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Wheat (Triticum aestivum L.) is the most widely grown cereal crop in the world and is
staple food to half the world’s population. The current world population is expected
to reach 9.8 billion people by 2050, but food production is not expected to keep
pace with demand in developing countries. Significant opportunities exist for traditional
grain exporters to produce and export greater amounts of wheat to fill the gap. Karnal
bunt, however, is a major threat, due to its use as a non-tariff trade barrier by several
wheat-importing countries. The cultivation of resistant varieties remains the most cost-
effective approach to manage the disease, but in countries that are free of the disease,
genetic improvement is difficult due to quarantine restrictions. Here we report a study
on pre-emptive breeding designed to identify linked molecular markers, evaluate the
prospects of genomic selection as a tool, and prioritise wheat genotypes suitable for
use as parents. In a genome-wide association (GWAS) study, we identified six DArTseq
markers significantly linked to Karnal bunt resistance, which explained between 7.6 and
29.5% of the observed phenotypic variation. The accuracy of genomic prediction was
estimated to vary between 0.53 and 0.56, depending on whether it is based solely on
the identified Quantitative trait loci (QTL) markers or the use of genome-wide markers.
As genotypes used as parents would be required to possess good yield and phenology,
further research was conducted to assess the agronomic value of Karnal bunt resistant
germplasm from the International Maize and Wheat Improvement Center (CIMMYT). We
identified an ideal genotype, ZVS13_385, which possessed similar agronomic attributes
to the highly successful Australian wheat variety, Mace. It is phenotypically resistant
to Karnal bunt infection (<1% infection) and carried all the favourable alleles detected
for resistance in this study. The identification of a genotype combining Karnal bunt
resistance with adaptive agronomic traits overcomes the concerns of breeders regarding
yield penalty in the absence of the disease.

Keywords: Karnal bunt resistance, Tilletia indica, wheat, Triticum aestivum, genome-wide association study,
GWAS, genomic prediction, grain yield
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INTRODUCTION

Wheat (Triticum aestivum L.) is the most widely grown cereal
crop on the planet, a staple of the world economy, supplying
one fifth of calories consumed by people each day (Anonymous,
2020). The current world population of about 7.7 billion is
expected to increase and reach 9.8 billion people by 2050.
To accommodate the increased demand for food, annual
cereal production will need to rise by about 60–70% from
the current level of 2.8 billion tonnes. For various reasons,
however, production is not expected to keep pace with demand
in developing countries, and their net imports of cereals
are projected to more than double from 135 million metric
tonnes in 2008/2009 to 300 million metric tonnes in 2050
(Food Agriculture Organization 2009). This gap can be bridged
by increased imports, and significant opportunities exist for
traditional grain exporters, including Australia, to produce and
export greater amounts of wheat over the next few decades
(Linehan et al., 2012). Karnal bunt, a disease caused by the fungus
Tilletia indica Mitra [syn. Neovossia indica (Mitra) Mundkur],
is a threat to grain export (Joshi et al., 1983), due to its use as
a non-tariff trade barrier by several wheat-importing countries
(Beattie and Biggerstaff, 1999). The disease has minimal impact
on wheat grain yield (Warham, 1986; Murray and Brennan,
1998) but the infected grains exude an unpleasant, rotten fish
odour due to a chemical (trimethylamine) produced by the fungal
spores (Mitra, 1935). Trimethylamine is associated with multiple
diseases in humans, including renal disorders, cancer, obesity,
and cardiovascular diseases (Chhibber-Goel et al., 2016).

Control of this disease is difficult because teliospores of the
fungus are resistant to physical and chemical factors (Fuentes-
Dávila et al., 2018), the fungus causes local infections (Fuentes-
Davila, 1996), and teliospores may remain dormant for more
than 32 months (Babadoost et al., 2004). The cultivation of
resistant varieties remains the most cost-effective approach to
manage the threat of incursions into countries free of the disease
(Singh et al., 2007; Emebiri et al., 2019a). Sources of resistance
have been identified in the wild relative of wheat, Aegilops
tauschii (Chhuneja et al., 2008), and in synthetic hexaploid wheat
(Mujeeb-Kazi et al., 2006), but resistance in common wheat
is limited (Fuentes-Dávila and Rajaram, 1994), and as such,
progress in breeding resistant varieties has remained modest. In
most wheat-exporting countries that are free of the disease, there
are no breeding efforts due to cost burdens and the low return on
investments, which in the absence of an incursion, is zero (White
et al., 2016). Availability of molecular markers closely linked to
resistance genes could be incentivising, as it has the potential
to improve selection (Singh et al., 2012; Emebiri et al., 2019b),
but efforts in the past have also been modest. Quantitative trait
loci (QTL) associated with Karnal bunt resistance in common
wheat have been identified in the past (Nelson et al., 1998;
Singh et al., 2003; Singh et al., 2007, 2012; Kumar et al., 2007,
2015; Kaur et al., 2016), but these studies were based on a small
number of restriction fragment length polymorphisms (RFLP)
and PCR-based simple sequence repeats (SSRs). Recently, the use
of high-density single nucleotide polymorphism (SNP) arrays in
genome-wide association studies (GWAS) have been reported

(Brar et al., 2018; Emebiri et al., 2019b; Gupta et al., 2019;
Singh et al., 2020), which offers new opportunities for marker-
assisted selection (MAS). However, the focus of many plant
breeders has now shifted from the use of MAS to the application
of genomic selection.

Genomic selection, first introduced by Meuwissen et al.
(2001), would be an attractive tool for pre-emptive breeding
against exotic pathogens, as it would reduce the challenges of
phenotyping (Poland and Rutkoski, 2016). Genomic selection is
a two-stage process in which whole-genome markers are used to
predict genomic estimated breeding value (GEBV) of individuals
in a population, and then selection decisions are made on the
basis of these GEBVs (Meuwissen et al., 2001). In the best-
case scenario, breeders can select the best performing genotypes
from the population for use in their crossing block, without
the need to phenotype the plants themselves. The potential
for genomic selection has yet to be evaluated for Karnal bunt
resistance in common wheat. The prediction accuracy depends
on the trait’s heritability, and for Karnal bunt resistance, the
estimates are quite high (ranging from 0.75 to 0.91) (Brar et al.,
2018; Emebiri et al., 2019a; Gupta et al., 2019; Singh et al.,
2020) due to the well-established protocol for disease screening
(Fuentes-Dávila et al., 1995).

The International Maize and Wheat Improvement Center
(CIMMYT), Mexico, develops novel common wheat germplasm
carrying Karnal bunt resistance genes (Singh et al., 2016). Some
of the lines were derived from crosses that include Munal#1
(now released as Super 172) and synthetic hexaploids (Mujeeb-
Kazi et al., 2006) as parents, and some were developed from
backcrosses to commercial varieties, such as Batavia, and Pastor.
The lines are important pre-emptive breeding tools to prevent
the spread of this quarantined disease into countries that
are currently disease-free. However, many other variables are
involved in grower uptake of new varieties, with grain yield
as the ultimate determinant of which variety the farmer will
grow in any given season. In the absence of a disease pressure,
genetic resistance may in fact become a liability (yield penalty),
as demonstrated in numerous studies (Brown, 2002; Ning et al.,
2017). Sharp et al. (2002), for instance, observed that while
the Wsm1 gene in wheat provided the most effective resistance
to wheat streak mosaic virus, a mean yield reduction of 21%
occurred in the absence of the virus. The wheat stem rust
resistance gene, Sr26, has a 9% yield penalty (Brown, 2002), and
the barley (Hordeum vulgare) mlo resistance gene has a 4.2% yield
penalty (Jorgensen, 1992). This is because genetic resistance is
an on-going process, and plants expend metabolic energy that
might otherwise be converted to yield. In the absence of the
pathogen, existence of a yield penalty for Karnal bunt resistance
will outweight the value of the resistance gene (Oliver et al., 2014;
Ning et al., 2017), and breeders will be further discouraged from
adopting and using improved germplasm in their programmes
for fear of upsetting the established phenology and yield profiles.

The key to pre-emptive breeding would be to provide breeders
with a package of molecular markers and resistance genes in
genetic backgrounds that will not upset established yield and
phenology profiles, as there is no point selecting less susceptible
varieties if there is an opportunity cost of lower yield without
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disease. In this paper, we report a research on pre-emptive
breeding for Karnal bunt resistance designed to identify linked
molecular markers, assess prospects of genomic selection as a
tool, and prioritise wheat genotypes suitable for use as parents. To
identify such genotypes, we performed field experiments over two
years to compare their agronomic values with those of reference,
commercial varieties.

MATERIALS AND METHODS

Plant Materials
The germplasm materials consisted of 242 genotypes, made
up of 177 bread wheat varieties, 8 durum wheat, 11 triticale,
and 46 Karnal bunt-resistant germplasm lines (KBRL). The
KBRL were developed at the CIMMYT, and imported into
Australia through the CIMMYT-Australia-ICARDA Germplasm
Evaluation (CAIGE) suite of projects.1 The wheat varieties
represent parents used in breeding programmes, historical
varieties, and current commercial varieties that are still being
cultivated. These were mainly bred in Australia, but some
originated from the United States, Brazil, Canada, China, Mexico,
New Zealand, and India, providing a global resource for genetic
analysis. The bread wheat lines include Super172 (synonym
Munal-#1), used as the resistant check, and the highly susceptible
Indian wheat variety WL-711 (synonym WL-711-0IND) used as
a susceptible check. The names of the varieties, year of release and
pedigrees are listed in Supplememntary Table 1.

Disease Phenotyping
Phenotypic data on Karnal bunt resistance collected from
Australian wheat varieties and CIMMYT advanced breeding lines
were used. The data for the Australian varieties were derived
from field experiments (Emebiri et al., 2019a) conducted during
three consecutive cropping seasons (2014–2015, 2015–2016, and
2016–2017), at the Norman E. Borlaug Experimental Station,
the CIMMYT, Obregon. The data on CIMMYT breeding lines,
collected over three planting dates, were kindly provided by Dr.
Ravi P. Singh as part of the materials delivered through CAIGE
project. In these data, Karnal bunt resistance was calculated as
the percentage of infected grains in each ear (Fuentes-Dávila
and Rajaram, 1994), but to rate the genotypes consistently
across data sets, those with infection levels of 0–2.5% were
rated as resistant, 2.6–5% as moderately resistant, 5.1–10% as
moderately susceptible and greater than 10% as susceptible
(Gaudet et al., 2001).

Genotyping
Genomic DNA was isolated from the leaves of individual lines
as described in Tan et al. (2015) and genotyped using DArT-
Seq technology (Diversity Arrays Technology Pty Ltd., Australia).
The polymorphisms were scored as binary data (0/1), indicating
the presence/absence of SNP in the genome of each sample.
The DArTseq data were filtered for quality, first by removing
duplicates and monomorphic markers; then by retaining markers

1http://caigeproject.org.au/

on the basis of CallRate (≥0.95), reproducibility (≥0.95), minor
allele frequency (≥0.05), and percent missing data (≤15%). The
final molecular marker data set comprised of 8,012 loci scored
on 177 hexaploid genotypes. All heterozygotes were treated
as missing data, and the corresponding values were imputed
using the Random Forest regression method in R package
(Stekhoven and Bühlmann, 2012).

Genetic Structure and Linkage
Disequlibrium
Genetic structure was analysed using algorithms implemented
in the adegenet package (Jombart, 2008). First, we ran the
snapclust function to select the optimal number of genetic
groups, based on a statistical measure of goodness of fit, the
Bayesian Information Criterion (BIC). Then, a discriminant
analysis of principal components (DAPC) was applied, which
combined PCA with discriminant analysis to maximise between-
group differences while minimising the within-group variation
(Jombart et al., 2010).

Linkage disequilibrium (LD) (statistical association between
allelic variants) was calculated in plink v1.9 (Purcell et al., 2007)
as the squared correlation coefficient (r2) between alleles at pairs
of loci within each chromosome. The analyses were carried out
with a molecular data set that was thinned down evenly across the
genome to a window size of 8 kb. The decay of LD over genetic
distance was examined by plotting the pair-wise LD against
distance, and fitting a decay curve, established by square root
transformation of the predicted LD values calculated according to
Andreescu et al. (2007). The background r2 value was calculated
as the 95th percentile of all LD values between markers located
on different chromosomes, assumed to unlinked (Breseghello and
Sorrells, 2006).

Genome-Wide Association Analysis
Genome-wide analyses were performed with the R package,
lmem.gwaser (Gutierrez et al., 2016), according to the Kinship
model, which had a lambda value of 1.03. It can be described as
follow:

y = xβ+ zu+ ε,

where y is the observed phenotype, x is the molecular marker
score matrix, β is the vector of marker allelic effects, z is an
incidence matrix, u is a vector of random polygene background
effects with Var(u) being 2KVG (K = Kinship coefficients
and VG = genetic variance), and ε is a vector of random
experimental error.

We adjusted observed P-value for multiple testing using
two methods: the method of Li and Ji (2005), which is based
on the effective number of independent tests (alpha level of
0.05) and the false discovery rate (FDR) method of Benjamini
and Hochberg (1995). The method of Li and Ji (2005) was
implemented in the lmem.gwaser package but FDR was calculated
in the R function, p.adjust(). Allelic effects and proportion
of phenotypic variance (R2-values) explained by significant
markers were derived from simple linear regression analyses, with
R2 = SSreg/SStot , where SSreg is the regression sum of squares and
SStot is the total sum of squares.
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Physical Mapping
Significant markers were assigned to physical positions in
megabase pairs (Mbp) by nucleotide BLAST (BLASTN) search
(E-value threshold = 1E-5) against the IWGSC RefSeq v1.0
Chinese Spring assembly,2 using the marker sequence for query.
High-confidence candidate genes closely matching the marker
sequence were obtained in a window size of estimated LD
each side of the marker. The results were further refined with
the JBrowse tool (Buels et al., 2016) to identify nearby wheat
expressed sequence tags (wEST), and this allowed assigning the
markers to physical bin positions on the deletion maps of the
Chinese Spring cultivar.

Prediction of Karnal Bunt Resistance
Two scenarios were considered for genomic prediction: (1) the
use of only the markers identified in GWAS analysis (QGBLUP),
analogous to marker-assisted selection strategy and (2) the use of
genome-wide markers to predict the performance of individuals
for which genotypic data is available, but not the phenotypes. The
analysis was carried out using the genomic best linear unbiased
prediction (GBLUP) model (Meuwissen et al., 2001), in which the
G-matrix was calculated using either the six significant markers
identified in GWAS, or the genome-wide markers, depending
on the approach. In both cases, accuracies were determined
from a fivefold cross-validation scheme, in which 80% of the
genotypes were randomly assigned to a training set (TRN) and
the remaining 20% to a testing set (TSN). This was repeated 100
times, and for each repeat, the individuals in the TRN and TSN
set were randomly re-sampled, the phenotypes of individuals in
the TST set were masked, and then predicted based on the TRN
set. Genomic prediction accuracy was calculated as the Pearson’s
correlation between the actual and the predicted phenotypes of
the lines in the TSN set.

Agronomic Assessment
Field experiments were carried out in 2015 and 2016 cropping
seasons to assess the agronomic value of Karnal bunt-resistant
lines. For this study, 37 of the Karnal bunt resistant lines from
CIMMYT were used. Seven commercial wheat varieties were
included as reference genotypes. These included Super172 (syn.
Munal#1), Axe, Mace, Rosella, Scout, Suntop, and Waagan. Axe
was released in 2007 and is a very early maturing wheat that is
suited for short growing seasons, while Mace, released in 2008,
has broad adaptation, with consistently high yield under a wide
range of conditions. Rosella is a widely adapted winter wheat
used for dual-purpose grazing, while Suntop was released in
2011 as a main season line, with high and stable yields from
low to high yield potential areas. Both Scout and Waagan were
released in 2009. Scout is a mid-season maturity variety with
low screenings and high test weight, and Waagan is a very early
maturing spring wheat, with high yield potential in medium/low
rainfall environments.

The experiments were conducted at the Wagga Wagga
Agricultural Institute, Wagga Wagga NSW, Australia (latitude –
35.05◦ S, longitude 147.35◦ E), on a site with well-drained, sandy

2https://urgi.versailles.inra.fr/blast/

clay loam soil with a greyish brown colour. The experiments were
arrayed in a row-column, p-rep design (Cullis Brian et al., 2006),
with experimental units (plots) measuring 7.5 m2 in area (six
rows with 30 cm spacing, 6 m long, trimmed to 5 m prior to
harvest). Plots were sown with a tractor-mounted Seeder, at a
rate of 60-g seeds per plot. All experiments were fertilised at the
time of sowing with monoammonium phosphate at the rate of
100 kg/ha, and standard operational procedures (irrigation, weed,
pest/disease control) were applied.

Statistical Analysis of Agronomic Data
Data on the following agronomic traits were collected: emergence
counts (number of plants per plot), flowering date (50% awn
emergence), plant height (height from soil to tip of the awns),
NDVI (at anthesis using the GreenSeeker) and grain yield (weight
of the uncleaned seed weight from machine harvests per plot).
At harvest, the uncleaned grains (300 g) were subsampled and
used to collect data on grain size (1,000 grain weight) and grain
plumpness (grains retained over a 2.5 mm sieve).

A two stage approach was used for data analysis. In the
first stage, each trait within an experiment/year was analysed
separately to account for design factors and spatial field variation.
This was performed using a mixed linear model framework
with spatial corrections for field heterogeneity as implemented
in the R package, SpATS (Rodríguez-Álvarez et al., 2018). The
analytical model included data on seedling emergence (count)
per plot as a fixed component to adjust for differences in
plant density. SpATS uses two-dimensional smoothing surfaces
with penalised splines to model the spatial trends within the
field and obtain estimates of predicted means. In the second
stage, adjusted means for the 2 years were jointly modelled to
generate variance components, and a genotype × trait matrix,
which was analysed according to the genotype plus genotype-by-
environment method, as implemented in GGEBiplotGUI (Frutos
et al., 2014). Graphical displays of the output were aided by the R
package, ggplot2 (Ginestet, 2011).

RESULTS

Phenotypic Variation
Broad-sense heritability of Karnal bunt resistance, calculated
as the ratio of genotypic to phenotypic variance components,
was 0.83 ± 0.02, and for narrow-sense heritability, calculated
using a marker-based approach (Covarrubias-Pazaran, 2016), the
estimate was relatively high at 0.61 ± 0.14. These estimates
indicated a large contribution of genetic factors to Karnal
bunt resistance in the wheat accessions. The average percentage
infection in the wheat accessions was 17.5%, with a range of
0.4–51.8%. There were 10 resistant lines, that is, genotypes
with seed infection levels of 0–2.5%. These included seven
KBRL and three cultivated varieties. Sixteen of the accessions
were moderately resistant (% KB infection > 2.5–5%), 46 were
moderately susceptible (>5–10%) and 105 were susceptible (%KB
infection > 10%).
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FIGURE 1 | Population structure in the panel of 177 wheat accessions used for the study. Panel (A) is the optimal number of clusters identified with the find.cluster
function in adegenet (Jombart, 2008). Panel (B) is the DAPC results, showing relative positions of individuals and genetic clusters in the discriminant space (inset is
the PCA eigenvalues).

FIGURE 2 | Plot of average linkage disequilibrium (LD) values (r2) against
inter-marker distances over a short (100 kbp) distance to visualise LD decay.
The decay curve is the square root transformation of predicted LD values
according to Andreescu et al. (2007). The horizontal and vertical dotted lines
indicate the baseline r2 threshold value, and the extent of LD decay,
respectively.

Genetic Structure
Genetic structure analysis was performed to determine whether
the composition of wheat accessions was structured, that is,
differentiated into clusters of closely related individuals, and
which individuals belong to which clusters. Graph of BIC values
showed a minimum value at K = 4, and this was determined to
be the optimal number of genetic clusters in the wheat accessions
(Figure 1A). The DAPC analysis showed clear separation of the
accessions into four genetic clusters (Figure 1B), with sample
sizes ranging from 11 to 79. It was noteworthy that the CIMMYT-
derived Karnal bunt resistant lines cluster together in Pop3
(n = 46), and along with varieties such as Seri-M82, Pastor,

TABLE 1 | Summary of significant markers detected in association mapping of
Karnal bunt resistance in common wheat.

Peak
marker

Chr. Physical
position

(Mb)

Deletion
bin

P-value FDR-
value

Allelic
effect

R-squared
(%)

2282741 1A 481.52 1AL1-0.17-
0.61

2.08E-05 3.33E-
02

1.10 26.91

1249729 2A 723.62 C-2AL1-
0.85

1.45E-04 1.16E-
01

0.92 7.58

1037716 3B 618.02 3BL10-
0.50-0.63

7.64E-07 6.12E-
03

-1.04 29.47

993727 4A 719.43 4AL4-0.80-
1.00

4.44E-05 5.08E-
02

-1.03 26.31

1128414 5A 618.27 5AL17-
0.78-0.87

6.07E-06 2.43E-
02

-1.06 27.87

989877 6B 683.23 6BL5-0.40-
1.00

3.06E-04 1.88E-
01

0.26 8.09

Nominal P-values were adjusted using the false discovery rate (FDR) method
of Benjamini and Hochberg (1995); the explained variation (R-squared) and
allelic effects attributable to each marker were derived from simple linear
regression analyses.

Genaro-F81, and Veery5, they were separate from the other
wheat genotypes. Seri-M82 and Genaro-F81 are semi-dwarf,
historical wheat varieties from CIMMYT, and Pastor is derived
from a cross involving Ser-M82 as a parent. The genotypes in
Pop1 (n = 41) and Pop2 (n = 11) were Australian-bred wheat
varieties, and those in Pop4 (N = 79) were a mixture of global
wheat genotypes. They include Australian varieties such as Axe,
Drysdale and EGA-Burke, the Indian variety WL-711, Canadian
varieties such as AC-Domain and its progeny, AC-Snowbird, the
Chinese variety, Chuan-Mai-18, the Brazilian variety, Carazinho
and the USA variety, Angus.

Linkage disequilibrium (statistical association between allelic
variants) and its decay rate were examined using pair-wise
combinations of markers genotyped across the 21 wheat
chromosomes. The estimate of background LD, calculated from
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FIGURE 3 | (A) Circular Manhattan plot from genome-wide scan with a mixed linear model. The red line is the significance threshold; (B) QQ plots from
genome-wide scan. The late separation between observed and expected P-values in the upper left section represents the significant associations; and
(C) Relationship between number of favourable alleles and Karnal bunt resistance in the wheat accessions.

FIGURE 4 | Prediction accuracy of models for Karnal bunt resistance, using markers detected in GWAS analysis (QTL), and genome-wide markers (WG).

r2 values of unlinked markers was 0.15, which agrees with the
value commonly reported for wheat (Joukhadar et al., 2020). This
value intersected the LD decay line at 62.5 Kbp (Figure 2), and

this represents the extent of LD in the population used for this
study. It represents the mapping resolution of any QTL detected
and was used as the confidence interval.
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TABLE 2 | Spatially adjusted means of check varieties and CIMMYT-derived,
Karnal bunt resistant germplasm.

Source Disease
rating

Grain
yield

(t ha−1)

Flowering
date

(days)

Plant
height
(cm)

1,000
Kernel
weight

(g)

NDVI Plump
grains

(%)

σ2genetic 1.14 22.51 68.44 42.47 0.00 17.96

σ2residual 0.14 4.18 12.56 2.84 0.00 5.343

Heritability 0.94 0.92 0.92 0.97 0.87 0.87

SE heritability 0.08 0.11 0.11 0.04 0.16 0.16

Adjusted genotype means

Axe S 4.75 128.64 85.72 43.90 0.57 91.83

Mace S 5.11 128.75 91.28 41.90 0.57 89.83

Rosella S 5.04 135.14 97.26 38.02 0.51 85.17

Scout S 5.56 129.55 92.28 44.76 0.58 91.72

Suntop S 5.26 130.28 94.08 41.78 0.60 84.34

Super172 R 4.92 130.34 94.66 45.11 0.59 89.02

Waagan S 5.45 128.54 86.36 41.06 0.57 90.39

ZVS13_312 MR 5.35 130.31 93.75 47.87 0.59 91.02

ZVS13_316 MS 4.84 129.95 91.07 47.44 0.61 91.68

ZVS13_385 R 4.69 128.34 89.51 43.93 0.57 89.94

ZVS13_404 MS 5.15 129.13 97.73 44.57 0.60 90.96

ZVS13_406 MR 4.46 128.54 89.66 49.69 0.59 88.86

ZVS13_441 MS 4.79 129.29 99.56 44.67 0.61 92.24

ZWB10_44 R 5.09 128.96 94.61 46.44 0.58 90.29

ZWB10_76 MR 5.36 129.40 99.08 47.03 0.60 89.76

ZWB11_153 MS 4.73 129.06 99.98 49.49 0.60 91.83

ZWB11_172 R 5.07 130.97 97.13 45.16 0.57 91.37

ZWB11_95 MR 5.57 130.55 94.10 44.15 0.58 90.54

ZWB12_103 MS 5.33 128.96 94.81 51.79 0.59 91.94

ZWB12_121 MS 4.75 128.68 94.32 47.88 0.60 91.19

ZWB12_122 MS 5.16 129.22 95.93 47.63 0.63 89.61

ZWB12_123 MS 4.71 129.58 92.15 52.55 0.58 93.66

ZWB12_124 MS 4.93 128.26 88.84 52.70 0.57 93.69

ZWB12_14 R 4.97 129.23 96.78 48.14 0.61 91.46

ZWB12_147 MS 4.65 128.43 96.26 51.82 0.61 93.46

ZWB12_158 MS 4.73 128.72 101.65 47.69 0.59 92.88

ZWB12_16 S 5.14 128.40 93.55 46.60 0.58 92.34

ZWB12_168 S 5.13 130.14 93.86 49.10 0.58 93.11

ZWB12_18 MR 4.57 128.84 92.68 49.05 0.58 93.02

ZWB12_187 MR 5.56 130.75 99.05 48.18 0.62 91.03

ZWB12_189 MS 4.82 127.85 97.52 43.74 0.60 90.55

ZWB12_194 MS 4.79 128.53 94.78 48.26 0.59 92.55

ZWB12_202 S 4.89 128.75 94.30 50.25 0.55 94.61

ZWB12_219 MS 4.75 130.45 96.43 44.21 0.52 88.04

ZWB12_24 MS 4.91 129.47 98.90 47.51 0.60 92.98

ZWB12_29 MS 5.31 130.32 95.10 49.92 0.61 91.83

ZWB12_30 R 5.17 129.73 100.39 50.20 0.59 90.88

ZWB12_31 MR 5.32 129.60 98.16 51.10 0.60 93.32

ZWB12_4 MR 5.20 129.48 95.07 48.22 0.59 90.91

ZWB12_42 MS 5.25 128.84 91.86 48.29 0.60 92.47

ZWB12_62 MR 4.80 129.33 91.24 45.91 0.59 90.12

ZWB12_63 MS 4.73 129.11 94.99 46.19 0.58 89.93

ZWB12_67 MS 5.15 129.40 94.55 46.79 0.58 90.96

ZWB12_86 MS 5.27 128.11 95.54 51.17 0.60 93.19

QTL Identification
There was an evident association between genetic groups and
Karnal bunt resistance in the population, as majority of the
lines in Pop3 were resistant, and separate from the other
groups in the DAPC space (Figure 1B). This association of
population group with resistance was statistically significant, as
determined from a chi-square test of independence (X2 = 54.81,
P-value < 0.001), hence, corrective measures were applied to
adjust for the potential bias in declaring QTL identification.

A Kinship-corrected GWAS analysis identified six markers
that were significantly associated with Karnal bunt resistance,
after controlling for multiple testing using both the genome-
wide threshold and FDR criteria (Table 1 and Figure 3A).
We compared different mixed models and found the kinship
model as the most effective to correct for population structure,
as it produced the lowest genomic inflation factor (lambda,
λgc = 1.03), and the observed P-values showed little deviations
from the expected (Figure 3B). Surprisingly, all the significant
markers were in the A and B genomes, and physically localised
to the long arms of chromosomes 1A, 2A, 3B, 4A, 5A, and
6B (Table 1). The markers explained a large proportion (7.6–
29.5%) of the variation in Karnal bunt resistance, and when
favourable alleles were considered, genotypes with a high number
of beneficial alleles were completely resistant to Karnal bunt
infection (Figure 3C).

Genomic Prediction
There was no difference in prediction accuracy between the
QGBLUP approach and the whole-genome prediction (GBLUP)
approach (Figure 4). In the QGBLUP approach, the prediction
ability for Karnal bunt resistance averaged 0.53 ± 0.003, and
in the alternate approach of whole genome marker prediction,
the accuracy averaged 0.56 ± 0.01. In effect, genomic prediction
using a few, trait-specific markers produced accuracies that
compared favourably with those from whole-genome markers.

Agronomic Profiles
In the agronomic experiments, estimates of trait heritability,
independent of year and heterogeneous field conditions, were
consistently high across traits (Table 2), indicating strong
genotypic main effects. The adjusted trait means were analysed
using the GGE biplot method to allow visual examination of
genotype performance across multiple traits, and identification
of superior individuals. The biplot captured 87.7% of total
variability in the data (Figure 5) and is therefore appropriate
for visualising the relationships among traits. All traits were
equally important, as indicated by the relative length of their
vectors. The biplot showed that grain yield was positively related
to growth duration and biomass production (acute angles),
negatively related to plant height (obtuse angle), and independent
of grain size (near right angles). When the “which-won-where”
function was used to partition the data into a two-dimensional
polygon view, the agronomic traits were grouped into three
major sectors (Figure 5A): phenology (flowering time/plant
height), grain yield (grain yield/NDVI), and grain size (1,000-
kernel weight/grain plumpness). Vertex genotypes in each sector
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FIGURE 5 | GGE biplot of a genotype × trait matrix averaged over two years, using trait-focussed SVP, and Double-Centred GE with scaling by standard deviation.
(A) Polygon plot of “which won where.” The numbers refer to individual wheat accessions (see Table 1), and abbreviations are given for trait names. Flt, flowering
time; Gyld, Grain yield; NDVI, Normalised difference vegetative index; Tkw, Thousand kernel weight; Plht, Plant height. (B) Ranking the accessions in relation to the
“ideal” genotype.

are considered the best/worst for traits within the sector (Yan
and Rajcan, 2002). Thus, the late-maturing variety, Rosella, was
placed at the apex of the phenology sector, while early maturing
varieties, Waagan and Axe, were placed at the vertex of the
grain yield sector (Figure 5A). These varieties were positioned
opposite to the plant height vector, which is consistent with the
negative relationship between plant height and grain yield. Of
the CIMMYT-derived accessions, ZWB12-124 and ZWB12_147,
had the best agronomic values for grain size/plumpness, while
ZWB12_158 and ZWB12_30 were the worst for plant height
(Figure 5A). The mean trait value for all genotypes are presented
in Table 2 to validate the interpretations.

The GGE biplot can also be used to visualise genotype ranking
against the “ideal.” The “ideal” is defined as a genotype that
combines all favourable attributes, and in Figure 5B, the arrow
indicates where the ideal genotype should be. Accordingly, the
ideal genotype is expected to be high yielding, early maturing
and below average in plant height. A performance line passing
through the origin is used as a reference, and a genotype
closer to the “ideal” is considered more desirable than those
further away. As shown in Figure 5B, Waagan, followed by
Mace and Axe are the more desirable of the check varieties,
while Rosella and Suntop were far from the ideal genotype. Of
the Karnal bunt-resistant accessions, ZVS13-385 and ZWB12-
62 were the closest to the ideal genotype (Figure 5B). In
particular, the genotype ZVS13-385 was placed within the same
concentric ring as Mace, which meant it had similar agronomic
attributes. This is relevant information, as Mace is one of
the most widely grown varieties in Australia. DNA analysis
showed that ZVS13-385 possessed all six of the favourable alleles

identified for Karnal bunt resistance, and therefore would be
suitable as a parent for transferring resistance into commercially
acceptable backgrounds.

DISCUSSION

In the first part of this study, we sought to dissect the genetic
basis of Karnal bunt resistance, as the information is essential
for confirming resistance sources, identifying those most suitable
as donor parental lines, and designing strategies to accelerate
transfer of resistance into commercial cultivars. We identified six
DArTseq markers, which explained between 7.6 and 29.5% of the
observed phenotypic variation and were located at chromosome
positions previously reported in the literature (Bishnoi et al.,
2020). When BLASTN search was conducted against the IWGSC
RefSeq v1.0 Chinese Spring assembly, the most frequently
identified putative candidate gene at the QTLs encoded the F-box
domain containing proteins. The F-box proteins are a large
superfamily that play pivotal roles in host-pathogen interactions
through targeting substrates into the degradation machinery
(Cao et al., 2008).

The knowledge that Karnal bunt resistance is mediated
by multiple genes is supported by previous studies, but this
introduces another dimension to the difficulties of breeding for
resistance in the absence of the pathogens (Emebiri et al., 2019b).
The multi-gene control implies that marker-assisted selection by
pyramiding or stacking of favourable alleles may not be successful
(Langridge and Waugh, 2019), because interactions among
QTL/genes and environmental factors can make substantial
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contributions to variation in complex traits such as disease
susceptibility (Carlborg and Haley, 2004). As suggested in
Emebiri et al. (2019b), new and innovative strategies will be
required, and in this study, we assessed the potentials of
the method of genomic prediction as a pre-emptive breeding
tool. For developing the prediction model, we compared the
traditional use of whole-genome markers against the use of a few
significant markers identified by GWAS and found the prediction
abilities to be comparable (Figure 4). This was not surprising,
as genomic prediction accuracy is highly dependent on the LD
between the genotyped markers and actual causative variants (de
Los Campos et al., 2013). The use of significant trait-specific
markers was expected to improve genomic prediction, and in
fact, prior marker selection has been suggested as a strategy
to increase reliability of the genomic estimated breeding values
(Brøndum et al., 2015). Rutkoski et al. (2012) reported that
in wheat, genomic predictions based on QTL targeted markers
for fusarium head blight resistance (deoxynivalenol) alone were
higher than predictions based on genome-wide markers. Other
researchers have also found higher prediction abilities of the
MAS approach over whole-genome prediction (Slavov et al.,
2014; Zhao et al., 2014; Boeven et al., 2016), but Gaikpa et al.
(2020) found the opposite to be the case. Similarly, while some
researchers have found that use of trait-specific markers as fixed
factors increased accuracy of genomic prediction (e.g., Daetwyler
et al., 2014), others have observed no difference (e.g., Rice
and Lipka, 2019). Invariably, this will vary with trait, and the
performance of such a prediction model should be explored on
a trait-by-trait basis prior to its implementation in a breeding
programme (Rice and Lipka, 2019). Karnal bunt resistance in
this population showed high heritability (0.83 ± 0.02), hence
marker-based prediction accuracies were almost comparable to
genome-wide prediction accuracies. This may not be the case in
different populations, but the possibility of using a few significant
markers for genomic prediction would augur well for pre-
emptive breeding against Karnal bunt infection in countries that
are free of the disease, where phenotyping would be difficult
and the costs for high-density genotyping can be limiting. This
is a subject that requires further investigation, as large-scale
studies are showing that, in a high LD crop like wheat, high-
density genomic coverage has minimal impact on the genomic
predictabilities (Juliana et al., 2019).

The identification of parental lines combining Karnal bunt
resistance with adaptive agronomic traits is key to pre-emptive
breeding, as it addresses breeder’s concerns regarding yield
penalty in the absence of the disease. Plant breeders use the GGE
biplot technique for prioritising genotypes for use as parents
in varietal improvement as the regular stability analysis does
not provide information on the relative ranking of entries with
reference to an ideal genotype (Yan and Kang, 2003). The current
research carried out a comprehensive examination of Karnal bunt
resistant germplasm from CIMMYT and has identified an ideal
genotype, ZVS13_385 (TAM200/PASTOR//TOBA97/3/HEILO),
which showed agronomic similarity to the highly successful
Australian wheat variety, Mace (Moffat et al., 2015; Table 2;
Figure 5B). Furthermore, ZVS13_385 is phenotypically resistant
to Karnal bunt infection (<1% infection), and possessed all

favourable alleles detected for major and minor QTL linked to
resistance. This means that it could be used directly as a cultivated
variety, or as an ideal genotype for use in the crossing block.
We conclude that the identification of a genotype combining
Karnal bunt resistance with adaptive agronomic traits negates the
concerns of breeders regarding yield penalty in the absence of
the disease. Using mathematical modelling, Vyska et al. (2016)
showed that even when disease outbreak is uncertain, growing
resistant varieties is an optimal strategy for crop protection as it
reduces the probability of an outbreak occurring. We add that
wide availability of Karnal bunt resistant lines may encourage
countries to relax the zero-tolerance regulation that currently
exists for Karnal bunt, which is quite costly to implement
(Babadoost, 2000; Vocke et al., 2010).
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