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Inhibited photosynthesis caused by post-anthesis high-temperature stress (HTS) leads
to decreased wheat grain yield. Magnesium (Mg) plays critical roles in photosynthesis;
however, its function under HTS during wheat grain filling remains poorly understood.
Therefore, in this study, we investigated the effects of Mg on the impact of HTS
on photosynthesis during wheat grain filling by conducting pot experiments in
controlled-climate chambers. Plants were subjected to a day/night temperature cycle
of 32◦C/22◦C for 5 days during post-anthesis; the control temperature was set at
26◦C/16◦C. Mg was applied at the booting stage, with untreated plants used as a
control. HTS reduced the yield and net photosynthetic rate (Pn) of wheat plants. The
maximum carboxylation rate (VCmax), which is limited by Rubisco activity, decreased
earlier than the light-saturated potential electron transport rate. This decrease in VCmax

was caused by decreased Rubisco activation state under HTS. Mg application reduced
yield loss by stabilizing Pn. Rubisco activation was enhanced by increasing Rubisco
activase activity following Mg application, thereby stabilizing Pn. We conclude that Mg
maintains Rubisco activation, thereby helping to stabilize Pn under HTS.

Keywords: wheat, high-temperature stress, magnesium, Rubisco activity, Rubisco activation, photosynthetic
rate, high-temperature stress, photosynthetic rate

INTRODUCTION

Wheat is a C3 crop that grows during the winter and spring seasons, with an optimum grain
filling temperature of 20–24◦C (Paulsen, 1994; Shah and Paulsen, 2003; Li et al., 2012). The
temperature threshold for grain filling in winter wheat is 25◦C (Porter and Gawith, 1999;
Wahid et al., 2007). When day/night temperatures increase to 30◦C/25◦C, the filling duration is
shortened and dry matter accumulation decreases (Huebner and Bietz, 1988; Khan et al., 2020).
However, the temperature often rises above 30◦C in late spring, during the middle or late grain
filling late stage, around the middle to lower reaches of the Yangtze River (World Weather
Information Service). Grain yield can decrease by up to 30% at temperatures exceeding 32◦C
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(Al-Khatib and Paulsen, 1990; Djanaguiraman et al., 2020).
Global warming has increased the occurrence of intense high-
temperature events (IPCC, 2020); as a result, high-temperature
stress (HTS) on winter wheat during the grain filling stages
restricts wheat production (Lesk et al., 2016).

Under favorable conditions, approximately 70–90% of the
final grain yield is obtained from photosynthates produced
during grain filling (Austin et al., 1977; Makunga et al., 1978;
Chaudhuri et al., 2017). Longer leafing duration and higher
photosynthetic activity contribute to yield increases in most
major crops (Richards, 2000). However, high temperatures
during post-anthesis restrict grain yield by reducing grain
filling time and photosynthesis efficiency (Farooq et al., 2011).
Photosynthesis is the basis of biomass production and is
the physiological process that is most sensitive to elevated
temperature, often showing inhibition before all other cellular
functions at high temperatures (Berry and Bjorkman, 1980).
Several photosynthetic pigment components of photosystem II
(PSII), Rubisco carboxylation activity, stomatal opening, and
other associated processes, are highly susceptible to HTS (Mathur
et al., 2014). Damage to any of these components and processes
is sufficient to interrupt the general photosynthetic mechanism
(Ashraf and Harris, 2013; Mathur et al., 2014). However, the
effects of HTS on the photosynthesis process during the wheat
post-anthesis stage remain further understood.

Many studies have suggested that the loss of Rubisco activation
is the main factor limiting the net photosynthesis rate under
moderate HTS (Demirevska-Kepova and Feller, 2004; Salvucci
and Crafts-Brandner, 2004b). Rubisco catalyzes the assimilation
of CO2 during photosynthesis, and its catalytic limitations
compromise photosynthesis efficiency (Parry et al., 2008; Lobo
et al., 2019). Rubisco binds easily with inhibitors that block
its active sites (Parry et al., 2008; Lobo et al., 2019). Rubisco
activation state is defined as the fraction of active sites with
catalytic activity and is regulated by Rubisco activase (RCA)
(Boexfontvieille et al., 2014; Scafaro et al., 2016; Perdomo et al.,
2017). Phosphate inhibitors can be removed from Rubisco active
sites (carbamylated or not) via RCA activity in an ATP-dependent
reaction (Streusand and Portis, 1987; Bracher et al., 2017). Under
HTS, when Rubisco deactivation speeds up and photosynthesis
is inhibited, the role of RCA becomes increasingly evident
(Portis, 2003; Ristic et al., 2009; Scafaro et al., 2016; Perdomo
et al., 2017). RCA is extremely sensitive to temperature (Kurek
et al., 2007), but thermally stable RCA maintains high Rubisco
activation levels and increases CO2 fixation efficiency (Kurek
et al., 2007; Scafaro et al., 2016, 2019; Shivhare and Mueller-
Cajar, 2017; Degen et al., 2020, 2021). Thus, improving RCA
activity may be an effective method for maintaining a higher
photosynthesis rate under HTS.

Magnesium (Mg) is involved in several physiological and
biochemical processes of plant growth and development
(Waraich et al., 2011). Up to 15–35% of total Mg in plants is
located in chloroplasts (Karley and White, 2009; Chen et al.,
2018), where it is involved in photophosphorylation and CO2
fixation (Cakmak and YaziCi, 2010). Mg mainly plays roles in
Rubisco activation and RCA catalysis (Parry et al., 2008). Mg
deficiency adversely affects CO2 fixation, leading to reduced

photosynthesis rates (Andersson, 2008), whereas adequate Mg
has been shown to alleviate adverse effects of HTS in wheat and
maize seedlings (Mengutay et al., 2013). Thus, Mg may play
a significant part in carbon reactions, representing a possible
mechanism for stabilizing the net photosynthesis rate under HTS.

High-temperature stress frequently occurs during the
grain filling stage; however, few studies have examined Mg
functions involved in photosynthesis under HTS during the
grain filling stage. We hypothesized that under HTS, Mg
application would enhance Rubisco activation, contributing to
HTS alleviation. Therefore, we examined variation in Rubisco
content and Rubisco activation state, light energy utilization
efficiency under HTS to evaluate the effects of Mg application
on Rubisco carboxylation activity, and electron transport
capacity under HTS.

MATERIALS AND METHODS

Plant Culture and Growth Conditions
We conducted pot experiments at the Pailou Experimental
Station of NAU, China (32◦04′N, 118◦76′E), during the 2016–
2018 growing season. The local widely grown cultivar of
Yangmai-16 (Triticum aestivum L.) was grown in plastic pots with
a volume of 0.015 m3 (height, 30 cm; diameter, 25 cm), each
with three holes at the bottom. Every pot was filled with 9 kg of
air-dried and uniformly mixed clayey loam soil sieved through
a 0.5-mm mesh. The soil contained 11.78 g kg−1 organic matter,
0.87 g kg−1 total nitrogen (N), 81.37 mg kg−1 available potassium
(K), 19.25 mg kg−1 available phosphate (P), and 110.9 mg kg−1

available Mg. After soil filling, 5 g of compound fertilizer (15%
N, 15% P, and 15% K) was applied to each treatment. At the
jointing (Feekes 6.0) and booting stages (Feekes 10.0) (Miller,
1992), 0.45 g of N was applied to each pot. Each pot was sowed
with 18 seeds, and then seedlings were scattered to eight in each
pot at the three-leaf stage.

Treatment Application and Management
Magnesium fertilizer in the form of MgSO4·7H2O was applied
at 0.85 g per pot (0.11 g·kg−1) at the booting stage (Feekes
10.0), and pots without additional Mg application were used
as controls (CK). The pots were moved to climate-controlled
chambers set at a different temperature for 16–20 days after
anthesis (DAA). HTS of the air temperature was simulated
at 32◦C/22◦C, and 26◦C/16◦C was applied as the optimal
temperature (OT). The temperature setting during treatment
days and the leaf temperature are shown in Supplementary
Figure 1. Relative humidity in the chambers was at 65%, under a
light intensity of 1500 µmol photons m−2 s−1 with a photoperiod
of 16 h. Each pot was watered about 2–4 l each morning and
evening during post-anthesis. Following treatment, pots were
relocated in the OT growth chamber until maturity. Thus, the
four treatments were CK-OT (control fertilizer with optimal
temperature), CK-HT (control fertilizer with HTS), Mg-OT
(additional Mg fertilizer with optimal temperature), and Mg-HT
(additional Mg fertilizer with HTS).
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Plant Sampling and Measurements
Plant sampling were conducted at 15DAA (prior to HTS
treatment), 17DAA (2 days after treatment), 20DAA (5 days
after treatment), and 25DAA. The flag leaves were detached from
five randomly selected pots for each treatment and immediately
submerged in liquid nitrogen for fresh sample measurements.
Dry samples were collected from whole plants in five randomly
selected pots of each treatment. We manually cut the plants at
ground level using pruning scissors and then dried the samples
at 105◦C for 15 min in the oven, followed by 70◦C until constant
weight. The dried samples were ground for N and Mg content
determination. Yield measurements at the maturity stage were
tracked using the same five pots in each treatment.

Gas Exchange and Fluorescence
Measurements
Gas Exchange Measurements
The gas exchange parameters were measured in flag leaves using
the red and blue light source chamber (LI6400-02B) of a gas
exchange machine (Li-Cor 6400, Li-Cor Inc., United States) in
this study. The gas exchange parameter measurements were
according to the methods by Gao et al. (2018) with modifications.
Measurements were performed from 9:00 to 11:00 am under
a light level of 1500 µmol photons m−2 s−1. The vapor
pressure deficit was between 0.5 and 1.0 kPa. The reference CO2
conference level was set at 400 µmol mol−1, and the relative
humidity of the leaf chamber was set to 55–65%. The temperature
of the leaf chamber was set according to real-time temperature in
the growth chamber. The equipment was preheated for 0.5 h prior
to measurement, and data were recorded three times after cuvette
acclimatization for at least 5 min.

The net photosynthesis rate/intercellular CO2 concentration
(A–Ci) curve was determined according to Gao et al. (2018).
Measurements were conducted using the red and blue light
source chamber of the Li-Cor 6400 photosynthesis instrument.
The setting of light level and relative humidity was the same
with the previous setting. A CO2 injection system was used
to control the CO2 concentration. Leaves were placed in the
chamber for 10 min for adaptation. The CO2 concentration in
the leaf chamber was then adjusted to values of 400, 200, 100,
50, 100, 150, 200, 400, 600, 800, 1000, 1200, and 1600 µmol
mol−1, and data were recorded for about 3 min per setting.
Plotting Pn as the vertical coordinate and Ci as horizontal
coordinate, the initial slope of the curve (Ci < 200 µmol
mol−1) represented carboxylation efficiency (CE). The Rubisco
maximum carboxylation rate (VCmax) and maximum electron
transport rate (Jmax) were calculated according to modified
equations (Long and Bernacchi, 2003; Li et al., 2009; Gao et al.,
2018). The A–Ci curve is shown in the Supplementary Figure 2.

Chlorophyll Fluorescence Measurements
The fluorescence parameters were determined using the machine
of CF Imager, Technologia Ltd, Colchester, United Kingdom.
Following the methods of Gao et al. (2018), we selected leaves
that had been adapted to the light for more than 30 min and
recorded the steady-state fluorescence (Fs) and then applied a

flash (∼8000 µmol photons m−2 s−1) to record the maximum
fluorescence under light (Fm’). We maintained the leaves in the
dark for 3 s, turned on the far-red light, then measured the initial
fluorescence Fo’ under the light. Next, the leaves were shaded and
dark-adapted for more than 30 min, and the minimum (Fo) and
maximum (Fm) chlorophyll fluorescence were recorded. Then,
we calculated PSII efficiency (8PSII) as 8PSII = (Fm’ – Fs)/Fm’,
maximum fluorescence as Fm = Fm – F0/Fm (Genty et al., 1989),
photoinhibitory quenching (qL) as qL = F0’/Fs× (Fm’ – Fs)/(Fm’ –
F0’) (Kramer et al., 2004), and the electron transport rate (ETR)
as ETR = (Fm’ – Fs)/Fm’× PPFD× 0.85× 0.5 (Li et al., 2009).

Physiological Measurements and
Chemical Analysis
N and Mg Content Determination
We used 100 mg ground dried samples to determine Mg content.
The samples were extracted using 5 mL of HNO3 and HCl
solution (1:1 v/v) for 4 h at 50◦C, and then the volume was
adjusted to 20 mL using ddH2O. Five biological repeats were
conducted separately. Mg content was analyzed using the ICP-
OES, Optima 8000.

Total N analyses were conducted with the method from
micro-Kjeldahl (Santos and Boiteux, 2013). Dried samples
(0.2 g) from flag leaves were used. Five biological repeats were
performed independently.

Chlorophyll Content Measurements
Chlorophyll concentrations were measured spectrophoto
metrically according to Arnon (1949). We used 0.05 g of fresh
flag leaves and 25 mL of a mixture of acetone and absolute
ethanol (volume ratio 1:1) to extract leaf pigments. The samples
were placed in a 30◦C incubator for about 24 h, and the
extract was mixed several times. The absorbances at 470, 645,
and 663 nm were measured to calculate the Chl a and Chl b
concentrations, respectively. The chlorophyll concentration is
the sum of Chl a and Chl b.

Rubisco and Rubisco Activase (RCA) Content
Determination
Rubisco content was measured using SDS-PAGE following the
methods of Makino et al. (1985) with modifications. We ground
10-cm2 frozen leaf samples and extracted each sample in 5 mL
of buffer solution prepared according to the methods. Then, we
centrifuge the mixture at 15,000 × g for 15 min at 4◦C and
mixed the crude enzymatic extract with 5 × loading buffer. We
boiled 1 mL of the mixture for 1 min prior to electrophoresis.
The amount of each sample was 10 µL used in the electrophoresis
which was at 100 V for about 8 h. After that, the gels were stained
with 0.25% (w/v) Coomassie Blue R-250. The gels were destained
with 25% ethanol and 8% glacial acetic acid solution. Subunits of
55 and 15 kDa were put into a container with 2 mL of formamide.
Then, the samples were kept in a 50◦C water bath overnight. The
absorbance at 595 nm (OD595) was measured. The calibration
curve is shown in the Supplementary Figure 3.

Rubisco activase content was determined using an RCA
Kit [Plant Rubisco Activase Enzyme-linked Immunoassay
Assay (ELISA) Kit, Jianglai Biotechnology Co., Ltd., Shanghai]
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according to the manufacturer’s instructions. The double-
antibody sandwich method was used to determine the RCA
content of the plant according to Choi and Roh (2003) with
modifications. Ten microliters of crude enzymatic extract with
40 µL sample diluent was added with 100 µl of rabbit anti-
Rubisco activase antiserum in a 96-well microtiter plate, which
were precoated with the RCA capture antibody. Then, the
plate was incubated at 37◦C for 60 min. After washing the
plate five times, 100 µL peroxidase substrate was added. After
mixing, the plate was kept in the dark for 15 min at room
temperature. Finally, 1 M HCl was added to terminate the
reaction. We measured OD450 within 15 min after adding the
termination solution.

Rubisco and RCA Activity Determination
Rubisco activity was determined following the method of
Sharwood et al. (2016). We measured the rate of NADH oxidation
at 340 nm. The NADH-linked assays retrieve lower values
of Rubisco activity compared with the 14CO2 fixation assay,
but the NADH-linked assays were correlated strongly with the
radiometric assay (Sales et al., 2020). NADH-linked assay is
widely used in Rubisco activity, but microtiter plate-based assays
may decrease the accuracy of the results (Sales et al., 2020), so
we utilized cuvettes to measure the change in absorbance in a
spectrophotometer. The recipes of extract buffer solution [5 ml
pH 8.0 buffer solution (50 mM pH 7.5 Tris–HCl), 10 mM β-
mercaptoethanol, 12.5% (v/v glycerol, 1 mM EDTA-Na2, 10 mM
MgCl2, 1% (m/v) polyvinylpyrrolidone)], assay buffer solution
(100 mmol EPPS-NaOH pH 8.0, 10 mmol MgCl2, 1 mmol EDTA,
0.2 mmol NADH, 20 mmol NaHCO3, 5 mmol dithiothreitol,
5 mmol ATP, 10 U·ml−1 creatine phosphokinase, 10 U·ml−1

3-phosphoglyceric phosphokinases, 10 U·ml−1 glyceraldehyde-
3-phosphate dehydrogenases, and 5 mmol phosphocreatine), and
activating solution (50 mM Tris–HCl pH 7.5, 40 mM MgCl2,
20 mM NaHCO3) were according to Gao et al. (2018). We ground
10-cm2 frozen leaf samples and extracted each sample using
5 mL of pH 8.0 buffer solution. The mixture was centrifuged
at 15,000 × g for 1 min at 4◦C. The initial Rubisco activity
was measured using a cuvette containing 100 µL of the crude
enzymatic extract, 700 µL of assay buffer, and 200 µL of 10 mmol
RuBP. The change in absorbance at 340 nm was monitored for
60 s (3 s per measurement) at room temperature. To determine
the total Rubisco activity, 100 µL of crude enzymatic extract was
activated for 10 min at 25◦C in RuBP assay buffer by adding
100 µL of activating solution. Next, 100 µL of this mixture was
added with 700 µL of assay buffer and 200 µL of 10 mmol RuBP
sequentially, and the OD value at 340 nm was monitored for
1 min (3 s per measurement). The ratio of the initial activity over
the total activity was calculated as the Rubisco activation state.

Rubisco activase activity measurements were processed
following the process from Carmo-Silva and Salvucci (2011).
The uncarbamylated Rubisco in the desalt extracts promoted
the formation of the inactive Rubisco–RuBP complex. Frozen
leaves were rapidly extracted at 4◦C with 5% PEG3350 and
4 mM RuBP and then incubated for 5 min at 4◦C. Next,
the extract was added to two parallel (A and B) reactions at
25◦C. The recipes of the A and B solutions were according to

Carmo-Silva and Salvucci (2011). In these reactions, the RuBP
concentration was 3.6 mM. Rubisco activation was tracked by
evaluating Rubisco activity in aliquots taken at every half minute
till 5 min after initiation of reaction. The rate of Rubisco
activity was the increase in the fraction of Rubisco active sites
from 1.5 to 3 min by determining the Rubisco activity in
reactions without ATP.

ATP and ADP Content Determination
We used ATP and ADP Bioluminescence Assay Kit (Beyotime,
Jiangsu, China) to determine ATP and ADP contents,
respectively, following the manufacturer’s instructions. Twenty
milligrams of wheat leaf samples were collected in 200 µL
pre-chilled lysis buffer, and a glass homogenizer was used to fully
lyse the leaf tissue. The samples were centrifuged at 10,000 × g
for 2 min at 4◦C. The supernatant was collected. The ATP
detection working solution was prepared according to the kit
protocol. To each well, we added 100 µL of extract, followed by
100 µL of working solution. The luciferase signals were detected
for 30 s using a multifunctional microplate reader (SpectraMax
M2). A standard ATP concentration curve ranging from 1 pM
to 1 M was prepared by gradient dilution. ADP concentration
measurements were conducted by conversion to ATP.

Statistical Analysis
All data were analyzed using the SPSS ver. 10.0 software
(SPSS Inc., United States). Two-way analysis of variance was
performed for all data, and the means were compared using
Duncan’s multiple-comparison tests at a significance level of
P < 0.05. We used a minimum of three biological replicates.
All graphs presented were produced using the GraphPad Prism
9 (GraphPad Software, San Diego, CA, United States), and tables
were produced using Microsoft Excel 2016 (Microsoft, Redmond,
WA, United States).

RESULTS AND DISCUSSION

Results
Grain Filling Duration, Biomass, and Yield
High-temperature stress treatment significantly affected the
1000-grain weight of wheat plants, resulting in decreased yield
(Table 1). The 1000-grain weight was reduced by 8.37 and 8.48%
in the CK-HT treatment and by 5.01 and 5.51% in the Mg-HT
treatment, during 2016–2017 and 2017–2018, respectively. Grain
yield was reduced by 10.28 and 10.89% in the CK-HT treatment
and by 6.6 and 7.9% in the Mg-HT treatment during 2016–2017
and 2017–2018, respectively. Mg treatment reduced the loss in
grain weight and yield caused by HTS.

After anthesis, CK-HT and Mg-HT treatment durations were
shortened by about 3 days due to HTS (Table 1). However, the
duration of Mg-OT treatment was prolonged by about 3 days
compared to CK-OT. As a result of HTS, biomass accumulation
after anthesis declined more in CK-HT (12.91 and 16.12%, 2016–
2017 and 2017–2018, respectively) than in Mg-HT treatment
(8.03 and 7.92%) (Table 1). Biomass at maturity decreased under
HTS treatment by 4.48 and 5.75% in CK-HT, and 2.94 and
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TABLE 1 | Effect of Mg application on the grain filling duration (days), post-anthesis biomass (PAB, g pot−1), biomass at maturity (MB), 1000-kernel weight (TKW, g), and
grain yield (g pot−1) of wheat under high-temperature stress (HTS) during grain filling.

Treatments Filling duration PAB MB TKW Grain yield

2016–2017 CK-OT 34.67ab 33.71b 108.5b 41.20b 43.48b

CK-HT 31.33c 27.47c 102.3c 37.75c 39.01c

Mg-OT 36.33a 36.11a 112.6a 44.43a 47.42a

Mg-HT 34.00b 32.86b 109.3b 42.20b 44.29b

2017–2018 CK-OT 35.33ab 33.50b 111.1b 43.04b 47.56b

CK-HT 32.00c 28.53c 106.1c 39.39c 42.38c

Mg-OT 37.33a 37.66a 116.5a 46.28a 51.24a

Mg-HT 34.33b 34.24b 113.0b 43.73b 47.17b

CK-OT, control fertilizer with optimal temperature (OT); CK-HT, control fertilizer with high-temperature stress (HTS); Mg-OT, Mg with OT; Mg-HT, and Mg with HTS. Means
were compared using Duncan’s multiple-comparison tests. Different lowercase letters after data in the same column indicate significant variations within the same year at
P < 0.05.

FIGURE 1 | Effect of Mg application on magnesium content (mg·g−1 DW) (A) and nitrogen content (mg·g−1 DW) (B) under high-temperature stress during the grain
filling. Treatments: CK-OT, control fertilizer + optimal temperature; CK-HT, control fertilizer + high temperature; Mg + OT, Mg fertilizer + optimal temperature;
Mg + HT, and Mg fertilizer + high temperature. The shaded area indicates the high -temperature treatment period. Two-way analysis of variance was performed, and
the means were compared using Duncan’s multiple-comparison tests. Different lowercase letters indicate significant variations within the same day at P < 0.05; the
error bars represent standard error (SE) of three biological replicates.

2.89% in the Mg-HT treatment during both years (Table 1).
These results indicate that Mg application enhanced biomass
accumulation and reduced the loss induced by HTS.

Mg and N Content
The effects of Mg application on Mg and N content in flag leaves
under HTS are shown in Figure 1. Mg application promoted
increases in Mg and N content in flag leaves at 15DAA. Mg
and N content did not change significantly in plants under HTS
(CK-HT) relative to control plants (CK-OT) at 17DAA, but a
reduction in N content was observed at 20DAA. At 25DAA, Mg
and N contents in flag leaves of CK-HT decreased significantly.
However, in Mg-treated plants, the Mg content of flag leaves
increased dramatically at 20DAA and decreased at 25DAA in Mg-
HT, although these differences were not significant compared to
the Mg-OT treatment. The N content of flag leaves remained
stable at 20DAA and decreased significantly at 25DAA in Mg-HT
plants. These results indicate that Mg treatment increased the Mg
and N content of flag leaves and reduced N loss induced by HTS.

Photosynthesis and Related Attributes
The Pn of wheat flag leaves under all treatments generally
decreased during growth (Figure 2). HTS decreased Pn

(9.93%), transpiration rate (Tr) (5.64%), leaf stomatal
conductance (Gs) (2.64%), and chlorophyll content (3.33%)
and increased Ci (8.84%) at 17DAA, although the changes
in Gs, Tr , and chlorophyll contents were not significant.
At 20DAA, Pn, Gs, Tr , and chlorophyll contents decreased
under HTS by 17.89, 9.14, 13.11, and 9.57%, respectively,
compared with CK-OT, whereas Ci increased significantly,
by 11.10%. Similar trends were observed at both 25DAA and
30DAA. At 17DAA in the Mg-HT treatment, Pn (4.30%),
Gs (2.08%), Tr (4.25%), and chlorophyll contents (2.63%)
were decreased and Ci (2.34%) was increased, but not
significantly. At 20DAA, Mg-HT treatment stabilized Ci
(4.91% increase, less than CK-HT), and Pn, Gs, Tr , and
chlorophyll contents decreased by 9.92, 7.33, 8.55, and 6.10%,
respectively, compared to Mg-OT. Plants were also less
affected by HTS in the Mg-HT treatment than in the CK-HT
treatment at 25DAA and 30DAA. The above results indicated
that Mg could enhance the photosynthetic capability and
stabilize that under HTS.

HTS decreased CE (27.27%) and VCmax (21.71%) at 17DAA
in CK-HT and also decreased Jmax (5.02%), but not significantly
(Table 2). CE, VCmax, and Jmax decreased significantly at 20DAA
and 25DAA. These findings indicate that CE and VCmax were
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FIGURE 2 | Effect of Mg application on net photosynthesis rate (Pn) (A), intercellular CO2 concentration (Ci ) (B), stomatal conductance (Gs) (C), transpiration rate
(Tr ) (D), and chlorophyll content (E) under high-temperature stress during the grain filling. Vertical bars above mean indicate the SE of five replicates at P < 0.5.

TABLE 2 | Effects of Mg application on carboxylation efficiency (CE),
light-saturated potential rate of electron transport (Jmax , µmol·m–2·s–1), maximum
carboxylation rate limited by Rubisco (VCmax , µmol·m–2·s–1) under HTS during
the grain filling stage.

CE VCmax Jmax

15DAA CK 0.11b 80.93b 170.07a

Mg 0.14a 91.35a 175.90a

17DAA CK-OT 0.11b 76.45b 164.87ab

CK-HT 0.08c 59.85c 156.60b

Mg-OT 0.13a 89.82a 170.96a

Mg-HT 0.13a 82.74ab 165.88ab

20DAA CK-OT 0.10b 67.24b 153.27a

CK-HT 0.07c 51.03c 129.81c

Mg-OT 0.13a 79.96a 159.73a

Mg-HT 0.09b 69.82b 141.66b

25DAA CK-OT 0.07b 55.10b 137.26a

CK-HT 0.03c 38.87c 87.03c

Mg-OT 0.10a 68.89a 143.26a

Mg-HT 0.06b 57.93b 105.57b

Means were compared using Duncan’s multiple-comparison tests. Different
lowercase letters after data in the same column indicate significant variations within
the same year at P < 0.05.

inhibited earlier than Jmax under HTS. At 15DAA, Mg application
improved CE and VCmax. Moreover, compared with CK-HT,
VCmax and CE did not change significantly following Mg
treatment at 17DAA under HTS. At 20DAA and 25DAA, CE,
VCmax, and Jmax remained at higher levels in the Mg treatment
than in CK. The difference responses between CK-HT and Mg-
HT at 17DAA suggested the Mg function in the photosynthesis
process under HTS.

Light Energy Utilization and ETR
Light-dependent reactions showed that HTS did not decrease
the maximum photochemical efficiency (Fv/Fm) at 17DAA,
but 8PSII and ETR decreased due to a reduction in qL in
the CK-HT treatment (Table 3). Higher non-photochemical
chlorophyll fluorescence quenching (NPQ) was observed in
CK-HT at 17DAA. 8PSII , qL, Fv/Fm, and ETR decreased
significantly at 20DAA and 25DAA, and NPQ increased. Mg-
treated plants showed significantly higher 8PSII , qL, and ETR
at 15DAA, which was consistent with Pn and its attributes.
8PSII , qL, ETR, and Fv/Fm were reduced at 20DAA and 25DAA
in both CK-HT and Mg-HT, but smaller reductions were
observed in Mg-HT plants. A small reduction in NPQ was
also observed in Mg-treated plants under HTS. These results
indicated that compared with the control, Mg-treated plants had
a stronger light energy utilization ability and maintains electron
transfer under HTS.

Rubisco Content and Activation State
Rubisco content and total activity decreased significantly under
HTS at 20DAA and 25DAA (Figures 3A,B), but they did
not change significantly at 17DAA. HTS led to significantly
decreased initial activity at 17DAA, 20DAA, and 25DAA
(Figures 3C,D). Mg-OT plants showed higher Rubisco content
(Figure 3A), total and initial activity (Figures 3B,C), and
activation state (Figure 3D) compared to CK-OT at 15DAA.
Rubisco content, total activity, and initial activity were higher
in Mg-OT plants than CK-OT at 17DAA, 20DAA, and
25DAA. Interestingly, the initial Rubisco activity and the
activation state were maintained in Mg-treated plants relative
to CK-HT plants at 17DAA, although decreasing trends
were observed in Mg-HT plants at 20DAA and 25DAA.
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TABLE 3 | Effects of Mg application on actual photochemical efficiency of PSII in
the light (8PSII ), photochemical quenching (qL), the maximum quantum efficiency
of PSII (Fv/Fm), electron transport rate (ETR), and non-photochemical quenching
(NPQ) under HTS during the grain filling stage.

Treatment 8 PSII qL ETR NPQ Fv/Fm

DAA15 CK 0.39b 0.33b 131.71b 1.89a 0.82ab

Mg 0.42a 0.38a 140.22a 1.91a 0.84a

DAA17 CK-OT 0.38b 0.29b 126.22b 1.96b 0.83a

CK-HT 0.32c 0.24c 107.52c 2.37a 0.82ab

Mg-OT 0.40a 0.32a 134.18a 1.94b 0.83a

Mg-HT 0.39a 0.31a 131.41a 2.05b 0.83a

DAA20 CK-OT 0.35b 0.28b 118.33b 2.01c 0.81a

CK-HT 0.30c 0.22c 100.62c 2.74a 0.76c

Mg-OT 0.38a 0.32a 128.10a 2.03c 0.83a

Mg-HT 0.34b 0.28b 115.08b 2.36b 0.79b

DAA25 CK-OT 0.24b 0.26b 79.18b 2.35bc 0.76b

CK-HT 0.16c 0.15d 54.99c 3.48a 0.73c

Mg-OT 0.30a 0.30a 102.14a 2.03c 0.78a

Mg-HT 0.26b 0.21c 87.14b 2.73b 0.75b

Means were compared using Duncan’s multiple-comparison tests. Different
lowercase letters after data in the same column indicate significant variations within
the same day (P < 0.05, n = 5).

Mg-HT plants showed a smaller decrease in initial Rubisco
activity and activation state than CK-HT plants at 20DAA
and 25DAA. This result was consistent with the result in
Table 2.

RCA Concentration and Activity
The initial Rubisco activity and activation state depend on RCA
activation. In our study, the total RCA pool was measured
without distinguishing isoforms. The RCA concentration did not
change significantly at 17DAA but decreased significantly in the
CK-HT treatment at 20DAA and 25DAA (Figure 4A) and in
the Mg-HT treatment at 25DAA. This result was consistent with
our Rubisco content results. RCA activity in the Mg treatments
was significantly higher than in CK at all stages (Figure 4B).
Interestingly, HTS decreased RCA activity significantly at 17DAA
in CK-HT but did not significantly affect that in the Mg-HT
treatment. However, RCA activity decreased significantly under
HTS in both CK and Mg treatments at 20DAA and 25DAA.

ATP and ADP Content and ATP/ADP
Mg application increased the ATP content and ATP/ADP ratio
compared with CK in the OT treatment (Figure 5). However,
there was no significant variation in ADP content between
CK and Mg. HTS inhibited ATP synthesis, whereas Mg-HT
sustained the ATP synthesis and high ATP/ADP ratios. The
reduction in the content in ATP corresponded to the electron
transfer rate. ATP and ADP content and the ATP/ADP ratio
decreased under HTS at 20DAA and did not recover at 25DAA,
indicating that the plants had reached senescence at 25DAA.
Together, these results indicate that HTS inhibits ATP and ADP
production and decreases the ratio of ATP over ADP but that Mg
alleviates these losses.

Correlations Among the Rubisco Activities, RCA
Activity, and ATP/ADP Ratio
The initial Rubisco activity and the total Rubisco activity were
positively correlated with Rubisco activation state (Figure 6A),
while the initial activity contributed more to increased Rubisco
activation state than to total Rubisco activity. The RCA activity
was also positively correlated with the activation state and the
ATP/ADP ratio (Figures 6B,C). This implied that a higher
ATP/ADP ratio was closely related to the enhancement of the
RCA activity, and then the activation state was also improved by
higher Rubisco initial activity and RCA activity.

Discussion
Yield
Global warming is a significant cause of HTS, which poses a
serious threat to wheat production in many countries, especially
during the reproductive and grain filling phases (Farooq et al.,
2011; Khan et al., 2020). Wheat yield reduction under HTS
is correlated with fewer spikes and smaller grains (Gibson
and Paulsen, 1999; Lesk et al., 2016), whereas grain weight is
significantly reduced by high temperatures in the middle and
late stages of grain filling (Tahir and Nakata, 2005; Wajid et al.,
2018). Assimilate transport from flag leaf to grain is substantially
reduced by temperatures above 30◦C (Plaut et al., 2004). In this
study, HTS shortened the duration of the post-anthesis stage
and decreased biomass accumulation (Table 1), seed weight, and
grain yield. It has been proposed that grain weight was sensitive
to the amount of the Mg in the soil (Potarzycki, 2008; Szulc, 2010;
Grzebisz, 2013). In this study, the application of Mg fertilizer
promoted crop growth and yield formation, which has also been
alleviated under HTS. Leaf symptoms in Mg-deficient plants are
similar to those of senescent leaves but can be recovered by
sufficient Mg application (Uchida, 2000; Tanoi and Kobayashi,
2015). In this study, Mg application extended the duration of
the grain filling stage and produced more biomass after anthesis
under HTS, leading to higher grain weight and yield formation.

Mg and N Content
Under normal conditions, Mg content accounts for 0.15–0.35%
of the dry weight of vegetative plant parts (Marschner, 1995;
Tanoi and Kobayashi, 2015). During early vegetative growth, the
critical whole-shoot Mg concentration is 0.1% for wheat (Jones
and Wolf, 1991). In this study, Mg-treated plants alleviated yield
loss under HTS and increased yield under normal temperature
conditions, perhaps because Mg concentrations in the flag leaves
of Mg-treated plants were at adequate levels (Mengutay et al.,
2013), whereas CK plants were near the threshold of Mg
deficiency. The most significant change during senescence is the
breakdown of chloroplasts, which account for more than 70% of
total N (Bascunan-Godoy et al., 2018). The rate of senescence and
the remobilization of leaf N are related to the plant N nutrition
status (Hortensteiner and Feller, 2002; Nehe et al., 2020).
Previous studies have suggested that Mg application supports N
uptake (Peng et al., 2019). Our findings also demonstrated that
Mg promotes N accumulation, which were consistent with those
of Peng et al. (2019). Additionally, HTS accelerates N degradation
in flag leaves, whereas Mg stabilized N content, which suggests
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FIGURE 3 | Effect of Mg application on Rubisco content and activity under HTS during the grain filling stage. Two-way analysis of variance was performed; each bar
is the mean ± SE of five replications. Different lowercase letters indicate significant variations within the same day at P < 0.5 (Duncan’s multiple-comparison tests).
(A) Rubisco content, (B) Total Rubisco activity, (C) Initial Rubisco activity, (D) Rubisco activation state.

FIGURE 4 | Effect of Mg application on Rubisco activase concentration and activity under HTS during the grain filling stage. Two-way analysis of variance was
performed; each bar is the mean ± SE of five replications. Different lowercase letters indicate significant variations within the same day at P < 0.5 (Duncan’s
multiple-comparison tests). (A) Rubisco activase concentration, (B) Rubisco activase activity.

that Mg alleviates senescence in flag leaves under HTS during
the filling stage.

Photosynthesis and Related Attributes
Photosynthesis is pivotal to crop yield production, and
photosynthetic capacity decreases gradually during plant
senescence. Leaf photosynthesis is the physiological process
that is most sensitive to HTS (Sabater and Martín, 2013), which
significantly affects Pn, Gs, Tr , and Ci (Greer and Weedon, 2012;

Jahan et al., 2019). Reduced Pn under HTS appears to be caused
by non-stomatal factors, because the stomata remain open
and Ci is not reduced when the photosynthetic structure is
damaged (Mathur et al., 2014). In this study, Gs and Tr were
not inhibited, but Pn decreased at 17DAA, indicating that the
reduction in Pn under HTS in the early stages was not due to
stomatal factors. Stabilization of leaf transpiration may be a
way for wheat to improve leaf overheating (Yang et al., 2012).
However, Ci increased significantly, indicating that HTS reduced
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FIGURE 5 | Effects of Mg application on ATP content, ADP content, and ATP/ADP in flag leaves of wheat under HTS during grain filling. Two-way analysis of
variance was performed; each bar is the mean ± SE of five replications. Different lowercase letters indicate significant variations within the same day at P < 0.5
(Duncan’s multiple-comparison tests). (A) ATP content, (B) ADP content, (C) ATP/ADP.

CO2 utilization efficiency. Mg treatment improved Pn prior to
HTS treatment. Pn has been found to be higher in Mg-sufficient
plants than in Mg-deficient plants (Laing et al., 2000). In this
study, Pn and Tr were stabilized in Mg-treated plants at 17DAA
under HTS, compared with the CK. Similar Mg effects have
been reported in Torreya grandis seedlings under toxic lead
(Pb2+) stress (Shen et al., 2016). Mg application also kept high
levels of Gs, which may be attributed to Mg playing a role in
the regulation of anion–cation balance and cell turgor in cells
along with K (Gerendás and Führs, 2013; Hasanah, 2018). In this
study, photosynthetic capacity gradually decreased with wheat
leaf senescence, and its inhibition by HTS was more significant
at 25DAA and 30DAA, even in the Mg treatments, indicating
that HTS irreversibly accelerates senescence during the grain
filling stage in wheat.

The factors directly limiting photosynthesis at different
degrees of HTS remain controversial because the photosynthetic
system produces varying responses at different temperature
ranges (Salvucci and Crafts-Brandner, 2004b; Yamori et al., 2013).
CE, VCmax, and Jmax decreased under HTS (Weston and Bauerle,
2007; Ferguson et al., 2020). VCmax decreased earlier than Jmax
at 17DAA, whereas both decreased synchronously at 20DAA
and 25DAA; thus, Jmax decreased after VCmax inhibition. Under
Mg application, VCmax did not decrease at 17DAA, indicating
that Mg stabilized Rubisco carboxylation capacity under HTS.
Even at 20DAA and 25DAA, these levels were higher under Mg
treatment; thus, HTS may directly inhibit Rubisco carboxylation
activity and electron transfer during the photosynthetic light

reaction, whereas Mg stabilizes VCmax under short-term HTS,
promoting carbon reactions.

Light-Dependent Reaction
The light system of plant leaves absorbs light energy and converts
it into ATP and NADPH (Ashraf and Harris, 2013). When
these processes are impaired, electron leakage damages the
chloroplast structure (Wang et al., 2015). Fv/Fm is a measure of
photosynthetic capacity and can be used to verify the integrity of
the PSII (Gregersen et al., 2014). In this study, under short-term
HTS (17DAA), the Fv/Fm of the light reaction system did not
change, indicating that the photosynthetic light system of wheat
leaves was not damaged under HTS, and the light reaction center
retained its ability to self-regulate the photosynthetic system.
This finding is consistent with our Jmax results. HTS also led
to PSII closure in control plants by decreased qL and increased
NPQ, which is a strategy for protecting the photosynthetic
system under stress conditions (Maxwell and Johnson, 2000).
However, PSII remained open in Mg-treated plants under HTS
at 17DAA, and higher ETR and Fv/Fm values were observed
at 20DAA and 25DAA, indicating that Mg application under
HTS in the grain filling stage promotes light energy utilization
and electron transfer, which are beneficial to the synthesis
of ATP and NADPH.

Rubisco Activation
Photosynthesis inhibition in wheat leaves under HTS is
mainly caused by decreased Rubisco carboxylation activity
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FIGURE 6 | Relationships between Rubisco activities, RCA activity, ATP/ADP ratio, and Rubisco activation state. Values of Rubisco activities, RCA activity, ATP/ADP
ratio, and Rubisco activation state are from individual sample values in Figures 3–5 (n = 70). “ ” Represents values of CK-OT, “N” represents CK-HT, “�”
represents Mg-OT, and “�” represents Mg-HT. The asterisks represent the statistical significance at the P level shown in the figure, respectively. (A) ATP content.
(B) ADP content. (C) ATP/ADP.

(Scaligero, 2004; Sharwood et al., 2016; Scafaro et al., 2019;
Degen et al., 2020, 2021). However, Rubisco is actively degraded
during leaf senescence (Imai et al., 2008). In this study, higher
Rubisco content was found in Mg-treated plants, which may
be related to the uptake of N by applying Mg (Peng et al.,
2019), and the Rubisco content is positively correlated with leaf-
N content (Makino, 2003). Also, previous studies indicated that
total Rubisco activity increased linearly with increasing leaf N
(Cheng and Fuchigami, 2000). Therefore, the loss of the total
Rubisco activity under HTS at 20DAA and 25DAA may be due
to the reduction in the Rubisco amounts caused by accelerated
senescence in the flag leaves. Mg stabilized the N content in
the leaves, which alleviated the loss of Rubisco amount as well
as the total Rubisco activity. However, in this study, under
short-term HTS (17DAA), Rubisco content and total activity did
not significantly decrease, whereas initial Rubisco activity and
activation state were inhibited; this result suggests that Rubisco
activation state and activity are sensitive to HTS. Various studies
indicated that the decrease in the Rubisco activation state was
the main cause of photosynthetic inhibition under moderate heat
stress (Salvucci and Crafts-Brandner, 2004a; Degen et al., 2021)
and a decrease in the activation state of Rubisco was thought to

reflect a loss of carbamylation due to changes in stromal pH and
Mg2+ concentration (Weis, 1981). In the present study, the initial
Rubisco activity decreased earlier at 17DAA and decreased more
at 20DAA compared with the total Rubisco activity, which is the
reason for the reduction in the Rubisco activation state under
HTS. Moreover, previous study has proposed that the decrease
in Mg2+ level in chloroplast caused a significant reduction
in Rubisco activity (Lasa et al., 2000). The Rubisco activation
obviously depends on the Mg2+ concentration (Tcherkez, 2013).
In the chloroplast, where Mg2+ total concentration is around
10–20 mM, the RuBP concentration at least twice as high as
the concentration in Rubisco sites leads to an activation level
of about 90% (Von Caemmere, 1985; Tcherkez, 2013). In our
results, Mg treatment significantly increased Rubisco activation
state by increasing Rubisco activity, and the Rubisco activation
state was stabilized under HTS at 20DAA and 25DAA. Further,
in the analysis shown in Figure 6, a significant loss of the
Rubisco amount caused reductions in the total Rubisco activity
at 25DAA, and the initial Rubisco activity decreased significantly
at that time. In contrast to previous observations (Perdomo
et al., 2017; Degen et al., 2021), Rubisco activation state and
Rubisco content were positively correlated, possibly due to the
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interplay between heat stress and the onset of leaf senescence.
The Rubisco activation state and the total Rubisco activity were
decreased synchronously after HTS during the late senescence
stage. However, higher initial activity was more closely related to
improvements in activation state.

Previous studies have shown that Rubisco enzymes bind
easily with sugar phosphate or other substances, which inhibit
its function (Parry et al., 2008, 2012; Scafaro et al., 2019;
Degen et al., 2020, 2021). RCA and ATP can relieve Rubisco
enzyme activity inhibition; therefore, RCA activity is important
for stabilizing Rubisco activation (Parry et al., 2008). RCA is
directly influenced by temperature (Carmo-Silva and Salvucci,
2012), and it showed the same trend between photosynthetic
rate and RCA activity under HTS (Law and Craftsbrandner,
1999). The RCA activity is closely related to the heat tolerance
level of wheat (Kumar et al., 2019). In the present study, HTS
decreased RCA activity and concentration, but Mg treatment
significantly increased RCA activity, which is consistent with
the findings of previous studies (Liang et al., 2008; Kuriata
et al., 2014; Hazra et al., 2015). Additionally, the RCA activity
was also positively correlated with the Rubisco activation state
(Figure 6B). Together, our results suggest that Mg promotes RCA
activity, thereby stabilizing Rubisco activation under HTS during
the wheat grain filling stage.

Carboxylation and Light-Dependent Reactions Are
Interrelated
The CO2 assimilation reactions (Calvin–Benson cycle) consume
ATP and NADPH to regenerate NADP+ and ADP, reducing
the light-dependent reaction and accepting transferred electrons
during stable forward photosynthesis (Parry et al., 2008). Under
HTS, ATP and ADP contents decreased, indicating the blockage
of photoreaction ATP synthesis. Mg-treated plants had higher
ATP content, which is consistent with the findings from Busch
and Ninnemann (1997). We monitored RCA activity in terms
of the ratio of ATP to ADP (Carmo-Silva et al., 2015). The
positive correlation between the RCA activity and the ATP/ADP
ratio implied that a higher ATP/ADP ratio was closely related
to the enhancement of the RCA activity (Figure 6C). HTS
directly inhibited Rubisco activity, which influenced NADP+
and ADP reduction. Next, electron transfer was inhibited, which
led to photoinhibition (Parry et al., 2008; Carmo-Silva and
Salvucci, 2011; Mathur et al., 2014). Therefore, the photosynthetic
system was damaged by an increase in redundant electrons. At
25DAA, ATP, and ADP contents remained higher in Mg-treated
plants than in CK plants, and ATP/ADP increased significantly,
indicating that Rubisco activation was maintained through Mg
application, such that light energy utilization and electron
transfer were relatively stabilized during the light reaction.

CONCLUSION

The results of the present study indicate that HTS caused
a decrease in Rubisco carboxylation activity which inhibited
photosynthesis during the wheat senescence stage, whereas Mg
application maintained Rubisco carboxylation by enhancing its
activation state and stabilizing the electron transfer rate. Thus,
photosynthesis was sustained by Mg application under HTS.
These results suggest that Mg plays an indispensable role in
sustaining photosynthesis during grain filling by improving
Rubisco activation state under HTS conditions.
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