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High levels of phenotypic variation in resistance appears to be nearly ubiquitous across
natural host populations. Molecular processes contributing to this variation in nature are
still poorly known, although theory predicts resistance to evolve at specific loci driven by
pathogen-imposed selection. Nucleotide-binding leucine-rich repeat (NLR) genes play
an important role in pathogen recognition, downstream defense responses and defense
signaling. Identifying the natural variation in NLRs has the potential to increase our
understanding of how NLR diversity is generated and maintained, and how to manage
disease resistance. Here, we sequenced the transcriptomes of five different Plantago
lanceolata genotypes when inoculated by the same strain of obligate fungal pathogen
Podosphaera plantaginis. A de novo transcriptome assembly of RNA-sequencing data
yielded 24,332 gene models with N50 value of 1,329 base pairs and gene space
completeness of 66.5%. The gene expression data showed highly varying responses
where each plant genotype demonstrated a unique expression profile in response to the
pathogen, regardless of the resistance phenotype. Analysis on the conserved NB-ARC
domain demonstrated a diverse NLR repertoire in P. lanceolata consistent with the high
phenotypic resistance diversity in this species. We find evidence of selection generating
diversity at some of the NLR loci. Jointly, our results demonstrate that phenotypic
resistance diversity results from a crosstalk between different defense mechanisms. In
conclusion, characterizing the architecture of resistance in natural host populations may
shed unprecedented light on the potential of evolution to generate variation.

Keywords: phenotypic variation, pathogen-imposed selection, expression profile, phenotypic resistance
diversity, natural host populations

INTRODUCTION

Parasitism is the most common life-style on Earth (Weinstein and Kuris, 2016), and parasitic
species, including pathogens, play an important role in shaping biodiversity in natural populations
(Kursar et al., 2009; Bever et al., 2015). Despite this, relatively little is still understood of the
molecular mechanisms that enable hosts and parasites to coexist in natural populations. The threats
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imposed by pathogens on humans and on managed food
production systems have motivated research that aims to
predict where pathogens will occur and how risks of infection
evolve (Koff, 1992; Woolhouse et al., 2001; Gilligan, 2002). In
agriculture, increasing the diversity of crops – even from a
monoculture to a mixture of two cultivars – has been shown to
reduce disease levels (Zhu et al., 2000; Mundt, 2002). Meanwhile,
natural host populations typically support diversity in resistance
phenotypes (Salvaudon et al., 2008; Laine et al., 2011), and limited
data available to date show that increasing resistance diversity
decreases disease risk also in the wild (Jousimo et al., 2014).
Thus, understanding how diversity in resistance is generated and
maintained in natural populations can yield valuable insight into
how to deploy durable resistance in crop plants.

Hosts and pathogens are assumed to coevolve through
Red Queen dynamics, where the pathogen overcomes host’s
defenses and the host in turn responds with new counter-
defenses (Jaenike, 1978; Hamilton, 1980). Theory predicts such
reciprocal coevolutionary selection to be a powerful mechanism
for maintaining diversity in both host and parasite populations,
as the selection rate for resistance depends on the frequency
of parasite alleles, and vice versa, in a negative indirect
frequency-dependent manner (Leonard, 1977; Bergelson et al.,
2001). There are numerous examples of pathogens overcoming
host resistance, both from agriculture and from the wild
(Mundt, 2002, 2014). While evidence of resistance evolving
under pathogen attack in the wild is scarce (Laine, 2006),
there is ample support for coevolution from local adaptation
studies where parasite/host fitness is measured in sympatry
vs. allopatry (Greischar and Koskella, 2007; Hoeksema and
Forde, 2008). To date, a handful of ground-breaking studies
have demonstrated that fluctuations in resistance and infectivity
in natural systems match the predictions of coevolutionary
selection (Decaestecker et al., 2007; Gómez and Buckling, 2011;
Thrall et al., 2012).

At molecular level, plant resistance is established through
multi-layered defense mechanisms. First, there are physical
defense barriers (Miedes et al., 2014) and overcoming these
obstacles by a successful pathogen will trigger the pathogen-
associated molecular patterns (PAMPs), which will trigger the
so-called PAMP-triggered immunity (PTI) response, aimed at
stopping the pathogen infection even before it begins. Third layer
is the effector triggered immunity (ETI), involving either direct
or indirect recognition of pathogen virulence factors (effector
proteins; Jones and Dangl, 2006). In reality, as Thomma et al.
(2011) point out, there is no clear line between different stages
of the plant defense mechanism and PTI and ETI responses often
overlap. Pathogen recognition involves a multitude of different
signaling pathways, including production of reactive oxygen
species, elevated Ca2+ and MAP kinases leading to activation
of plant defenses. These defenses include the induction of stress
hormones salicylic acid, jasmonic acid and ethylene, as well as
extensive transcriptional re-programming ultimately resulting in
the production of defensive compounds, such as antimicrobial
secondary metabolites, chemicals and enzymes. As the final line
of defense, plants may activate the hyper-sensitive response,
programmed cell death, to rapidly kill the cells surrounding the

infection, thus preventing the spread to nearby tissues (Coll et al.,
2011; Egorov and Odintsova, 2012).

Many of the proteins involved in intracellular pathogen
recognition belong to nucleotide-binding–leucine-rich repeat
(NLR) protein family (Monteiro and Nishimura, 2018). They are
involved both in direct and indirect recognition of the pathogen’s
effector proteins, as well as in triggering the plant immune
responses (Meunier and Broz, 2017). NLRs also contribute to
signaling and transcript regulation (Chisholm et al., 2006; Jones
and Dangl, 2006), and play an important role in local adaptation
and habitat expansion of plants (Thrall et al., 2012; Stam et al.,
2019). The antagonistic interaction between plant NLRs and
pathogen effector proteins is considered to have a profound effect
on the evolution of both organisms, shaping their genomes and
gene repertoire (Upson et al., 2018). NLRs often form large
tandemly arrayed gene families and hence questions regarding
their origins and evolution have been under active research in
both plants and animals (Borrelli et al., 2018; Andolfo et al.,
2019). The numbers of identified NLRs differ substantially within
and between plant families (Baggs et al., 2017), for example
Arabidopsis thaliana (Arabidopsis) contains between 165 and 251
NLRs (Shao et al., 2016; Van de Weyer et al., 2019) and crop
species such as wheat, barley, rice, tomato and potato contain
1,560, 224, 438, 137, and 309 NLRs, respectively (Sarris et al.,
2016; Steuernagel et al., 2020). In A. thaliana there is evidence
of widespread positive selection in the core NLRs shared among
accessions, especially in the canonical NLR domains (Van de
Weyer et al., 2019), while a pioneering work on wild tomato
revealed high NLR diversity with a small subset of NLRs driving
local adaptation to pathogens (Stam et al., 2016, 2019). Specific
functions have been assigned to plant NLR domains. An NB-
ARC domain is present in all full length NLRs and considered
a regulatory domain (Takken et al., 2006) determining whether
the protein is active or inactive (Takken and Goverse, 2012).
Other canonical domains include Toll/interleukin-1 receptor
(TIR), coiled coil (CC), and RPW8-like coiled-coil (CCR); their
presence defines the sub-category of the NLR (TNL, CNL, or
RNL, respectively) (Van de Weyer et al., 2019). Additionally,
the NLRs contain several leucine-rich repeats (LRRs) which
contribute to pathogen-specificity.

Here we study resistance in the ribwort plantain, Plantago
lanceolata L. (Plantago), against its fungal pathogen Podosphaera
plantaginis. Due to its global distribution, P. lanceolata has
emerged as a model species to study how global change drives
the ecology and evolution of natural plant populations (Jousimo
et al., 2014; Smith et al., 2020). It is a perennial monecious
plant that reproduces both sexually by wind pollination and
clonally by producing side rosettes (Sagar and Harper, 1964).
The powdery mildew, P. plantaginis (Castagne; U. Braun, and
S. Takamatsu) (Erysiphales, Ascomycota), is a specialist obligate
biotroph infecting P. lanceolata. It requires living host tissue
throughout its life (Bushnell, 2002), and completes its life cycle
as localized lesions on host leaves. The interaction between
P. lanceolata and P. plantaginis depends on both host and
pathogen genotypes suggesting gene-for-gene type of control
(Thompson and Burdon, 1992; Laine, 2004, 2007). The putative
resistance mechanism includes two steps, recognition of the
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attacking pathogen and then blocking its growth (Laine, 2004). In
resistant phenotypes no pathogen growth is detected or the plant
shows rapid cell death around infection site, whereas susceptible
phenotypes demonstrate considerable variation in pathogen
development, depending on both host and pathogen genotype
(Laine, 2007). Previous studies have detected considerable
phenotypic variation in resistance (Laine, 2004); diversity is
shown to accumulate in the well-connected populations across
the landscape (Hockerstedt et al., 2018), and has a direct negative
impact on disease dynamics (Jousimo et al., 2014). Moreover,
there is evidence of on-going coevolution in this interaction
(Laine, 2005, 2006, 2008).

Here, we carried out a controlled experiment where
five P. lanceolata genotypes were inoculated with the same
P. plantaginis strain, in order to characterize the transcriptional
responses and regulatory pathways activated in response to the
inoculation. We assembled the first de novo transcriptome for
Plantago to characterize the transcriptional responses in both
resistant and susceptible phenotypes, and scanned the NLR
repertoire for signs of selection. Since reliable de novo assembly of
NLR transcripts is difficult due to highly repetitive nature of the
LRR domains, we focused on the conserved NB-ARC domains
in the evolutionary analyses. Each plant genotype demonstrated
a unique gene expression profile in response to the pathogen,
revealing a diverse NLR repertoire in Plantago, consistent
with the high phenotypic resistance diversity uncovered in
earlier studies.

MATERIALS AND METHODS

Study System and Plant and Fungal
Material
An inoculation protocol where conidia from small colonies
or individual chains are placed on detached leaves or intact
leaves of plants yields a robust characterization of resistance-
susceptibility phenotype. From an earlier large inoculation
study consisting of 2,944 host genotype–pathogen genotype
combinations (Hockerstedt et al., 2018), we selected three
genotypes (IDs 193_2, 2818_3 and 2818_6, named Res1, Res2,
and Res3 hereafter) that were resistant against all tested pathogen
strains, and two genotypes (IDs 313_6, 1553_5, named Sus1
and Sus2 hereafter) that were susceptible to all tested pathogen
strains. For the experiment each genotype was cloned into six
plants as described in Laine (2004).

Inoculation Experiment
Two-month old plantlets (five genotypes with three replicates
and two conditions, total of 30 plants) were inoculated with
P. plantaginis strain Lammi_3 by brushing spores gently with
a fine paintbrush onto six test leaves and two positive control
leaves. In the control set the genotypes were mock inoculated
by brushing leaves without mildew spores. Inoculated and
mock-inoculated plant clones were placed in two separate
growth chambers (Panasonic MLR-352) at 20 ± 2◦C (day) and
16 ± 2◦C (night) with 16:8 light-darkness (L:D) photoperiod,
and randomly organized to minimize potential variation in

microclimatic conditions. Two inoculated or mock-inoculated
leaves were collected from every plant at 24, 48, and 72 h post
inoculation (hpi), snap frozen in liquid nitrogen, and stored in
glassine bags in -80◦C until RNA extraction. Positive control
leaves were screened 14 days post inoculation to confirm the plant
phenotype as resistant or susceptible. Viability of spores used in
the experiment was confirmed by inoculating detached leaves of
a susceptible genotype.

RNA Extraction
Altogether 0.2 g of frozen leaf material was ground in lysing
buffer (2% CTAB, 2% PVP K-30, 100 mM Tris–HCl pH 8.0,
2 M NaCl, 25 mM EDTA), with β-MeOH (200 µl/10 ml)
added in prior to use (Chang et al., 1993). Thoroughly vortexed
solution was extracted twice with equal volume of acid phenol-
chloroform-isoamyl-OH (ph 4.5). Prior to precipitation, 160 µL
of 10 M LiCl was added and samples were kept on ice overnight,
followed by 30 min centrifugation (10,000 rpm) in +4◦C. Pellets
were dissolved in 500 µL of 65◦C SSTE (1 M NaCl, 0.5%
SDS, 10 mm Tris–HCl pH 8.0, 1 mM EDTA) and RNA was
extracted twice with chloroform-Isoamyl alcohol (24:1). After
EtOH precipitation and 70% wash, the pellets were dissolved in
40 µL H2O and RNA quantity and quality were checked using
NanoDrop (Thermo Fischer Scientific). Potential contamination
of genomic DNA was removed using DNase I (Thermo Fischer
Scientific) and samples were then reverse-transcribed to cDNA
using iScriptTM cDNA Synthesis Kit (Bio-Rad) according to the
manufacturer’s instructions.

Quantitative Real-Time PCR
Three inoculated and mock-inoculated clones of two plant
genotypes (resistant 193_2.1 and susceptible 1553_5.1) were
sampled at three time points (24, 48, and 72 h post
inoculation), resulting in 12 samples. Primers were designed
with Primer3 (Rozen and Skaletsky, 1999) based on previously
in situ sequenced transcriptome of Plantago (unpublished data)
and known disease-induced genes in Arabidopsis. We tested
seven putative disease-induced genes (Supplementary File 1).
Amplification efficiencies (E) of the primer pairs were determined
with five dilutions (1:1, 1:4, 1:24, 1:124, and 1:624) of template
cDNA, where E = 10−1/slope. Three technical replicates, one
water control and a plate control sample were included in a
384-well plate with 10 µL volume, using C1000TM Thermal
Cycler (Bio-Rad). All samples were tested for genomic DNA
contamination with-RT controls prior to qPCR. Each reaction
had 1 µL of the 1:4 diluted cDNA, 5 µL of SYBR R© Green
containing master mix (iQTM SYBR R© Green Supermix for qPCR;
Bio-Rad), 3 µL of nuclease-free water and 0.5 µL (10 µm)
of each primer. The cycle conditions were one cycle at 95◦C
for 3 min, 40 cycles at 95◦C for 10 s, 60◦C 30 s, and ending
with melting curve analysis. From the candidate set, Elongation
factor_CL4, GADPH_28221 and Actin_34737 displayed a stable
expression across the samples with geNorm and were selected
as reference genes for normalization (Supplementary File 1).
Relative expression (CNRQ) and normalization was calculated
in qBase+ 3.2.
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RNA Sequencing
Illumina paired-end sequencing (NextSeq 500) was carried out in
the Institute of Biotechnology of the University of Helsinki with
78-base forward reads and 74-base reverse reads, with library
insert size of 200 bases. Trimming and removal of low quality
reads was carried out using Trimmomatic (Bolger et al., 2014),
resulting in an average library size of 14.6 million reads.

Transcriptome Assembly and Annotation
We combined all libraries for a pooled de novo assembly
using Trinity (Grabherr et al., 2011), SOAPdenovo-Trans (k-
mer sizes 39 and 41) (Xie et al., 2014) and Oases (k-mer sizes
39, 43, and 47) (Schulz et al., 2012). The combined assemblies
contained 1,315,458 transcripts (177,948 from Trinity, 607,212
from SOAPdenovo, and 530,298 from Oases). The contigs
were filtered with EvidentialGene (Gilbert, 2013). EvidentialGene
pipeline removes redundant transcripts, transcripts with more
than 98.5% similarity and internal ORFs, producing two sets of
highly accurate transcripts referred to as okayset and okayalt
set. The okayset are the most reliable set of transcripts from the
original data while the okayalt set contains a set of alternative
transcripts with many overlapping transcripts and some valid
alternative transcripts. To increase the amount of alternative
transcripts in our study the okayset and okayalt outputs were
combined and clustered using RapClust (Srivastava et al.,
2016). This procedure assigns transcripts with high sequence
similarity to the same cluster. A representative transcript for
each cluster was obtained using Lace (Davidson et al., 2017)
which merges all the sequences in the same cluster to obtain a
representative sequence. To remove contamination, the resulting
contigs were queried against NCBI non-redundant protein
database (Pruitt et al., 2007) using BLAST and transcripts with
a best hit in plant kingdom were retained. The transcripts
mapping to ribosomal genes and having ambiguous sites
(Ns) were removed. Minimum read coverage of three was
used for all the assemblies. A similar process was carried
out for individual genotype transcriptome assemblies for
comparison purposes.

For functional annotation of the transcripts, BLASTp
(Camacho et al., 2009) with default cut-offs was used to
find the best match among Arabidopsis representative
set of proteins (Berardini et al., 2015), available at TAIR
server(ftp://ftp.arabidopsis.org/home/tair/Proteins/TAIR10_
protein_lists/). The functional annotation and gene ontology
(GO) category assignment of the best Arabidopsis hit (from
ftp://ftp.arabidopsis.org/home/tair/Ontologies/Gene_Ontology/)
was then transferred to the Plantago query transcript.

Differential Gene Expression Analysis
and GO Enrichment
All libraries (30 in total) were mapped to the transcriptome
assembly using kallisto (Bray et al., 2016) with 100
bootstrap replicates. The averages of bootstrap replicates
of raw count values were used as counts. The count tables
were imported to R by tximport package (Soneson et al.,
2015). The validity of genotype-specific transcriptomes

in the final assembly was assessed by mapping the raw
sequencing reads to the transcriptome and identifying the
proportion of transcripts expressed in a certain genotype.
We required at least one genotype-specific read mapped
to a transcript in at least two biological replicates. We
conducted the analysis in R and using the count table from
tximport. The overlaps of the common versus genotype-
specific transcripts was visualized with a Venn diagram using
VENN package in R.

Principal Component Analysis was carried out using DESeq2
and visualized with rgl package (Adler et al., 2017) for 3D plot
and ggplot2 (Wickham, 2016) for 2D plots. DESeq2 package
(Love et al., 2014) was used for differential expression analysis at
genotype and phenotype levels (Res, Sus and Res_vs_Sus), with
adjusted p-value of 0.1 as a threshold for significant differential
expression, as recommended by DESeq2. To maximize the
number of true positive transcripts, no fold change cut-
off was used.

Gene ontology enrichments were analyzed using piano
R package (Varemo et al., 2013). For threshold-based GO
enrichments, GOAtools was used (Klopfenstein et al., 2018). To
focus on signaling responses, the “responses” and “signaling” sub-
trees of the Biological Process category were selected. The GO
enrichments were plotted using gene set mean fold changes from
the piano package.

Redundancy Analysis
Vegan package (Oksanen et al., 2018) was used for redundancy
analysis (RDA) and permutation test (permtest) with 10,000
permutations to test significance. The genes significantly
contributing to the RDA loadings were identified using cut-
off of three standard deviations (corresponding to two-tailed
p-value = 0.0027 in Z-test). The overlap among gene sets
was analyzed using venn package in R (Dusa, 2018). The GO
enrichment of RDA loadings was carried out with piano (Varemo
et al., 2013) using RDA loadings as gene level statistics.

Prediction of Candidate NLRs
The candidate NLRs were predicted using NLR-Parser
(Steuernagel et al., 2015). The highest scoring domain found
per reading frame per transcript was picked and screened
manually. The transcripts were filtered out if the ORF was
too short, if the start and stop codons were missing, or if
BLAST queries did not return hits to NCBI non-redundant
database. To account for partial or miss-assemblies, we
performed an online search for NB-ARC domain in NCBI
Web CD Search Tool (Lu et al., 2020), and selected the
transcripts with a complete NB-ARC domain. Both protein
and nucleotide sequences of these domains were extracted for
subsequent analyses.

To identify the NB-ARC domains contributing to the
separation of the phenotypes, the full NLR transcripts were
replaced with their NB-ARC domains and the reads were
remapped using kallisto. RDA analysis on NB-ARC domains was
carried out with vegan R package, using significance cut-off of
one standard deviation. Differential expression was calculated
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with TPM-normalized values (Wilcoxon test with Benjamini-
Hochberg correction).

For evolutionary analysis, Antirrhinum majus L. (snapdragon)
was used as outgroup, since it is the most recently diverged
plant with published chromosome-level genome assembly (Li
M. et al., 2019). NLR transcript prediction with complete NB-
ARC domains was carried out using the protocol described
above. Multiple sequence alignment of the NB-ARC domains
was carried out using MAFFT, and the phylogenetic tree
was estimated using RAxML v8 (Stamatakis, 2014) with
PROTGAMMAAUTO and 100 bootstrap trees. The tree was
cut with ClusterPicker (Ragonnet-Cronin et al., 2013) with 90%
initial threshold and main support threshold for clusters and
genetic distance of 0.2 with gap option into clusters. To get
an ancestral state, the most common snapdragon protein hit
among BLAST queries with the cluster sequences was added
to the cluster. The gene tree was visualized with ggtree R
package (Yu et al., 2017). The putative Arabidopsis homeolog
was selected with BLAST query of the full transcript against
the TAIR proteome.

Neutrality Test (dN/dS and H Statistic)
Multiple sequence alignment for each cluster was carried out
using MAFFT and gene tree was estimated with FastTree (as
suggested in PAML manual), followed by reverse-transcription
of the aligned sequences. Gene and per-base level dN/dS
ratios (non-synonymous versus synonymous mutations) were
calculated using PAML (Yang, 2007), with dN/dS > 1 indicating
positive selection.

For Fay and Wu’s (2000) H statistic, the reads were aligned
to the transcriptome containing NB-ARC domains with BWA
(Li and Durbin, 2009) and using ANGSD (Korneliussen et al.,
2014) to calculate H statistic within a sliding window of three
nucleotides. H values <-3 signified positive and >1 purifying
selection, respectively. Overall nucleotide diversity (π) and
Watterson theta (θ) were obtained as the mean over transcripts
and then over the transcriptome.

RESULTS

A schematic overview of the experiment design is shown in
Figure 1A. In order to choose the most informative time point
for analysis we studied the expression of a selected set of
marker genes using qPCR, taking into consideration that the
development time of P. plantaginis is relatively slow compared
to agricultural powdery mildews: It typically takes between
three to seven days for mycelia to become visible on the leaf
surface, and the conidial spores appear on average seven days
post inoculation (Green et al., 2002; Laine, 2007). We detected
powdery mildew spores growing on the inoculated, susceptible
plant leaves on day 14 post inoculation, whereas none of the
mock-inoculated or inoculated resistant plant clones showed
visible disease symptoms. Several studies of gene expression
induced by powdery mildew in host plants have found the highest
number of differentially expressed genes in later time points (Li
et al., 2016, 2019; Polonio et al., 2019). Accordingly, transcript

levels of the marker genes varied considerably in the susceptible
plants and showed elevated levels only at time point 72 h post
inoculation (hpi; Supplementary Figure 1) and therefore this
time point was selected for RNA sequencing.

Transcriptome Assembly and Expression
Analysis
The pooled assembly contained altogether 1,315,458 transcript
models, which were clustered into 86,648 transcripts using
EvidentialGene. The resulting transcriptome was of high quality,
since 87% of the universal single-copy genes (BUSCO; Seppey
et al., 2019) were present (including complete and fragmented
genes), but the high proportion of duplicated gene models
(46.3%) suggested the presence of many splice variants and allelic
variants. Subsequent clustering and merging (see M&M) resulted
in 24,332 high quality non-redundant transcripts with an average
length of 1,858 bases. The procedure reduced the Busco score
to 77.5%, but clearly removed the allelic variants, as only 2%
of gene models remained duplicated (Supplementary Table 1).
The filtered gene models had mostly low expression counts and
therefore were of low biological significance to the experiment;
this was clearly visible from the mapping rates, as on average 83
and 75% of the transcriptome data mapped to the raw and filtered
de novo assemblies, respectively (Supplementary Table 2). The
final assembly was representative of all genotypes since about 92%
of the transcripts were expressed across all genotypes (Table 1).
The Venn diagram of the expression profiles shows that less
than 1% of the transcripts were expressed in only one genotype
(Supplementary Figure 2).

We detected high nucleotide diversity (π = 0.068) and
Watterson theta (θ = 0.077) for the transcriptome. Principal
Component Analysis (PCA) of TPM normalized gene expression
data showed a clear grouping by genotype (Figure 1G) along
the first three PCs. These first three PCs explained altogether
53% of the total variation, illustrating that genotype is the main
contributor to the variation between samples. The inoculation
treatment had a smaller but marked effect, as was clearly
demonstrated in genotype-specific PCA plots (Figures 1B–F).
For example, in resistant R1 and R2 genotypes the variation
explained by PC1 was 65 and 52%, respectively, and clearly
separated the inoculated and control plants (Figures 1B,C).

We next characterized the overall effect sizes and their
statistical significance using Redundancy Analysis (RDA;
multivariate linear regression). The genotype and phenotype
effects were highly significant (P = 0.001 and P = 0.004),
explaining 35 and 9% of the overall variation in gene expression
(Table 2). The effect of inoculation alone was not significant
(P = 0.238), but the combined effects of genotype-by-inoculation
and phenotype-by-inoculation were (P = 0.001 and P = 0.048,
respectively), suggesting genotype-specific response profiles.
Accordingly, the RDA plots displayed clear separation when
using genotype and phenotype as a covariate but not with
inoculation treatment alone (Figures 2A–C). Venn diagrams of
the genes contributing to the separation in the RDA demonstrate
that while 87 genes contribute significantly to separation
according to genotype, only seven genes contribute directly to
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FIGURE 1 | Experimental design of the inoculation experiment and principal component analysis of the resulting differential gene expression in five Plantago
lanceolata genotypes. (A) For each of five P. lanceolata genotypes, three clones were inoculated with a strain of Podosphaera plantaginis and three clones were
mock-inoculated as control. RNA was extracted at 72 h post inoculation, and the phenotypes (resistant or susceptible) were scored at day 14 post inoculation.
(B–F) The effect of the inoculation treatment within each genotype is illustrated with Principal Component Analysis (PCA) where the first two axes (PC1 and PC2)
explain between 37–65 and 13–30% of the variation. All plots show a clear treatment effect. (G) When analyzed together, the genotypes separate by their gene
expression along PC1, PC2, and PC3 axes, which explain 23, 16, and 15% of the variation, respectively. (H) Within genotypes, R1–3 and S1–2 showed varying
numbers of significantly up (red) and down (blue) regulated genes in response to the inoculation treatment.

the phenotypic variation and 109 genes to the joint effect of
phenotype-by-inoculation (Figures 2D,E).

Differential Gene Expression Analysis
Similarly, the differential expression analysis between mildew
inoculated and mock-inoculated plants showed marked
differences between the genotypes and their responses to
the inoculation. The R1 genotype had the highest number
of differentially expressed (DE) transcripts (3803), from
which about 2,000 had absolute log2 fold change greater than

one. On the other hand, the S2 genotype had the lowest
number of DE transcripts, 43, with only 20 having absolute
log2 fold change greater than one (Figure 1H, Table 3 and
Supplementary Table 3).

With default BLAST cut-offs and searches at protein level
all transcripts obtained a hit to Arabidopsis proteins. The
evolutionary distance of Plantago and Arabidopsis is relatively
large (approx. 120 million years), but we nevertheless expect the
active protein domains to be well-conserved in plant kingdom;
in fact there exists evidence of conserved protein structures even
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TABLE 1 | The percentage of expressed transcripts per genotype.

Group S1 S2 R1 R2 R3

Inoculated 22,628 93% 22,418 92% 22,680 93% 22,548 92% 22,312 91.6%

Control 22,567 92.7% 22,457 92% 22,431 92% 22,484 92% 22,319 91.7%

The percentage of transcripts that have reads mapped to them in at least two biological replicates per genotype in control and experiment. About 92% of the transcripts
are expressed across all genotypes. This is an indication of the transcriptome being a good representative of all genotypes.

TABLE 2 | A summary of the Redundancy Analysis (RDA) results.

Source P-value Percentage of variation (%) Total percentage of variation

RDA1 RDA2 RDA3 RDA4 RDA1 RDA2 RDA3 RDA4 (%)

Genotype 0.001 0.001 0.001 0.002 15 11 9 35

Phenotype 0.004 NA NA NA 9 NA NA NA 9

Inoculation 0.238 NA NA NA 4 NA NA NA 4

Genotype × Inoculation 0.001 0.001 0.005 0.021 17 12 9 8 46

Phenotype × Inoculation 0.048 0.413 0.823 NA 9 4 2 NA 14

P-values of RDA axes for Genotype, Phenotype, and Inoculation treatment effects and their interactions, and the percent of variation explained by each of the axes as
well as the total variance explained.

FIGURE 2 | Redundancy analysis (RDA) of RNASeq data. (A) Discriminative axes RD1 and RD2 explain 15 and 11% of the genotype variation, respectively. (B) The
genotypes are best separated when RD1 is plotted against RD3 (explaining 9% of the variation). (C) The susceptible vs resistant phenotype split explains 9% of the
variation. Results are displayed against principal component 1 of the remaining variation (PC1) as there is only one RD axis for phenotype difference. (D) A Venn
diagram illustrating the number of genes that contribute significantly to variation in genotype, inoculation, and genotype × inoculation interactions. (E) A Venn
diagram shows the number of genes that contribute significantly to variation in phenotype, inoculation, and phenotype × inoculation interaction.
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TABLE 3 | A summary of differentially expressed (DE) genes.

Sample DE transcripts |logFC| > 1 DE NLRs DE NLRs
|logFC| > 1

Sus1 791 166 10 3

Sus2 43 20 0 0

Res1 3,803 1,987 70 30

Res2 1,180 412 17 4

Res3 111 7 1 0

Sus 3,787 1,212 104 54

Res 1,108 143 13 0

Res_vs_Sus 3,912 1,325 107 45

The table shows the number of differentially expressed transcripts (DE transcripts),
the number of transcripts with large changes (|log FC| > 1), and the numbers of
differentially expressed NLR transcripts (DE NLRs) and NLRs with large expression
changes (DE NLRs |log FC| > 1) in inoculation vs. mock comparison. The numbers
are reported for five genotypes separately, for the combined effect of susceptible
(Sus) and resistant (Res) phenotypes, as well as their comparison (Res_vs_Sus).

from far longer time spans (Vaattovaara et al., 2019). Since the
GO categories are based on protein domains, this should give a
good estimate of the putative GO assignments for Plantago.

To obtain a higher-level characterization we next looked
for common enriched pathways among the plants using
GO enrichment analysis. The differences among expression
profiles was also visible in the level of pathways (Figure 3;
Supplementary Figure 2, and Supplementary Table 4). We
first compared susceptible and resistant genotypes by searching
for GOs with decreased average expression levels in susceptible
phenotypes and elevated levels in resistant phenotypes. In
resistant phenotypes, genes encoding photosynthesis-related
proteins (e.g., Photosystem II antenna complex and chloroplast
photosystem I/II) and NAD(P)H dehydrogenase complex had
increased transcript levels (Supplementary Figure 2); genes
assigned to photosynthesis functions showed elevated transcript
levels in susceptible phenotypes as well but not to the same
extent. On the other hand, in susceptible phenotypes the GO
category with most decreased expression levels was induction
of programmed cell death (GO:0012502) (Supplementary
Figure 2), suggesting that as a biotrophic pathogen, P. plantaginis
may be downregulating the programmed cell death to keep
the host cells alive. However, also the expression levels of
resistant phenotypes were reduced in this category, possibly
due to successful manipulation by the pathogen, and therefore
the comparison between susceptible versus resistant did not
identify this process as significantly different between phenotypes
(P = 0.0559).

In addition to the shared responses, the genotypes showed
individual enrichment of various disease resistance pathways
(Supplementary Figure 2). In susceptible genotype 1 (S1),
the processes with most decreased average expression levels
were “tripeptide transporter activity” (GO:0042937), “tripeptide
transport” (GO:0042939) and “delta12−fatty acid dehydrogenase
activity” (GO:0016720), whereas S2 demonstrated decrease in
“oxazole or thiazole biosynthetic process” (GO: 0018131) and
“low−affinity nitrate transport” (GO:0080054 and GO:0080055).
Fatty acids play a direct role in modulating the plant defense

response to pathogens (Kachroo and Kachroo, 2009), and
thiazole or thiamine has been shown to play a crucial role
in activation of the defense responses, callose/lignin deposition
and stomatal closure (Zhou et al., 2013). Tripeptide transport
includes also nitrate transporters. Interestingly, powdery mildew
causative agent Erysiphe necator elevates the expression levels of
nitrate transporters in grapevine and Arabidopsis (Pike et al.,
2014), possibly to acquire nutrients from the host. In addition to
decreased levels of the GO categories related to nitrate transport
in both S1 and S2, we identified homolog of Arabidopsis nitrate
transporter (AtNRT1.5) to be upregulated after inoculation in
susceptible vs resistant comparison. In Arabidopsis, the protein
is responsible for nitrate transport from roots to shoots, and
in this context suggests toward manipulation of host nutrient
distribution by the pathogen. In general, tripeptide transport
also plays an important role for defense against biotic and
abiotic stress (Karim et al., 2007), suggesting a reason for the
decreased expression of the tripeptide transporters as a whole in
the susceptible phenotypes. Nitrogen, nitrates and their transport
to different tissues in the plant during the pathogen infection
could play a critical role in the plant defense (Mur et al., 2017).

In resistant phenotypes, the glucosyltransferase (GO:0050284)
upregulation in R1 is a possible sign of early preparation for
pathogen response (Le Roy et al., 2016), and in R2 genotype,
the activation of NADH dehydrogenase complex assembly
(GO:0010258) has been shown to be involved in defense signaling
(Wallstrom et al., 2014).

Gene Ontology Enrichment Based on
Redundancy Analysis
Activation of plant signaling pathways involves coordinated
expression changes of many genes in the pathway and therefore
is multivariate in nature. Hence, we applied RDA to look for
GO categories differentially activated between the phenotypes
or the treatments by calculating the average RDA loadings
(Supplementary Table 5) of the genes in the categories and
tested for their statistical significance. Genes contributing to the
separation between inoculation and control were enriched for
ABA and cytokine signaling, primary metabolism and chloroplast
activity (Supplementary Figure 3). ABA induces resistance to
powdery mildew in barley (Wiese et al., 2004), and repression
of ABA biosynthesis as well as genes regulated by ABA, such as
cold/dehydration/salinity responsive genes, are associated with
mildew resistance in non-host plants in general (Jensen et al.,
2008). Cytokinin suppresses programmed cell death and plays
a role in the synthesis and maintenance of chlorophyll (Walters
and McRoberts, 2006) (Supplementary Figure 3). Additionally,
cytokinin levels regulate cell division together with auxin.
Interestingly, in Arabidopsis, Golovinomyces orontii inoculation
induced cell cycle related genes and endoreduplication, possibly
due to increased metabolic demands of the pathogen (Chandran
et al., 2010). On the other hand, Choi et al. (2011) have shown
that plant based cytokinins systematically induce plant resistance
against pathogens by cytokinin and salicylic acid signaling.

Genes associated with the differences between the phenotypes
showed GO enrichments for kinase activity, carbohydrate
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FIGURE 3 | Gene Ontology (GO) enrichments of the Differentially Expressed (DE) transcripts in the different genotypes R1–3, S1–2. Statistically significantly enriched
GO categories among the DE transcripts for categories related to (A) biotic and abiotic responses and (B) signaling. The size of the bubble is proportional to the
mean fold change of the genes assigned to the GO category and the color describes the direction, upregulation (red) or downregulation (blue).

metabolism, plant cell wall organization, photosystem II and
response to cold GO categories (Supplementary Figure 3),
whereas the genes contributing to the differences between
genotypes were enriched for tryptophan metabolism, plant cell
wall and chloroplast (Supplementary Figure 3). In Arabidopsis
(Chandran et al., 2010), the expression of cold/drought
responsive genes were decreased together with ABA biosynthesis
after inoculation with G. orontii. Together with the observed
induction of ABA during inoculation, this suggests that the
phenotypes may differ in how strongly ABA activates its targets
such as cold responsive genes.

Different responses to infection are visible in the genotype-
by-inoculation effect. Overall, the enriched GOs show a clear
activation of defense responses in general, and defense responses
to fungi in particular (e.g., regulation of immune response,
regulation of defense response; Supplementary Figure 3),
illustrating that the genes in these processes differ in their
transcription levels between genotypes. The GO category with
highest positive average of RDA loadings (and therefore, high
contribution to separation) is aldose 1−epimerase activity
(GO:0004034) which may be activated because of the mechanical
damage inflicted by the pathogen and results in methanol
emission and priming of the non-infected leaves (Sheshukova
et al., 2017). Next, hydrogen peroxide metabolic process
and salicylic acid mediated signaling pathway are both well-
established pathogen-induced defense mechanisms (Kuniak and
Urbanek, 2000; Hua, 2009; Niu and Liao, 2016; Sheshukova
et al., 2017), further demonstrating the activation of the defense
processes due to the pathogen infection. The GO category
with most negative average RDA loadings is RNA splicing,

via endonucleolytic cleavage and ligation (GO:0000394). It is
becoming increasingly clear that plants use alternative RNA
splicing extensively as a means to respond to their environment
and defend against pathogens (Staiger et al., 2013; Shang
et al., 2017). Within the signaling-specific GOs (Figure 4) the
genotype-by-experiment effect showed the increased transcript
levels of jasmonic acid (JA) and abscisic acid signaling [as
expected, (Yang et al., 2019)], again in a genotype-specific
manner. Further inspection of putative orthologs of marker genes
for different hormonal signaling pathways showed increased
transcript levels of auxin biosynthesis and signaling, as well as
differences in the increased transcript levels of JA signaling and
NLR signaling through EDS1 ortholog (Supplementary Table 6).

The most significant contributor to phenotype-by-experiment
is photosystem II activity (Supplementary Figure 3), as several
GO terms from this category showed significant enrichments.
The GO category with highest average RDA loadings for
phenotype-by-inoculation is oligopeptide transmembrane
transporter activity (GO:0035673). The perception and
transduction of fungal oligopeptides will trigger multiple
defense responses (Nürnberger et al., 1994; Hahlbrock et al.,
1995). Multitude of photosynthetic processes were also enriched;
their role in defense was discussed above. The categories with
most negative average loadings were response to fungus, and
cytokinin biosynthetic process (GO:0009691).

NLR Transcripts
When we assemble genotypes individually, we obtained 368, 284,
239, 256, and 191 NLR transcripts for genotypes S1, S2, R1, R2,
and R3, respectively. The combined assembly on the other hand
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FIGURE 4 | Gene ontology enrichments of the genes contributing to the redundancy analysis (RDA) axes for treatment, genotype and phenotype levels. Enrichment
test was carried out using gene loadings along RDA axes, see “Materials and Methods” section. The bubble plot depicts (A) biotic and abiotic responses, and (B)
enrichment limited to signaling hierarchies. The size of the bubble is proportional to the mean fold change of the genes assigned to the GO category and the color
describes the direction, upregulation (red) or downregulation (blue).

contains 543 NLR candidates that is almost twice as much as
each of the individuals assembled separately. This is an indication
that our combined transcriptome assembly should be a good
representative of the NLR repertoire of the individuals that we are
studying. To look for the variation in the plant defense arsenal
we carried out an in-depth study of the resistance NLR genes
induced in the experiment. The highly repetitive nature of the
LRR domain is known to be problematic in de novo assembly
from short-read RNA sequencing data, and therefore we focused
the analysis on the conserved NB-ARC domains. Out of the
543 candidate NLR transcripts in the transcriptome, 210 had a
complete NB-ARC domain.

The inoculation did not have a significant effect on expression
levels in RDA analysis of NB-ARC domains (p = 0.13), but
the genotype and phenotype both contributed significantly
(p = 9.999e-05 and P = 4e-04), explaining 55 and 15% of the
variation, respectively (Figure 5). Based on RDA loadings, the
NLR transcript with highest contribution to resistance phenotype
was transcript2322, a putative homolog of Arabidopsis AtRPP13
gene. RPP13 has the highest amount of amino acid diversity
among Arabidopsis proteins (Rose et al., 2004) and is involved
in defense against Peronospora parasitica (Rose et al., 2004; Hall
et al., 2009), an oomycete causing downy mildew in Brassicaceae.
The transcript2322 was not significantly differentially expressed
due to inoculation, but it had significantly higher base expression
level (p-value = 0.0003996) in resistant phenotypes (Figure 5).

Clustering of the NB-ARC domain tree resulted in 47
clusters containing 179 sequences and 31 singletons (Figure 6),
Cluster 4 being the largest with 12 sequences. BLAST query

against Arabidopsis proteome for the longest transcript in this
cluster returned a hit to AT3G14460, a leucine rich repeat
protein that also contains an adenylate cyclase catalytic core
motif. This gene is involved in adenylyl cyclase activity and
signaling and its knockouts in Arabidopsis have compromised
immune responses to the biotrophic fungus Golovinomyces
orontii (Bianchet et al., 2019).

Neutrality Test (dN/dS and H Statistic)
To look for NLR clusters under positive selection, we analyzed
dN/dS, the ratio between non-synonymous (amino acid
changing) to synonymous mutations (Figure 6). None of the
clusters appeared to be under positive selection. However, site-
wise analysis of dN/dS revealed that 25 of the clusters contained
a varying number of one to 58 amino acid positions under
positive selection, based on Bayes Empirical Bayes (BEB) analysis
(P > 95%). Cluster 14 with the highest number of loci under
selection returned Arabidopsis NLR protein AT1G50180 (CAR1)
as the best BLAST hit, an immune receptor which recognizes the
conserved effectors AvrE and HopAA1 (Laflamme et al., 2020).

In order to investigate potential selection pressure by a
complementary method, considering the shortcomings of within
population dN/dS analysis (Kryazhimskiy and Plotkin, 2008),
we also calculated Fay and Wu’s H statistics for the NB-
ARC domains. A positive value of H indicates balancing or
purifying selection, whereas high negative values indicate positive
selection in the form of selective sweeps, or drift, for example
from population bottlenecks. We identified 27 NLR transcripts
with H values less than -3 (Figure 6; Supplementary Figure 4,
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FIGURE 5 | Redundancy analysis of NB-ARC domains. (A) (Genotype) RDA analysis of the genotype effects of NB-ARC domain expression data explains 55% of
the variation (four axis only two are depicted here). (Phenotype) the same analysis shows that phenotype explains 15% of the variation that separates the resistant
and susceptible phenotypes. (B) NB-ARC sequences contributing to the separation of the phenotypes (Resistant vs Susceptible); transcript2322 has the highest
contribution to the separation. A full-length BLAST query of this transcript against the TAIR database returns RPP13 as the best hit (Bit score 216 and E-value
4e-60). (C) Comparison of the expression values (TPM) of transcript2322 reveals that even though this transcript is not differentially expressed due to the
experiment, it has significantly higher (P-value = 0.0003996) base expression in resistant phenotypes before and after the experiment. This could be due to maternal
effects or different regulation of the gene in resistant phenotypes.

and Supplementary Table 7). This set included one gene
from the cluster with the highest number of loci under
selection based on dN/dS analysis, as well as the transcript2322
having significantly elevated expression levels in the resistant vs
susceptible comparison. BLAST query of the NB-ARC domains
under selection against TAIR database resulted in 16 hits to
RPP13 and three hits to CAR1 (Supplementary Table 7).

DISCUSSION

Natural host populations have been shown to support
considerable diversity in resistance (Salvaudon et al., 2008;
Laine et al., 2011), and theory predicts that this variation
is maintained by pathogen-imposed selection. With recent

advances uncovering the molecular underpinnings of resistance,
it is becoming increasingly feasible to study this diversity also
in non-model systems. Here, we established a high-quality de
novo transcriptome assembly of P. lanceolata to investigate
the gene expression and processes activated in five plant
genotypes in response to inoculation of the same pathogen
strain. All five plant genotypes showed unique gene expression
patterns, as was demonstrated already by the PCA. In further
analysis, the inoculation explained only 4% of the total variation,
while genotype-by-inoculation interactions contributed 46%.
Surprisingly, split to susceptible vs. resistant genotypes explained
only 9% of the variance, with considerable expression pattern
differences between phenotypes. Overall, the plant genotypes
differed by the number, fold change and the function of the
transcripts differentially expressed in response to the pathogen
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FIGURE 6 | Nucleotide-binding–leucine-rich repeat (NLR) transcripts: clustering, differential expression, dN/dS, and Fay H statistic. The phylogenetic tree of NB-ARC
domain of NLR transcripts. The different colors in the innermost circle illustrate cluster assignments (track denoted as “Clusters”). The next tracks show the log2 fold
change (LF) of the transcript in each of the five genotypes (LFCR1-3, LFCS1-2; R, resistant; S, susceptible). FayMax and FayMin show minimum and maximum value
of H statistic. Finally, dN/dS illustrates the number of loci with significant dN/dS value in each cluster, the color intensity is proportional to the number of loci.

although the effect of time point on gene expressions could
not be ruled out. High variation in gene expression patterns
among plant genotypes has also been discovered in other studies
(Burghardt et al., 2017; Muller et al., 2019).

Diversity was evident already in signaling associated with
pathogen response; all phenotypes showed the expected
induction of JA, SA, and ABA signaling pathways, but to a highly
varying manner, with JA and ABA significantly contributing
to the genotype by experiment differences. This variation in
the extent of activation of signaling pathways and resulting
differences in cross-talk could be an important mechanism
generating phenotypic resistance diversity. The diverse responses
may be linked with the high genetic variation within the species,
with Watterson θ = 0.068 and nucleotide diversity π = 0.077,
meaning that on average, eight nucleotides out of 100 differ
between any two individuals. The experimental take home
message is that including multiple genotypes in experiments and
avoiding pooling for RNA-Seq is essential to uncover variation
relevant for phenotypic differentiation.

The pathways commonly induced by the pathogen included
the induction of specific nitrate transport genes in susceptible
phenotypes as well as elevated expression of photosynthesis-
associated genes and related biological processes. This could
contribute in defense against the pathogen, since photosynthesis
in known to play an important role in plant defense against
biotic stress (Gohre, 2015). Chlorosis is a hallmark sign of
powdery mildew infection and biotrophic fungi are known to
reduce photosynthetic rate and possibly damage chloroplast
structure (Perez-Bueno et al., 2019), thus the upregulation could
be either compensation, plant defense mechanism or induced
by pathogen. Specifically, uroporphyrinogen decarboxylase
activity (GO:0004853) was upregulated in resistant phenotypes
(Supplementary Figure 2, Resistant). Involved in chlorophyll
biosynthesis, it also points toward acting against the chlorosis
induced by the pathogen (Mock et al., 1998). Powdery mildew
fungi have a contracted carbohydrate metabolism, for example
they are not able to degrade pectin, an essential component of
plant cell walls (Liang et al., 2018), whereas the lipid metabolism
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is intact, suggesting that their main source of energy is from
lipids. The elevated expression of specific nitrate transporters and
chloroplast processes suggests elevated chlorophyll biosynthesis.
Together with the chlorosis phenotype, this suggests that
P. plantaginis may target the chloroplast lipids to obtain its
nutrients. However, at this stage this is a hypothesis that is
supported by previous studies on the genome structure of
other powdery mildews and the observed GO enrichments in
our data. More specific molecular work is needed to truly
understand the photosynthetic response of P. lanceolata to
P. plantaginis.

Discovery of a Diverse Repertoire of
NLRs in P. lanceolata
Nucleotide-binding–leucine-rich repeats play an important role
in pathogen recognition, defense responses and signaling, as
well as activation of hyper-sensitive response (Monteiro and
Nishimura, 2018). Our transcriptome assembly contained 543
NLR isoforms, with 210 transcripts having a complete NB-
ARC domain. A majority of these transcripts were expressed
to some extent in all five plant genotypes. Presence-absence
polymorphism in a subset of NLRs has been demonstrated across
Arabidopsis accessions (MacQueen et al., 2019; Van de Weyer
et al., 2019), and hence it could contribute to the slight differences
in the numbers of NLRs detected in the genotypes.

The NLR transcripts with a complete NB-ARC domain
divided into 47 clusters, with 12 transcripts in the largest cluster.
NLR genes are among the fastest evolving gene families in plants,
and we found considerable variation in the branch lengths among
clusters, possibly indicating different evolutionary rates (Tucker
et al., 2013). The NLRs often form tandemly arrayed gene clusters,
which may be a critical contributor to their fast pace of structural
and functional diversification (Michelmore and Meyers, 1998;
Meyers, 2003). Frequent homologous recombination events and
errors produced during the process, followed by diversifying
selection, may generate the structural diversity needed to match
high effector evolution rates in the pathogens (McDowell and
Simon, 2006; Jacob et al., 2013). In particular, we found
multiplication in the number of homologs of Arabidopsis
RPP13 across several clusters (Supplementary Table 7). RPP13
is involved in defense against downy mildew (Peronospora
parasitica) in Arabidopsis, as well as other defense processes
and signaling (Bittner-Eddy et al., 2000; Rentel et al., 2008),
and one of these paralogs showed differing expression patterns
in resistant vs susceptible phenotypes. While none of the
clusters had significant dN/dS values, several individual loci
were found to be under selection in 25 of the clusters. The
Arabidopsis homolog of the cluster 14, having the highest
number of loci under selection, has been suggested to be
involved in recognition of the conserved effectors AvrE and
HopAA1 (Laflamme et al., 2020). The H statistic identified the
same transcripts as the dN/dS analysis (18 transcripts), plus
four other NLRs, including the specific homolog of RPP13
with high expression values in resistant phenotypes. Altogether,
the analysis suggests this gene to be a good candidate for
further studies.

Overall, the NLR transcripts were differentially expressed
in response to the pathogen treatment and this response
varied according to genotype. While we observed elevated NLR
expression levels in response to the pathogen, this was not
consistent across transcripts and genotypes, which is in line with
recent studies on crop plants testing different genotypes (Sari
et al., 2017, 2018; Cruz-Miralles et al., 2019). Plants have evolved
mechanisms to stabilize their basal expression levels, and to
reduce the fitness costs of an overexpressed immune response
that could have more deleterious effects on plant fitness than the
infection (Fei et al., 2013). This may explain the down-regulation
of some of the NLR transcripts we observe in both susceptible and
resistant phenotypes. We acknowledge that temporal analysis of
expression patterns could yield further insight into the dynamics
of the resistance response. Future studies are needed to determine
how sensitive the detection of NLRs and their expression patterns
are to the sampling time.

CONCLUSION

Characterizing the architecture of resistance in natural host
populations may yield unprecedented light on the potential of
evolution to generate variation, and it can have broad and
long-lasting impacts in our food production environments.
Toward this end, we studied the transcriptional response of
P. lanceolata to its obligate biotroph pathogen, P. plantaginis.
Our analysis demonstrated that resistance emerges as a result
of crosstalk between plant’s defense mechanisms and signaling
pathways and although there are some similarities between
resistant and susceptible phenotypes the differences manifest
themselves in a genotype-dependent manner. We further studied
the repertoire of candidate NLRs in P. lanceolata and found
evidence of selection generating diversity in a subset of the
identified NLRs, with one candidate NLR showing significantly
elevated expression levels among resistant phenotypes and signs
of positive selection. This study highlights the importance of
investigating resistance responses across several genotypes as
they may contribute to population-level resistance via different
resistance strategies. This could have major implications for our
understanding of the evolution of disease resistance in plants in
the wild, and has the potential to guide improved crop resistance
and food security.
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