources of information need to be combined with
genotypic data. Examples may be passport data as in EnvGWAS,
gene annotation data (Gao et al., 2017), data on biochemical
pathways or other data on biological mechanisms, or general
(quantitative genetics) knowledge on -for instance- ratios of
variances (Hem et al., 2021). Such approaches have already been
followed in general genomic prediction literature, but we think
that they will especially unfold their potential in the context of
genetic resources.

A promising approach to follow for a broader range of
traits is the comparison of structure, function and point of
action of gene products. Given that some genes involved in
the variation of stress resilience are known, bioinformatics tools
can identify related genes whose gene products are of similar
structure, have a similar predicted function or are relevant in
the same biochemical pathways as the known genes. Genomic
data can then be used to identify novel variation in the regions
around these newly identified genes. Approaches of this kind
have been used, for instance as resistance gene enrichment
sequencing targeting certain proteinmotifs to identify resistances
to biotic stresses (Jupe et al., 2013; Zhang et al., 2020), and have
produced impressive results. However, such a strategy focuses
on major gene effects and it remains to be seen whether they
can be transferred to a quantitative trait such as yield under
abiotic stress.

For the identification of germplasm bank accessions providing
beneficial alleles for quantitative traits, we see the accession
passport data as central information. This data cannot only
be used to identify major effects in an association study, but
can also be used in a genomic prediction approach. Here, a
genomic relationship matrix of the accessions can be used to
predict the environmental variables of the collection sites as
“quantitative trait.” This “environmental genomic prediction”
(EnvGP) then employs the environmental data as a phenotype
in the training panel to predict materials of higher value for
“hands-on” evaluation. Considering the polygenic nature of

many traits of interest, we are currently assessing the potential
of EnvGP together with other paradigms such as crop modeling
to leverage genetic resources for germplasm development.

As an example addressing the process of repackaging
of polygenic variation into elite and adapted materials, we
cite Origin Specific Genomic Selection (OSGS; Yang et al.,
2020). Here, the additional information used in the prediction
is only the knowledge from which parent the alleles are
derived. However, this add-on allows a partitioned form of
genomic selection which facilitates a more targeted management
of the introgression of novel beneficial variation during
the introgression process. The genetic value is split into
the contribution of the elite parent and the contribution
of the “exotic” parent. Having both parts separated, the
approach aims at avoiding a systematic selection against
exotic alleles due to the higher genetic value of elite material
although a certain fraction of exotic alleles may be beneficial.
Validation of this approach using simulation and application
in existing barley and maize datasets suggests potential for
use in polygenic trait introgression in bi- and potentially
multi-parental populations.

CONCLUSION

Germplasm bank accessions can be considered as crop
“genetic insurance” for the genetic adaptation to increased
abiotic and biotic stresses, in particular caused by climate
change. As for other fields, “big data,” here describing
the germplasm bank collections, needs innovative
approaches for “data mining,” to identify and harness useful
variation, and unleash its potential. We see a conceptual
key in combining statistical prediction methods with
additional data other than genotypes and phenotypes.
Approaches of this type have been followed in genomic
prediction literature, but we consider them as particularly
promising when applied in the context of harnessing
genetic resources. The type of data to use, and how to
use it provide a large playground for the exploration of
creative approaches.
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