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Chromosomes are dynamic entities in the eukaryotic nucleus. During cell development 
and in response to biotic and abiotic change, individual sections as well as entire 
chromosomes re-organise and reposition within the nuclear space. A focal point for these 
processes is the nuclear envelope (NE) providing both barrier and anchor for chromosomal 
movement. In plants, positioning of chromosome regions and individual genes at the 
nuclear envelope has been shown to be associated with distinct transcriptional patterns. 
Here, we will review recent findings on the interplay between transcriptional activity and 
gene positioning at the nuclear periphery (NP). We will discuss potential mechanisms of 
transcriptional regulation at the nuclear envelope and outline future perspectives in this 
research area.
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INTRODUCTION

The eukaryotic nucleus is defined by the presence of the nuclear envelope (NE) acts as a 
physical barrier dividing the nuclear content from the cytoplasm (Hetzer, 2010). The NE 
creates an intranuclear environment that shields the genome, enabling coordinated processes, 
including DNA duplication and transcription (Lammerding and Wolf, 2016). Within the 
nucleus, the spatial organisation of eukaryotic genomes and association with the NE 
has been firmly associated with transcriptional regulation (Fedorova and Zink, 2008; 
van Steensel and Belmont, 2017).

Here, we will discuss the nuclear envelope in plants and its association with different patterns 
of gene expression. We will compare structure and function of the plant NE with its counterparts 
in other eukaryotes. We  will focus on our current understanding of the link between gene 
positioning at the NE and transcriptional activity and outline future directions in the field.

ORGANISATIONAL PRINCIPLES AND FUNCTIONS OF THE 
NUCLEAR ENVELOPE

The NE is organised into two lipid bilayers, the outer nuclear membrane (ONM) and the 
inner nuclear membrane (INM), divided by a luminal perinuclear space and the nuclear 
pore complex (NPC; Goodchild et  al., 2015; Meier et  al., 2017). The ONM is classified as 
an extension of the endoplasmic reticulum (ER), and ribosomes are attached to its cytoplasmic 
surface. Protein content of the ONM is largely shared with the ER (Foresti et  al., 2014; 
Meier et  al., 2017). The INM encloses the nucleoplasm and shows a more distinct protein 
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composition (Foresti et  al., 2014; Meier et  al., 2017). The 
ONM and INM are connected at the NPCs. These protein 
channels consist of multiple proteins called nucleoporins 
(Tamura et  al., 2010; Hoelz et  al., 2011).

The main role of the INM and ONM is to ensure a spatial 
continuum between the NE, the cytoplasm, and the nucleoplasm 
(De Magistris and Antonin, 2018). NPCs act as a bidirectional 
transport system for macromolecules, which relocate between 
the nucleus and cytoplasm (Tamura et  al., 2015; Meier et  al., 
2017; De Magistris and Antonin, 2018). Furthermore, NPCs 
have been implicated in chromatin organisation, transcriptional 
and post-transcriptional regulation of gene expression, and 
the progression of the cell cycle (Lince-Faria et  al., 2009; 
Tan-Wong et  al., 2009; Ahmed et  al., 2010; Kylberg et  al., 
2010; Strambio-De-Castillia et  al., 2010; Vaquerizas et  al., 
2010; Smith et  al., 2015; Tamura et  al., 2017). The perinuclear 
space serves as ion storage and linkage site for interacting 
proteins from ONM and INM. As such, it functions in nuclear 
signalling and force transmission between cytoplasm and 
nucleoplasm (Razafsky and Hodzic, 2009; Starr, 2009; 
Capoen et al., 2011; Mauger, 2012). It is the site of interaction 
between linker of nucleoskeleton and cytoskeleton (LINC) 
complexes that directly link components of the cytoplasm 
and nucleoplasm (Rothballer and Kutay, 2013).

In metazoan, a dense layer of protein filaments called the 
nuclear lamina structurally supports the NE underneath the 
INM (de Leeuw et al., 2018; Alvarado-Kristensson and Rossello, 
2019; Tenga and Medalia, 2020). Nuclear lamina composition 
varies across the eukaryotes. For example, lamin proteins which 
represent the major constituents of the animal lamina have 
not been identified in plants (Meier et  al., 2017). Instead, 
three types of plant-specific proteins, CROWDED NUCLEI 
(CRWN) or nuclear matrix constituent protein (NMCP), KAKU4 
and nuclear envelope-associated proteins (NEAPs) have been 
suggested to function as lamin-like proteins in plants (Masuda 
et  al., 1997; Ciska and de la Espina, 2014; Goto et  al., 2014; 
Pawar et al., 2016; McKenna et al., 2021). Beyond its scaffolding 
role, the nuclear lamina is of functional importance in chromatin 
folding, DNA repair, and gene transcription (Burke and 
Stewart, 2013).

All elements of the NE exhibit high structural variability 
and may re-organise during cellular differentiation and division. 
Loss of function of NE components may cause severe diseases 
in humans and may lead to developmental and signalling 
defects in plants (Hatch and Hetzer, 2014; Meier et  al., 2017; 
Tang et  al., 2020).

CHROMATIN ORGANISATION AT THE NE

Components of the NE control nuclear shape and are directly 
linked to the nucleoplasmic chromatin. As such, it has a 
dominant role in defining the organisation of chromosomes 
in the nuclear space and takes in an important position in 
the transcriptional regulation of gene expression.

Typically, transcriptionally inactive heterochromatic regions 
of the genome are located adjacent to the NE. In animals, 

such ‘lamina associated domains’ (LADs) possess distinct 
properties and are specifically localised towards the NE. LADs, 
usually 10  Kb–10  Mb in size, comprise a significant part of 
the genome and incorporate around a third of the human 
and mice genomes. LADs are rich in repressive histone marks 
and gene sparse (Guelen et  al., 2008; Kind et  al., 2015; 
van Steensel and Belmont, 2017). LADs may associate stably 
as well as transiently with the nuclear lamina. Constitutive 
LADs (cLADs) interact with the nuclear lamina across 
cell types while facultative LADs (fLADs) are localised at the 
nuclear lamina in distinct cell types (Peric-Hupkes et  al., 2010; 
Meuleman et al., 2013). cLADs are enriched in repetitive elements 
and depleted in gene content compared to fLADs (Meuleman 
et  al., 2013).

Despite the absence of nuclear lamin proteins in plants, 
recent studies have shown that the genome of Arabidopsis 
thaliana is organised non-randomly at the nuclear periphery 
(NP), in a similar manner to that of LADs in animals. 
Regions which are associated with the NP in plants have 
been termed plantLADs (pLADS; Bi et  al., 2017; Hu et  al., 
2019). Heterochromatic domains of centromeric and 
pericentromeric regions, also called chromocenters, as well 
as 10–20% of chromosomal arms have been reported to 
associate with the nuclear periphery in A. thaliana (Fransz 
et  al., 2002; Bi et  al., 2017; Hu et  al., 2019). Like LADs, 
pLADs are characterised by an enrichment for heterochromatin 
and transposable elements. However, unlike LADs, pLADs 
identified in chromosomal arms of A. thaliana are neither 
gene poor nor A/T rich (Bi et  al., 2017; Hu et  al., 2019). 
pLAD composition remains largely stable across different 
plant organs (Bi et  al., 2017).

In animals, chromatin is anchored at the NE by lamins 
and INM associated proteins. B-type lamins, for example, 
interact with lamin B receptors. These receptors bind to the 
heterochromatic histone marks H3K9me3 and H4K20me2 via 
their heterochromatin binding and tudor domains (Hirano 
et  al., 2012; Gruenbaum and Foisner, 2015). A-type lamins 
interact with proteins of the INM and the nucleoplasm. 
Furthermore, A-type lamins have been shown to associate with 
GAGA DNA sequence motifs along chromosomes (Zullo et al., 
2012; Gruenbaum and Foisner, 2015). Lamins themselves can 
directly bind to DNA and histones (Taniura et al., 1995; Stierle 
et  al., 2003; Mattout et  al., 2007).

In plants, CRWN proteins have been suggested as mediators 
of pLAD recruitment to the NE (Hu et  al., 2019; Sakamoto, 
2020). crwn mutants display large scale changes in chromatin 
organisation. In crwn mutants, chromatin positioning at the 
nuclear periphery is significantly altered (Hu et  al., 2019). 
Additionally, crwn mutants show an increased chromosomal 
compaction and disruption of chromocenter organisation 
(Wang et  al., 2013; Grob et  al., 2014). By chromatin 
immunoprecipitation, an interaction of CRWN1 proteins with 
chromatin has been shown (Hu et  al., 2019). Furthermore, 
CRWN1 proteins have been shown to bind the transcription 
factor (TF) NTL9, a transcription factor involved in the 
regulation of plant immunity (Guo et  al., 2017). Another 
candidate for chromosome anchoring at the plant NE is the 
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transcription factor bZIP18, which has been suggested to 
interact with NEAP1 proteins (Pawar et  al., 2016).

TRANSCRIPTIONAL PATTERN AT THE NE

The association of chromatin to the NE has profound implications 
on transcriptional activity of genes. LADs are largely 
transcriptionally inactive (Guelen et  al., 2008). Introduction 
of reporter genes into LADs is accompanied by reduced 
transcriptional activity compared to reporter activity in non-LAD 
locations (Akhtar et  al., 2013). Artificial targeting of genes 
towards the NE has been shown to cause transcriptional 
downregulation (Finlan et  al., 2008; Reddy et  al., 2008). In 
accordance, release from the nuclear lamina may lead to 
de-repression of genes (Shevelyov et  al., 2009; Kohwi et  al., 
2013; Chen et al., 2014). Like LADs, pLADs are also characterised 
by low transcriptional activity (Bi et  al., 2017).

Peripheral location of genes at the NE, however, may also 
lead to increased gene expression. For example, the NPC has 
been described as a site of high transcriptional activity (Strambio-
De-Castillia et al., 2010; Vaquerizas et al., 2010). It is suggested 
that this trait is based on an enhanced efficiency of mRNA 
export from the nucleoplasm to the cytoplasm. Nucleoporins 
of the NPC have been implicated in the recruitment of 
chromosomal regions to the NPC across eukaryotes. In yeasts, 
binding of nucleoporins to chromatin modifying complexes 
with positive function in transcriptional activation is shown 
to be  involved in the upregulation of the NE associated GAL 
gene cluster (Cabal et  al., 2006). In A. thaliana, fusion of the 
LacI DNA binding protein to the nucleoporin Seh1 resulted 
in peripheral localisation of the LacO-Luciferase reporter 
construct and increased reporter activity (Smith et  al., 2015).

Furthermore, up to 10% of genes encoded in LADs show 
high expression levels (Guelen et  al., 2008; Peric-Hupkes et  al., 
2010; Wu and Yao, 2017). It is suggested that these genes are 
driven by promoters that are more resistant to the repressive 
chromatin environment at the NE and bound by pioneering 
transcription factors. They may also be  preferentially localised 
at LAD sites with weak NE association (Leemans et  al., 2019). 
Increased transcriptional activity has also been linked to NE 
association via binding to CRWN proteins. A cluster of 
coordinately expressed copper-associated (CA) genes is located 
towards the nuclear periphery upon transcriptional induction 
(Figure  1). Chromatin integration labelling (ChIL) confirmed 
association of the CA genes to CRWN1 proteins. Indeed, loss 
of CRWN1 and CRWN4 results in lower transcription levels 
of CA genes and reduced NE association (Sakamoto et al., 2020).

Such transient re-localisation towards the NE has also been 
observed for light-responsive genes in A. thaliana (Figure  1). 
The CAB gene cluster encoding chlorophyll a/b-binding proteins 
as well as the RBCS1A, GUN5, and PC genes are re-positioned 
from the interior of the nucleus towards the periphery upon 
light exposure to seedlings (Feng et  al., 2014). The peripheral 
localisation of these genes is accompanied by an increased 
transcriptional activity. Interestingly, the CAB gene cluster is 
re-localised towards the nuclear periphery before the  

highest transcription levels are reached, thus, showing that 
chromatin repositioning precedes full transcriptional activation. 
In photoreceptor mutants, the dynamic re-positioning of the 
CAB gene cluster is lost (Feng et  al., 2014).

Biosynthetic gene clusters in A. thaliana show the opposite 
direction in nuclear re-positioning associated with their 
transcriptional activity (Nützmann et al., 2020; Figure 1). Silenced 
biosynthetic gene clusters are located at the nuclear periphery 
while active clusters are located away from the periphery. Such 
clusters encode biosynthesis genes of specialised metabolic pathways 
and are exclusively transcribed in root tissues and silenced in 
the aerial organs of the plant. Chromosome conformation capture 
and 3D DNA FISH analyses showed that silenced biosynthetic 
gene clusters are associated with the chromocentric sections of 
chromosomes in close proximity to the NE. Interestingly, silenced 
clusters are delineated by H3K27me3 histone marks, and loss 
of PRC2 activity leads to reduced chromocentric localisation of 
the loci (Yu et  al., 2016; Nützmann et  al., 2020).

DISCUSSION

The link between NE association of genes and transcriptional 
activity is firmly established. However, how positioning of genes 
at the NE leads to distinct transcriptional outputs in plant 
nuclei remains largely unknown (Parry, 2015; Santos et al., 2020).

A

C

B

FIGURE 1 | Nuclear gene re-positioning in response to environmental and 
developmental signals. (A) The copper-associated (CA) gene cluster is 
located at the nuclear envelope (NE) upon plant exposure to copper. 
Peripheral localisation is accompanied by transcriptional activation. In the 
absence of copper, the cluster is located away from the NE and silenced 
(Sakamoto et al., 2020). (B) The light-induced CAB gene cluster is located at 
the NE upon plant exposure to light. In absence of light, the cluster is located 
away from the NE and silenced (Feng et al., 2014). (C) The silenced thalianol 
biosynthetic gene cluster is located at the nuclear periphery (NP) in leaf cells. 
In roots, when transcriptionally active, the cluster is positioned away from the 
nuclear periphery (Nützmann et al., 2020).
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In animals, specific binding and increased local concentrations 
of chromatin modifying enzymes (CME) at the NE have been 
suggested as key mechanistic factors in gene silencing at the 
nuclear periphery (Harr et al., 2016; van Steensel and Belmont, 
2017). The animal INM protein emerin, for example, directly 
interacts with the histone deacetylase HDAC3 and modulates 
its activity (Demmerle et al., 2012). As such, a transient contact 
of a gene with the NE may result in changes to its histone 
modifications. Higher abundance of histone lysine 9 
methyltransferases at the nuclear periphery may promote 
heterochromatin formation of NE associated chromosomal 
segments (Towbin et al., 2012; Gonzalez-Sandoval et al., 2015). 
Similarly, chromatin modifiers that act positively on transcription, 
e.g., histone acetylation complexes, are suggested to be actively 
retained in euchromatic areas of the nucleus and are as such 
excluded from the NE (Cabianca et  al., 2019). Localisation 
within heterochromatin at the nuclear periphery may also 
prevent access of activating transcription factors to its target 
loci or recruitment of genes to transcription factories in the 
interior of the nucleus (Yao et  al., 2011; van Steensel and 
Belmont, 2017; Figure  2). Furthermore, it has been suggested 
that gene positioning within LADs may prevent access of gene 
promoters to enhancers located outside of LADs (Yaffe and 
Tanay, 2011; Amendola and van Steensel, 2014). Active retention 
of transcription factors at the nuclear periphery and away from 

target chromatin may represent another mechanism of NE 
associated gene regulation (Mirza et  al., 2019).

In plants, pioneering work by Mikulski et  al. (2019) showed 
that CRWN1 associated with the PROLINE-TRYPTOPHANE-
TRYPTOPHANE-PROLINE (PWWP) INTERACTOR OF 
POLYCOMBS1 (PWO1) protein, a component of the Polycomb 
Repressive Complex 2 (PRC2). As such, it is suggested that 
the localisation of PWO1 links PRC2 to the NE and thus 
promotes the formation of facultative H3K27me3-marked 
chromatin at the NE (Mikulski et al., 2019). Indeed, chromosome 
simulations support the important role of H3K27me3  in 
chromosome organisation in A. thaliana (Di Stefano et  al., 
2021). Furthermore, different DNA methylation pathways are 
suggested to target transposable elements at the periphery and 
interior of the A. thaliana nucleus (Bi et  al., 2017). This may 
indicate a mechanistic role for distinct DNA methylation pathways 
in the silencing of transposable elements at the NE in plants.

A largely unexplored aspect of NE-related influence on gene 
expression is how mechanical stress put on the exterior of the 
cell and mediated by the NE affects transcription. LINC complexes 
link the cytoskeleton with the nucleoskeleton (Rothballer and Kutay, 
2013). Indeed, mechanical stress applied to mammalian cells has 
been shown to spread through the actin cytoskeleton and onto 
lamin proteins (Ramdas and Shivashankar, 2015; Tajik et al., 2016). 
These forces change chromatin conformation by stretching it and 
lead to increased expression levels in affected chromosome regions. 
In plants, both abiotic and biotic stressors may change the mechanical 
force applied on a cell. For example, appressoria of fungal plant 
pathogens induce strong mechanical forces on cells (Bastmeyer 
et al., 2002). These may be transduced via the NE into the nucleus 
and lead to changes in chromosome organisation and gene expression.

Future research investigating the interplay between the NE 
and gene transcription in plants may expand its focus from 
A. thaliana to other species and move from whole-plant and 
organ-level to cell type and single cell level. A. thaliana is 
characterised by its relatively small and gene-dense genome. Plants 
with larger genomes and lower gene density are likely to exhibit 
different pattern of NE associated chromatin and gene expression. 
This would follow the significant differences in chromosome 
organisation identified in species, such as wheat, maize, and tomato 
compared to A. thaliana (Dong et  al., 2017; Concia et  al., 2020). 
Furthermore, elucidating the NE proteome and the NE associated 
chromatin on cell-type specific level and in response to biotic 
and abiotic challenges may lead to the identification of functionally 
important NE associated chromatin anchors and chromatin 
modifying complexes. These may become targets for manipulation 
of gene expression in plants. Future studies may further resolve 
which locus-specific features cause some genes to be  upregulated 
upon transfer to the nuclear periphery and some genes to 
be  downregulated. These may be  accompanied by investigations 
aiming to shed light on the molecular mechanisms involved in 
the movement of loci towards and away from the periphery and 
how flanking genes are affected by gene-positioning at the NE. 
In human cell lines, for example, about 50–100  Kb of flanking 
chromatin is detached from the nuclear lamina upon activation 
of single genes (Brueckner et  al., 2020). It remains to be  seen 
whether plant genomes with diverse sizes and gene densities 

A B

D C

FIGURE 2 | Mechanisms of gene regulation at the nuclear envelope. 
(A) Chromatin modifying enzymes (CMEs) and transcription factors (TFs) with 
gene activating function are excluded from the NE. As such, peripheral 
chromosome regions are devoid of active chromatin marks and activating  
TFs. (B) Chromosome regions are recruited to the nuclear pore complex (NPC) 
via nucleoporin interaction. At the NPC, mRNA export is streamlined and loci 
may interact with NPC associated CMEs. (C) Chromosome regions at the NE 
are exposed to CMEs with gene silencing activity, such as H3K9 
methyltransferases, that are directly linked to the NE. (D) Chromosome regions 
at the NE are exposed to repressive TFs that are directly linked to the NE.
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exhibit a similar pattern of chromatin detachment and how this 
affects the transcription of neighbouring genes.
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