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Phosphorus (P) deficiency is a major threat to the crop production, and for understanding

the response mechanism of plant roots, P stress may facilitate the development of

crops with increased tolerance. Phosphorylation plays a critical role in the regulation

of proteins for plant responses to biotic and abiotic stress; however, its functions

in P starvation/resupply are largely unknown for barley (Hordeum vulgare) growth.

Here, we performed a global review of phosphorylation in barley roots treated by P

starvation/resupply.We identified 7,710 phosphorylation sites on 3,373 proteins, of which

76 types of conserved motifs were extracted from 10,428 phosphorylated peptides.

Most phosphorylated proteins were located in the nucleus (36%) and chloroplast (32%).

Compared with the control, 186 and 131 phosphorylated proteins under P starvation

condition and 156 and 111 phosphorylated proteins under P resupply condition showed

significant differences at 6 and 48 h, respectively. These proteins mainly participated

in carbohydrate metabolism, phytohormones, signal transduction, cell wall stress,

and oxidases stress. Moreover, the pathways of the ribosome, RNA binding, protein

transport, and metal binding were significantly enriched under P starvation, and only

two pathways of ribosome and RNA binding were greatly enriched under Pi resupply

according to the protein–protein interaction analysis. The results suggested that the

phosphorylation proteins might play important roles in the metabolic processes of barley

roots in response to Pi deficiency/resupply. The data not only provide unique access

to phosphorylation reprogramming of plant roots under deficiency/resupply but also

demonstrate the close cooperation between these phosphorylation proteins and key

metabolic functions.
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INTRODUCTION

Phosphorus (P) is an essential macronutrient for plant growth,
development, metabolism, and regulatory processes (Lopez-
Arredondo et al., 2014; Cong et al., 2020). However, inorganic
phosphate (Pi), the only form of P that can be acquired by
plant roots, is not readily taken up by roots because of its low
diffusion rate and instability of forms (Wu et al., 2013). Globally,
almost 30% of the cultivated land experiences Pi deficiency
(Macdonald et al., 2011). Therefore, a lot of Pi fertilizer is
applied to low-Pi soils to increase crop yield; however, crops
can acquire, at most 30% of applied Pi, which has led to the
excess application of Pi fertilizers with the phenomenon of
eutrophication of surface waters, and soil hardening (Correl,
1998; Macdonald et al., 2011; Lopez-Arredondo et al., 2014).
In addition, increasing consumption of Pi fertilizer exacerbates
the depletion of non-renewable rock phosphate (Johnston et al.,
2014). Thus, it is critical to understand the mechanism of
Pi homeostasis and to screen Pi-efficient crop genotypes for
promoting Pi-use efficiency.

In order to cope with low-Pi conditions, plants have evolved a
range of elaborate strategies at the morphological, physiological,
and molecular levels to enhance their acquisition efficiency and
utilization efficiency of Pi (Yang et al., 2019). Especially, these
strategies are closely related to root traits including architectural,
morphological, physiological, and symbiotic traits (Niu et al.,
2012; Sawers et al., 2017; Kafle et al., 2019). In addition, high-
and low-affinity Pi transporters are involved in Pi uptake and
transport activities (Parra-Almuna et al., 2020). For example,
the best understood, phosphate transporter 1 (PHT1) is mainly
expressed in roots and is involved in the absorption, distribution,
and remobilization of phosphate (Zhang et al., 2019a; Parra-
Almuna et al., 2020). In addition, changes of root system
architecture involved in plant response to P deficiency are
regulated by various factors, including phytohormones, sucrose,
and transcriptional modification (Chiou and Lin, 2010; Dai et al.,
2016). Transcriptomic, proteomic, and metabolomic platforms
have been applied to characterize the Pi stress response (Sha
et al., 2016; Luo et al., 2018; Ren et al., 2018). A proteomic study
showed that many differentially accumulated proteins took part
in carbon and energy metabolism, signal transduction, secondary
metabolism, and stress defense associated with low-Pi tolerance
in barley (Nadira et al., 2016). Recently, posttranscriptional
modification was shown to play a key role in the plant
response to P deficiency (Park et al., 2014; Yang et al., 2019,
2020; Wang et al., 2021). Arabidopsis thaliana PHOSPHATE2
(AtPHO2) and NITROGEN LIMITATION ADAPTATION
(AtNLA) as E2 conjugase and E3 ubiquitin ligase enzymes,
respectively, were found to degrade several PHT1 members
(Huang et al., 2013; Lin et al., 2013; Park et al., 2014). In
rice, decreased phosphorylation levels of OsMAPK6, OsCK2,
and five calcium-dependent protein kinases (CDPKs) were
found in response to phosphate starvation (Yang et al.,
2019). The OsPP95, a protein phosphatase type 2C (PP2C),
regulates dephosphorylation and transportation of phosphate
transporters to maintain P homeostasis in rice (Yang et al.,
2020).

Protein phosphorylation is widely used to study
posttranslational modifications (PTMs) and mainly effects
the hydroxyl groups of threonine, serine, and tyrosine in
eukaryotic cells (Reinders and Sickmann, 2005). In order to
understand the regulatory mechanisms of the Pi tolerance,
numerous phosphorylation proteins have been identified in
many plants, including A. thaliana, rice, and wheat (Zhang et al.,
2016; Yang et al., 2019). Barley (Hordeum vulgare L.) is one of
the oldest cereal crops and is ranked fourth in the world cereal
production. It is widely used as a major food source, livestock
feed, and raw material for malting and brewing (FAO., 2018)
and displays wide adaptation to extreme environments. After
many years of high-nutrient breeding, crop varieties with good
tolerance to limited nutrients are often eliminated, and most
research on P is derived from model species, not crops (Oldroyd
and Leyser, 2020). Our previous efforts to identify two barley
lines with different P efficiency were screened from cultivated
barley (Ren et al., 2016), but there is little underlying knowledge
of phosphorylation modification under Pi deficiency/resupply
in barley.

In this study, a high P-efficiency barley genotype GN121
was used for a comprehensive phosphorylation analysis under
Pi deficiency/resupply. We adopted high-resolution liquid
chromatography tandemmass spectrometry (LC-MS/MS) linked
to highly sensitive immune-affinity antibody analysis and
powerful bioinformatics, which were used to identify the
substrates and describe the functional characteristics to explore
the interplay of phosphorylation in barley roots. To the best
of our knowledge, this is the first comprehensive analysis
of phosphorylation in barley roots. Our research not only
greatly extends the list of phosphorylated proteins in barley but
also widens the knowledge of P stress response and defense
mechanisms in crops.

MATERIALS AND METHODS

Barley Materials and Growth Conditions
The low-Pi-tolerant barley GN121, which reportedly has strong
resistance to low Pi stress, was used for phosphoproteomics work
(Ren et al., 2018). The nutrient solution and growth conditions
of the hydroponic culture are described by Ren et al. (2018).
Briefly, surface-sterilized seeds were germinated in a Petri dish
on a double-layered filter paper and grown in a greenhouse for
10 days, and then transferred to modified Hoagland hydroponic
nutrient solution containing 0.397mM KH2PO4 (high Pi; +Pi)
or 0.0397mMKH2PO4 (low Pi; –Pi) Pi concentrations. Seedlings
(10 days old) were subjected to low Pi for 48 h and then
resupplied with high Pi for 48 h. The roots were sampled after
Pi starvation for 6 h (P6) and 48 h (P48), and 6 h (R6) and 48 h
(R48) of Pi resupply conditions, the roots before treatment were
used as control (CK). All roots were directly harvested into liquid
nitrogen and stored at−80◦ for subsequent protein extraction.

Protein Extraction
The samples were fully ground to powder in liquid nitrogen
before being transferred to a 5-ml centrifuge tube. Then, 2ml
lysis buffer [8M urea, 1% Triton-100, 10mM dithiothreitol
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(DTT), and 1% Protease Inhibitor Cocktail (Calbiochem,
Darmstadt, Germany)] were added to the powder, and the
mixtures were sonicated three times on ice using a high-intensity
ultrasonic processor. The remaining debris was removed by
centrifugation at 20,000×g for 10min at 4◦C. The proteins
were precipitated with cold 20% trichloroacetic acid for 2 h
at −20◦C. After centrifugation at 12,000×g for 10min at
4◦C, the supernatant was discarded. The remaining precipitate
was washed three times with cold acetone. The protein was
redissolved in 8M urea, and the protein concentration was
determined with a Pierce BCA Protein Assay Kit (Pierce,
Thermo Fisher Scientific, Bonn, Germany) kit according to the
instructions of the manufacturer.

Trypsin Digestion
The procedures were as described by Zhong et al. (2017).
Dithiothreitol was added to the protein solution to a final
concentration of 5mM and reduced at 56◦C for 30min.
Then, this mixture was alkylated with iodoacetamide to
11mM for 15min at room temperature in darkness. The
treated protein samples were then diluted by adding 100mM
triethylammonium bicarbonate (TEAB, Sigma, Germany) to urea
at<2M concentration. Finally, trypsin was added at 1:50 trypsin-
to-protein mass ratio for the first digestion overnight and 1:100
trypsin-to-protein mass ratio for a second 4-h digestion.

Enrichment for Phosphorylated Peptides
To enrich modified peptides, tryptic peptides dissolved in the
NETN buffer (100mM NaCl, 1mM EDTA, 50mM Tris–HCl,
0.5% NP-40 and pH 8.0) were incubated with prewashed
antibody beads (Lot number 001, PTM BIOLABS, Chicago, IL,
USA) at 4◦C overnight with gentle shaking. The beads were
washed four times with the NETN buffer and twice with ddH2O.
The bound peptides were eluted from the beads with 0.1%
trifluoroacetic acid. Finally, the eluted fractions were combined
and vacuum-dried. The resulting peptides were desalted with
C18 Zip Tips (Millipore, Darmstadt, Germany) according to the
instructions of the manufacturer for the LC-MS/MS analysis.

The LC-MS/MS Analysis
The tryptic peptides were dissolved in 0.1% formic acid (solvent
A), directly loaded onto a home-made reversed-phase analytical
column (15 cm length, 75µm i.d.). The gradient comprised an
increase from 6 to 23% solvent B (0.1% formic acid in 98%
acetonitrile) over 26min, 23–35% in 8min, climbing to 80% in
3min, and then holding at 80% for the last 3min, all at a constant
flow rate of 400 nl/min on an EASY-nLC 1000 UPLC System
(Bruker Daltonics).

The peptides were subjected to nanospray ionization (NSI)
source followed by tandem mass spectrometry (MS/MS) in Q
ExactiveTM Plus (Thermo Fisher Scientific, Bremen, Germany)
coupled online to the UPLC system. The electrospray voltage
applied was 2 kV. The m/z scan range was 350–1,800 for a
full scan, and intact peptides were detected in the Orbitrap at
a resolution of 70,000. Peptides were then selected for MS/MS
using normalized collision energy (NCE) setting as of 28, and the
fragments were detected in the Orbitrap at a resolution of 17,500.
A data-dependent procedure that alternated between one MS

scan followed by 20MS/MS scans with 15.0 s dynamic exclusion.
Automatic gain control (AGC) was set at 5E4. Fixed first mass
was set as 100m/z.

Database Search
The resulting MS/MS data were processed using the Maxquant
search engine (v.1.6.6.0; Max Plank Institute of Biochemistry,
Germany). The MS/MS spectra were searched against the human
UniProt database (http://www.ebi.ac.uk/GOA/) concatenated
with reverse decoy database. Trypsin/P was specified as a cleavage
enzyme allowing up to fourmissing cleavages. Themass tolerance
for precursor ions was set as 20 ppm in the First search and 5 ppm
in the Main search, and the mass tolerance for fragment ions was
set as 0.02 Da. Carbamidom108ethyl on Cys was specified as fixed
modification, and acetylation modification and oxidation onMet
were specified as variable modifications. The false discover rate
was adjusted to <1%, and the minimum score for modified
peptides was set >40. A label-free quantification (LFQ) method
was based on extracted ion currents (XICs) and was used to
quantify phosphorylated protein abundance.

Bioinformatics Annotation Analysis
Gene Ontology (GO) annotation proteome was based on three
categories (biological process, cellular component, andmolecular
function) and derived from the UniProt-GOA database (http://
www.ebi.ac.uk/GOA/). Identified protein domain functional
description was annotated by InterProScan (http://www.ebi.ac.
uk/interpro/) based on the protein sequence alignment method.
Eukaryotes database of Wolfpsort (http://www.genscript.com/
psort/wolf_psort.html) was used to identify the subcellular
localization of proteins. Soft MoMo (http://meme-suite.org/
tools/momo), a motif-x algorithm, was used to analyze the model
of sequences constituted with amino acids in specific positions
of modify-13-mers (six amino acids upstream and downstream
of the site) in all protein sequences. STRING database version
10.1 (https://www.string-db.org/) was deployed to analyze
the protein–protein interaction (PPI) of the phosphoproteins
identified in the current study, applying a confidence score of 0.7
(high confidence).

RESULTS

Identification of Phosphorylated Sites and
Proteins in Barley Roots
To investigate the phosphorylation profiling of barley (GN121)
roots under Pi deficiency/resupply, a combination of iTRAQ-
based quantitative proteomic and LC–MS/MS method was
used to identify phosphorylated proteins and phosphorylation
sites (Figure 1). The mass spectrometry data have been
deposited at the ProteomeXchange (http://proteomecentral.
proteomexchange.org/cgi/GetDataset) with dataset identifier
PXD022053 and PXD022077. A total of 7,710 phosphorylation
sites were identified, associated with 3,070 proteins that were
quantified (Figure 2A and Supplementary Table 1). The results
indicated that 50.1% contained a single phosphorylated site,
22.7% contained two phosphorylated sites, 10.6% contained three
phosphorylated sites, and 6.1% contained four phosphorylated
sites. Additionally, the phosphorylated sites of 50 (1.48%)
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FIGURE 1 | The workflow of integrated strategy for global mapping of phosphorylation in barley roots.

proteins were above 10, and there were at least 20 phosphorylated
sites in four proteins (Figure 2B). In addition, we counted
the phosphorylation sites on serine, threonine, and tyrosine.
A total of 11,538 phosphorylation sites were detected, with
9,715 on serine (84.2%), 1,712 on threonine (14.8%), and 111
on tyrosine (0.9%) sites (Figure 2C). The distribution patterns
of phosphorylation types were consistent with other previous
reports on wheat and rice (Zhang et al., 2014a; Zhong et al., 2017).

Motif Analysis of Phosphorylation Sites
To determine the conserved motifs surrounding the
phosphorylation sites, the MoMo software (http://meme-
suite.org/tools/momo) was employed to identify the kinase-
associated phosphorylation motifs of the phosphoproteins.
We extracted a 13 amino-acid sequence centered on the
phosphorylation site and obtained 10,428 distinct sequences,
including 8,978 phosphoserines, 1,428 phosphothreonines,
and 22 phosphotyrosines (Supplementary Table 2). Moreover,
61, 14, and one types of conserved motifs were significantly
enriched around the phosphoserine, phosphothreonine,
and phosphotyrosine sites, respectively (Figure 3 and
Supplementary Table 2). The most common motifs were
“Sxs” with 769 matches, followed by “sP” (679) and “sxS” (557).
There were also more than 400 occurrences each of “PxsP,”
and “Ss,” and over 200 occurrences each of “tP,” “sxE,” “RSxs,”
“sSP,” “Gs,” “sPxxS,” “sxD,” “sxSP,” “Sxxs,” and “Rxxs” motifs, and
also other motifs (Supplementary Figure 1). The “sP” has been
reported to be substrate of mitogen-activated protein kinases
(MAPKs), sucrose non-fermenting1-related protein kinase 2
(SnRK2s), AGC (cAMP- and cGMP-dependent protein kinase
C), and many other kinases (Wijk et al., 2014; Zhang et al.,
2014b). We also identified “Rxxs” and “LxRxxs” motifs that
could be recognized by MAPKK, CaMK (calmodulin-dependent

protein kinase)-II, and protein kinase A. In plants, the “tP”
proved to be the most common phosphothreonine motif (Wijk
et al., 2014), corresponding to MAPK substrates (Yang et al.,
2019). Similarly, the motif “tP” was the most commonly present
around phosphothreonine motifs with 352 occurrences; “Dy”
was the only conserved phosphotyrosine motif in this research.

Functional Characterization and
Subcellular Localization of Phosphorylated
Proteins in Barley Roots
To better understand the potential roles of phosphorylation
in barley roots, the GO analysis was used to assign them to
biological process, molecular function, and cellular component
(Figure 4 and Supplementary Table 3). In the biological
process, most phosphorylated proteins were involved in
metabolic processes (33%), response to stimulus (18%), and
cellular processes (16%) (Figure 4A). The most common
molecular functions were binding (61%) and catalytic activity
(30%) (Figure 4B). For the cellular component, a majority of
phosphorylated proteins were related to organelle (39%), cell
(38%), and membrane (17%) (Figure 4C).

Furthermore, we explored the biological process of
phosphorylated proteins involved in response to stimulus and
signal transduction. In detail, proteins involved in the stimulus
response included calmodulin-binding transcription activator
2 (HORVU4Hr1G078620.5), mitogen-activated protein kinase
1 (MAPK1, HORVU7Hr1G097740.1), polyol/monosaccharide
transporter 5 (HORVU1Hr1G052040.1), and some protein
kinase family proteins. Signal transduction process included
MAPK1, CDPK 19 (HORVU5Hr1G110900.3), ethylene-
insensitive protein 2 (EIN2, HORVU5Hr1G050330.2), abscisic
acid (ABA) receptor PYR1 (PYR1, HORVU3Hr1G031380.1),
and protein kinase. In addition, subcellular localization showed
that proteins were mainly located in nucleus (36%), chloroplast
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FIGURE 2 | The proteome-wide identification of phosphorylation proteins and sites in barley roots. (A) Summary of the phosphorylated proteins and sites identified

and quantified; (B) peptide length distributions of phosphorylation profiles; (C) distribution patterns of phosphorylation occurring on serine, threonine, and tyrosine.

(32%), and cytoplasm (14%). Several proteins were found in
the plasma membrane (9%), mitochondria (4%), endoplasmic
reticulum (13%), and extracellular (1%) (Figure 4D). These
results indicate that the phosphorylated proteins are located
in different cellular compartments and involved in numerous
biological processes in barley.

Design of Venn Diagram and Functional
Analysis of Phosphorylated Proteins
The change of phosphorylation pattern can be used to explore
the potential function of phosphorylation in biological processes
(Hou et al., 2017). We identified differentially phosphorylated
proteins (DPPs) and sites by at least 1.5 quantification ratio
change or more (p < 0.05) within each treatment and
constructed a Venn diagram based on DPPs (Figure 5 and
Supplementary Table 4).

In total, we identified 327 DPPs, of which 209 were
upregulated and 149 were downregulated in barley roots. In
detail, for DPPs upregulated compared with the control, 49,
17, 27, and 19 DPPs were specifically observed at P6, P48,
R6, and R48, respectively; and 10 DPPs overlapped with four
groups. Consistently, for downregulated DPPs, 29 were only
observed at P48 and R6, respectively, and 12 overlapped with
four groups. Many of these overlapping proteins were involved
in different biological processes. For example, AMP deaminase
(HORVU1Hr1G059810.2 and HORVU2Hr1G014130.4)
participated in purine metabolism; a protein kinase superfamily
protein (HORVU7Hr1G055980.7) participated in signal

transduction; and polyol/monosaccharide transporter 5
(HORVU1Hr1G052040.1), trehalose phosphate synthase
(TPS, HORVU1Hr1G076480.3), and phosphoenolpyruvate
carboxylase 3 (PEPC3, HORVU7Hr1G080510.2) participated in
carbohydrate metabolism.

To further understand the characteristics of DPPs, analyses

of GO (biological process, molecular function, and cellular

component), Kyoto Encyclopedia of Genes and Genomes

(KEGG) pathway, and protein domains were performed

(Figures 6, 7 and Supplementary Tables 5–7). The results
showed that the GO terms of DPPs were significantly enriched
at P6/CK, including regulation of translational initiation, cellular
response to iron ion, PEPC activity, actin cytoskeleton, and
nuclear lamina (Figure 6A). The GO terms of DPPs were
significantly enriched at P48/CK, such as ribosomal large subunit
assembly, cellular response to aluminum ion, rRNA binding,
phosphoenolpyruvate carboxy kinase activity, and PEPC activity
(Figure 6B). Consistently, for the P resupply treatment at R6/CK,
the GO terms were mainly enriched in cellular protein complex
disassembly, cellular response to aluminum ion, structural
constituent of the nuclear pore, nuclear pore outer ring, and
RNA binding (Figure 6C). For R48/CK, the GO terms mainly
enriched were 5S rRNA binding, cellular response to interferon-
gamma, kinase binding, rRNA binding, and perinuclear region of
cytoplasm (Figure 6D).

The KEGG pathway analysis showed that the protein
synthesis and degradation (RNA transport, mRNA surveillance
pathway, and ABC transporters) were significantly enriched
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FIGURE 3 | Motif analysis of phosphorylated peptides. (A,C) Top five serine and threonine phosphorylation motifs; (B,D) sequence probability logos of significantly

enriched phosphorylation site motifs for six amino acids around the serine and threonine phosphorylation sites.

for P6/CK, P48/CK, and R6/CK. Furthermore, the metabolic
process (nitrogen and purine metabolism) and biosynthesis
(monoterpenoid biosynthesis) were significantly enriched for
P48/CK and R48/CK (Figures 7A–D). Domain enrichment
analysis showed that the most common forms of phosphorylated
proteins were the domains of adenosine/AMP deaminase,
UBA/TS-N, PB1, Villin headpiece, and La (Figures 7E,F). Above
all, these results proved that phosphorylated proteins widely
participate in diverse pathways in response to the Pi change.

Kinases and Phosphatase Proteins
Protein kinases and protein phosphatases are two vital
antagonistic components involved in protein phosphorylation
(Uhrig et al., 2013). In the present study, a total of 40 and
10 DPPs were identified as protein kinases and phosphatases
under Pi starvation/resupply, respectively. In detail, under the
Pi starvation treatment, 21 kinases and three phosphatases
were identified at P6/CK, and 15 kinases and four phosphatases
were identified at P48/CK. Consistently, under the Pi resupply
treatment condition, 18 kinases and three phosphatases were
identified at R6/CK, and 19 kinases and two phosphatases
were identified at R48/CK. Interestingly, these protein

kinases and protein phosphatases had characteristics of
poly-phosphorylation sites; For example, a protein kinase
superfamily protein (HORVU2Hr1G110900.9) showed
significantly upregulated phosphorylation at a total of six
sites under four different treatments, suggesting that it
was a potential component of the Pi-signaling cascade.
In addition, other enzymes, such as AMP deaminase
(HORVU1Hr1G059810.2 and HORVU2Hr1G014130.4),
DNA helicase MCM8 (HORVU1Hr1G063700.2), TPS
(HORVU1Hr1G076480.3), pyridoxal 5

′

phosphate synthase
subunit PdxS (HORVU2Hr1G065120.1), ubiquitin-

protein ligase 2 (HORVU5Hr1G033930.8), and PEPC3,
had significant changes in phosphorylation level under

Pi starvation and resupply; 26S protease regulatory

subunit 6B homolog (HORVU2Hr1G014000.1), TPS

(HORVU3Hr1G071570.3), HXXXD-type acyl-transferase
family protein (HORVU4Hr1G000930.1), PEPC 1
(HORVU5Hr1G055350.3), and sucrose phosphate synthase
(SPS) 1F (HORVU6Hr1G028330.1) had significant changes in
phosphorylation level under Pi starvation; and ubiquitin-specific
protease family C19-related protein (HORVU2Hr1G100660.2)
had significantly changed phosphorylation level under Pi
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FIGURE 4 | Functional classification of phosphorylated proteins in barley roots based on: (A) biological process; (B) molecular function; (C) cellular component; and

(D) subcellular localization of phosphorylated proteins.

resupply (Supplementary Table 8). Some of these enzymes have
been shown to be extensively involved in the response to low Pi
stress Hu, 2016; Jiang et al., 2018).

Characteristics of the Different
Phosphorylation States of One Protein in
Response to Different Treatments
In this study, seven DPPs showed specific
phosphorylation characteristics in response to both
Pi starvation and resupply (Supplementary Table 9).
For example, the polyol/monosaccharide transporter
5 (HORVU1Hr1G052040.1) had seven different
serine phosphorylation sites with significant
down-phosphorylation, with the exception of
DDEDYAS(1)DHGADDIEDNLNSPLISR. Lupus La
protein homolog (HORVU3Hr1G037470.19) had three
different phosphorylation sites, the phosphorylation of
KT (0.707) T (0.293) PPPVAGEAAVMGAESWPALEEAR
and KT (0.5) T (0.5) PPPVAGEAAVMGAESWPALEEAR
significantly differed for P6/CK and R6/CK, and
LSS(0.013)S(0.987)PHGIPT(0.078)GS(0.654)S(0.267)PIGSVPK

was only identified under P48/CK and R48/CK. The
result suggests that these specific phosphorylation
characteristics of DPPs may play a positive role in response
to changes in P.

Protein–Protein Interaction Network of
Phosphorylated Proteins
To better understand the interactions between phosphorylated
proteins, we created PPI for DPPs under Pi starvation
and resupply stages, respectively (Figure 8 and
Supplementary Table 10). To improve the reliability of PPI
analysis, we retained all interactions that had a confidence
score ≥0.7 (i.e., high confidence). The results showed that
94 DPPs were mapped to the protein interaction database
under Pi starvation (Figure 8A). Of these, 56 were upregulated
and 38 were downregulated, and seven DPPs were identified
with node degree ≥20, including 60S ribosomal protein L5-1
(HORVU5Hr1G092630.1), nuclear cap-binding protein subunit
2(HORVU6Hr1G056260.5), and splicing factor 3B subunit
1 (HORVU6Hr1G020850.3). In general, the proteins were
enriched for the pathway terms: RNA binding, ribosome, protein
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FIGURE 5 | Venn diagram analysis of DPPs under different treatments. (A) All DPPs for the four treatments. The bar charts indicate the number of DPPs under Pi

starvation for 6 h (P6/CK) and 48 h (P48/CK), and Pi resupply 6 h (R6/CK) and 48 h (R48/CK); (B) Upregulated DPPs identified in P6/CK, P48/CK, R6/CK, and

R48/CK; (C) downregulated DPPs identified in P6/CK, P48/CK, R6/CK, and R48/CK. DPPs, differentially phosphorylated proteins.

FIGURE 6 | GO enrichment analysis of DPPs in roots under Pi starvation for 6 and 48 h, and Pi resupply for 6 and 48 h. DPPs, differentially phosphorylated proteins.

(A) GO enrichment analysis of P6/CK; (B) GO enrichment analysis of P48/CK; (C) GO enrichment analysis off R6/CK; (D) GO enrichment analysis of R48/CK.

Frontiers in Plant Science | www.frontiersin.org 8 July 2021 | Volume 12 | Article 676432

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Ma et al. Phosphorylation of Phosphorus Stress

FIGURE 7 | KEGG pathway-based enrichment analysis and protein domain enrichment analysis of Pi starvation and resupply. (A) KEGG pathway-based enrichment

analysis of P6/CK; (B) KEGG pathway-based enrichment analysis of P48/CK; (C) protein domain enrichment analysis of R6/CK; (D) KEGG pathway-based

enrichment analysis of R48/CK; (E) protein domain enrichment analysis of P6/CK; (F) protein domain enrichment analysis of P48/CK; (G) protein domain enrichment

analysis of R6/CK; (H) protein domain enrichment analysis of R48/CK. KEGG, Kyoto Encyclopedia of Genes and Genomes.
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transport, and metal binding. For the Pi resupply stage, there
were 84 DPPs as nodes, of which 59 were upregulated and 25
were downregulated, with the proteins mainly enriched in RNA
binding and ribosome terms (Figure 8B). The phosphorylated
proteins clearly had close interactions in the RNA-binding and
ribosome terms under Pi starvation/resupply, and there were
more phosphorylated proteins and metabolic processes involved
in interactions for the Pi starvation treatment.

DISCUSSION

Reversible protein phosphorylation plays key roles in response
to stress signals and in intracellular coordinating responses (Hu
et al., 2015). In plants, the root is the main organ absorbing
Pi and perceiving external nutrient stimuli (Marchsner, 2012).
Recently, evidence suggests that protein phosphorylation is
extensively involved in P absorption and transport responses to
Pi starvation/resupply (Mehta et al., 2020; Wang et al., 2020a,b).
The present study identified 7,710 phosphorylation sites on 3,373
proteins in barley roots, of which 327 DPPs were identified
that were involved in a variety of metabolic processes and
biological processes, such as signaling transduction pathway,
carbon fixation, and carbohydrate metabolism pathway. The PPI
network analysis also indicated that a wide range of interactions
was regulated by phosphorylation.

Phosphoproteins Involved in
Phytohormone Signaling Pathway
Many phytohormones are involved in P signaling (Rubio et al.,
2009; Wendrich et al., 2020). ABA plays a pivotal regulatory
role in plant abiotic stress responses and can trigger major
changes in plant physiology (Park et al., 2009; Raghavendra
et al., 2010; de Zélicourt et al., 2016), mediated by the RCAR-
PP2C-SnRK2 regulatory modules that are involved in reversible
protein phosphorylation regulating processes (Zhang et al.,
2018). The PP2Cs are key negative regulators of ABA-signaling
pathways, which can inhibit the activity of SnRKs to cause
the signaling cascade (Zhang et al., 2014a). In our study,
two phosphatase 2C family proteins were identified, of which,
HORVU1Hr1G093230.1 was significantly upregulated for 48 h
of Pi starvation, indicating that the protein might actively
participate in Pi tolerance by increasing phosphorylation. The
HORVU7Hr1G049260.4 was significantly upregulated for 6 h
under Pi starvation and resupply conditions, indicating that this
PP2C protein had short-term activity for the P response. In
addition, the KEGG pathway enrichment analysis showed that
these PP2Cs were enriched in phytohormone signal transduction.
The ABA receptors PYR/PYL/RCAR inhibited the activity of
PP2Cs in an ABA-dependent manner (Rubio et al., 2009). The
structure of the PYR1 monomer resembles a folded hand and
completely wraps ABA in its central hydrophobic pocket by
the interactions of polar and hydrophobic character to induce
the PP2Cs to combine on the surface composed of gate and
latch loops (Santiago et al., 2009). In the present study, we
identified a PYR1(HORVU3Hr1G031380.1) protein that was
downregulated at Ser219 under Pi starvation, but which was not

identified under Pi resupply condition. We used the SWISS-
MODEL server (https://swissmodel.expasy.org/) to predict the
3D protein structure models of PYR1, which showed that the
phosphorylated site was present in the C-terminal part of helix
α5 (Supplementary Figure 2); previous research showed that the
Ser152 mutation caused a reduction in the stability of the ternary
ABA–receptor–PP2C complex. Notably, Ser152 is located in the
β7–α5 loop and does not contact the ABA molecule (Park et al.,
2009). Thus, we speculate that the Ser219 phosphorylated in helix
α5 of PYR1 had a positive function in the ABA signaling pathway.

In addition to ABA, ethylene took a key role in mediating
adaptive responses to Pi stress that involved in the morphological
changes of the root systems (Iqbal et al., 2013; Dubois et al.,
2018). Roots treated with P-deficient stress generally produced
more ethylene than P sufficient ones (Gilbert et al., 2000). EIN2
is the central positive regulator in the ethylene signaling pathway,
which indicates CTR1 kinase-dependent dephosphorylation at
several sites that were triggered by ethylene. Meanwhile, the
EIN3/EIL1-dependent ethylene responses were stimulated by
endoplasmic reticulum-nucleus translocation (Qiao et al., 2012).
Most recently, the target of rapamycin (TOR) kinase has
been reported to accurately regulate the phosphorylation of
EIN2, and EIN2 protein plays an important role in regulating
nutrient metabolism in plants under different nutrient levels
and stress (Fu et al., 2021). In our research, the EIN2
(HORVU5Hr1G050330.2) was downregulated in the P6/CK at
Ser269, but was upregulated in the R6/CK at Ser462. Moreover,
the KEGG pathway enrichment analysis showed that EIN2
was enriched in the MAPK signaling pathway and plant
hormone signal transduction. Hence, we speculate that the
ethylene response to Pi starvation was triggered by the EIN2
dephosphorylation, but the ethylene reaction was prevented
under the Pi resupply condition. Interestingly, phosphorylated
EIN2 showed short-term activity at different phosphorylated sites
in Pi starvation and resupply.

Phosphoproteins Involved in the
Carbohydrate Metabolism
In general, Pi that is absorbed by plant roots is esterified into
hexose phosphate and ATP, which can provide energy to drive
protein phosphorylation modification (Plaxton and Tran, 2011;
Yang et al., 2019). However, P deficiency results in the promotion
of glucose metabolism in plants, whereas the content of ATP
decreases (Raghothama, 1999; Cai et al., 2012). Sucrose, a
major regulator of plants, is transported from shoots to roots
via the phloem in response to P starvation and is involved
in morphological changes in roots, including lateral root and
root hair development (Liu and Vance, 2010; Lei et al., 2011).
However, sucrose synthesis is mainly catalyzed by SPS (Wu
et al., 2014; Nemati et al., 2018), a plant-specific enzyme, with its
activity controlled by a complex feedback mechanism, including
phosphorylation/dephosphorylation (Wu et al., 2014). In this
study, a SPS-1F (HORVU6Hr1G028330.1) was only identified
in the Pi starvation treatment and showed a significantly
downregulated phosphorylation level at Ser216, but with no
significant difference after Pi resupply. Previous research showed
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FIGURE 8 | Interaction networks of phosphorylated proteins. (A) The whole PPI network of Pi starvation; (B) the whole PPI network of Pi resupply. Circle size

represents the numbers of DPPs, and red indicates upregulated and blue indicates downregulated DPPs. DPPs, differentially phosphorylated proteins; PPI,

protein–protein interaction.

that the phosphorylation sites of spinach and maize SPS were
regulated by light/dark cycle and occurred at Ser158 and Ser162,
respectively (McMichael et al., 1993; Takahashi et al., 2000).
In addition, osmotic pressure also leads to significant changes
of phosphorylation level in plant SPS (Toroser and Huber,
1997). Overall, the SPS was activated by dephosphorylation and
inactivated by phosphorylation. Therefore, we suggest that SPS
dephosphorylationmay participate in the regulation of sucrose in
barley under Pi starvation. Another example consistent with this

phenomenon is TPS, a key enzyme in the trehalose biosynthetic
process (Tischler et al., 2013). We identified four TPSs with
significant changes in phosphorylation levels, among which
HORVU3Hr1G071570.3 and HORVU6Hr1G084190.1 showed
specific phosphorylation under Pi starvation condition, whereas
HORVU4Hr1G066510.7 showed significantly upregulated
specific phosphorylation under Pi resupply. In particular, the
TPS (HORVU1Hr1G076480.3) showed phosphorylation at four
sites (Ser5, Ser49, Ser70, and Ser71) under Pi starvation and
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FIGURE 9 | Molecular model of the underlying phosphorylation mechanisms involved in Pi starvation/resupply in barley roots.

showed a significant upregulation at Ser70 under Pi resupply. We
speculate that these proteins were beneficial to the response of
roots to P starvation by enhancing phosphorylation at more sites.

In the glycolysis pathway, PEPC is crucial, contributing to
the plant tolerance of Pi starvation (Jiang et al., 2018). It
catalyzes the metabolism of organic acids in roots to facilitate
soil Pi solubilization in the rhizosphere, providing a glycolytic
bypass (together with malate dehydrogenase and NAD-malic

enzyme) to the ADP-limited cytosolic pyruvate kinase and Pi
circulation of PEPC byproduct (Vance et al., 2003; Takahashi-
Terada et al., 2005; Plaxton and Podestá, 2006; Chen et al.,
2007). Previous studies showed that the serine residue of PEPC
was specifically phosphorylated by PEPC kinase, for which
the activity was allosterically controlled by second messengers,
such as Ca2+ (Nimmo, 2003; Izui et al., 2004; Boxall et al.,
2017). In this study, PEPC1(HORVU5Hr1G055350.3) showed
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significantly upregulated phosphorylation at Ser10 and Ser18
in the Pi starvation treatment. In support of our findings,
PEPCs were researched to be phosphorylated in A. thaliana
and Lupinus albus during Pi starvation (Uhde-Stone et al.,
2003; Chen et al., 2007), and there was no detectable PEPC
phosphorylation after Pi resupply (Gregory et al., 2009). In
addition, we also identified a PEPC3 (HORVU7Hr1G080510.2)
that showed downregulated phosphorylation at Ser13 for both
Pi starvation and resupply. Previous studies found that plant
PEPCswere activated by phosphorylation of the highly conserved
Ser11 residue located near the N termini of PEPC1 and PEPC2,
and the process reduced the sensitivity of PEPC to allosteric
inhibitors, and increased its affinity to PEP (Li et al., 2020).
Comparing PEPC sequences of barley with that in A. thaliana
showed that two barley phosphorylated sites of Ser18 in PEPC1
and Ser13 in PEPC3 corresponded to the conserved site Ser11 in
A. thaliana (Supplementary Figure 3). Notably, Ser10, a serine
phosphorylation site, was identified for 6 h after Pi resupply
in our research. There were three serine sites in PEPC1 and
four serine sites in PEPC3 of barley that were close to the
Ser11 site in A. thaliana. Thus, we speculate that these potential
phosphorylation modification sites may play an active role at
different stages of P starvation.

Fructose-bisphosphate aldolase is a key enzyme in glycolysis
and gluconeogenesis. A previous study in drought-tolerant
tomato showed that the gene encoding fructose-bisphosphate
aldolase was downregulated by drought stress (Gong et al.,
2010). In maize, drought, heat, and combined drought and heat
stress resulted in increased phosphorylation levels of fructose-
bisphosphate aldolase, but decreased protein expression (Hu
et al., 2015). A proteomic study in rice roots showed that fructose-
bisphosphate aldolase, phosphoglycerate mutase, and other
related proteins related to glucose metabolism were upregulated
by low Pi stress (Hu, 2016). In our study, we found that a
fructose-bisphosphate aldolase 2 (HORVU3Hr1G088540.1) had
downregulated phosphorylation for 6 h under Pi starvation.
We speculated that reversible phosphorylation of fructose-
bisphosphate aldolase might play an important role in plant
adaptation to a wide range of abiotic stress, including
Pi starvation.

Phosphoproteins Involved in Signal
Transduction
In numerous plant responses to abiotic stresses, Ca2+ is regarded
as the second messenger in intracellular signaling (Davies, 2014).
In P-deficient rice, Ca2+ concentration decreased in roots and
increased in shoots and was possibly involved in regulating the
Pi starvation response (Yang et al., 2019); in Chlamydomonas
reinhardtii, two CDPKs (CDPK1 and CDPK3) were regulated
by P and nitrogen starvation (Motiwalla et al., 2014). As Ca2+

sensors, CDPKs, calmodulin, and calceneurin B-like proteins
play important and extensive roles in plant responses to several
abiotic stresses (Luan et al., 2002; Hamel et al., 2014). Especially,
CDPKs participate in various signal transduction pathways, such
as ABA, drought, high salt, oxidative bursts, and osmotic stress
(Motiwalla et al., 2014). In the current study, we identified two
CDPKs that had significantly changed phosphorylation levels. In
detail, CDPK33 (HORVU2Hr1G046660.6) showed upregulated

phosphorylation in two sites (Ser13 and Ser32) for 6 h under
the Pi starvation condition; CDPK19 (HORVU5Hr1G110900.3)
showed increasing phosphorylation trends for 48 h
after Pi starvation and resupply, indicating temporal
specificity of phosphorylation. The CDPK family protein
HORVU6Hr1G066470.4 showed upregulated phosphorylation
level at Ser39 for 6 h under the Pi starvation condition, indicating
that upregulated phosphorylation of some CDPKs might
increase their activity in response to Pi starvation. However,
calcium-dependent lipid-binding (CaLB) family protein
HORVU2Hr1G036050.1 had downregulated phosphorylation
at Ser474 under Pi starvation. In addition, we found that the
phosphorylation level of calmodulin-binding transcription
activator 1 (HORVU2Hr1G029780.1) and calmodulin-binding
transcription activator 2 (HORVU4Hr1G078620.5) showed
significantly upregulated phosphorylation at different serine
phosphorylation sites under Pi starvation/resupply. These results
indicate potential differences between periods and changes in P
content in the phosphorylation modification of Pi homeostasis.
As CaLB, annexins (such as AtANN1, OsANN1, OsANN3,
and OsANN10) may be involved in Ca2+ channel regulation,
peroxidase, and ATPase/GTPase activities in response to abiotic
stress (Richards et al., 2013; Qiao et al., 2015; Li et al., 2019; Gao
et al., 2020). In this study, annexin 4 (HORVU1Hr1G057170.11)
had significantly increased phosphorylation levels under the
Pi resupply condition. This indicates that annexin 4 may have
a positive function in sensing changing signal responses to
Pi resupply.

The ubiquitin proteasome system regulates PTM in plants
and mainly participates in plant hormone responses and
abiotic stress (Liu et al., 2020). However, phosphorylation
usually functions as a tuning switch to govern ubiquitination
pathways because of the lower energetic cost of a single
kinase and ATP relative to ubiquitination, which has a higher
energetic cost with its cascade of E1, E2, and E3 enzymes plus
ubiquitin (Filipčík et al., 2017). In this study, we identified
six ubiquitin-related proteins that had significantly changed
phosphorylation level under Pi starvation/resupply, such
as an ubiquitin family protein (HORVU1Hr1G052260.3),
an ubiquitin-specific protease family C19-related protein
(HORVU2Hr1G100660.2), ubiquitin-conjugating enzyme
23 (HORVU3Hr1G004520.12), ubiquitin carboxyl-terminal
hydrolase 13 (HORVU3Hr1G075220.5), ubiquitin carboxyl-
terminal hydrolase 26 (HORVU4Hr1G071690.11), and
ubiquitin-protein ligase 2 (HORVU5Hr1G033930.8). In
particular, ubiquitin-specific protease family C19-related
protein and ubiquitin-conjugating enzyme 23 had significantly
downregulated and upregulated phosphorylation under
Pi resupply, respectively; and ubiquitin family protein
(HORVU1Hr1G052260.3) phosphorylation was significantly
upregulated at Ser31 at P48/CK, but downregulated at R48/CK.
Previous studies have found that ubiquitin phosphorylation
occurred on most eligible serine, threonine, and tyrosine
residues (Swaney et al., 2013); the phosphorylation of Ser65
of ubiquitin, the phospho-ubiquitin event driving Parkinson’s
disease key enzymes of PINK1 or Parkin-Ubl is crucial to
activate their activities and respond to mitochondrial damage
(Ordureau et al., 2014; Pickrell and Youle, 2015). Thus, we
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speculate that these ubiquitin proteins may trigger a more
sophisticated response to P starvation by regulating the
phosphorylation level.

Many MAPK cascades are involved in plant responses
to P (such as OsMAPK4, OsMAPK6, TaMPK6, and
TaMPK1) (Wen et al., 2014; Yang et al., 2019), and the
phosphorylation/dephosphorylation of the MAPK cascade
is crucial for activation of enzymes that participate in
transmitting and amplifying signals from specific environmental
stimuli (Jonak et al., 1994). We found that a MAPK1
(HORVU7Hr1G097740.1) had downregulated phosphorylation
at Ser193 under Pi resupply.

Phosphoproteins Involved in Cell-Wall
Stress
Primary cell walls consist of cellulose cross-linked by
hemicelluloses or pectins (Tenhaken, 2015), and previous
research has reported the involvement of the cell wall in
plant responses to Pi starvation (Zhu et al., 2012). In this
study, we found that three cellulose synthase-related proteins
[cellulose synthase 1 (CESA1, HORVU0Hr1G038120.1) and
cellulose synthase family proteins (HORVU3Hr1G071770.1 and
HORVU6Hr1G050750.17)] had upregulated phosphorylation
in response to Pi starvation/resupply. Compared with CK,
the phosphorylation level of CESA1 showed at least nine
quantification ratio changes at Ser226 for P6, P48, and R6.
However, we find no significant phosphorylation for 48 h after
Pi resupply, suggesting that phosphorylated CESA1 might play
important role in the regulation of cellulose synthase in response
to Pi starvation. In addition, the phosphorylation of CESA1
plays a critical role in regulating cell elongation, especially for
rapidly expanding tissues (Chen et al., 2010). A cell-wall protein
AWA1-like (HORVU1Hr1G089280.1) was also identified in
P48/CK, with increased phosphorylation at Ser520. These results
suggested that phosphorylation participated in cell-wall stress
responses in barley roots under Pi starvation.

Many receptor-like kinase members have been found
to perceive abiotic stress signals in the cell wall, and a
large number of signaling proteins, including ABA, second
messengers, reactive oxygen species (ROS), and phosphorylating
transcription factors, are involved in the process of transmitting
stress signals into the cell (Lindner et al., 2012; Wolf et al.,
2012). We found that nine receptor kinases [receptor
kinase 2 (HORVU4Hr1G015770.3, HORVU6Hr1G069980.1,
and HORVU7Hr1G106450.1), receptor kinase 3
(HORVU2Hr1G042490.6, HORVU3Hr1G017020.13, and
HORVU3Hr1G017020.13), receptor-like protein kinase 1
(HORVU4Hr1G019460.1 and HORVU7Hr1G055370.6),
receptor-like kinase 902 (HORVU4Hr1G007550.1)]
and a leucine-rich repeat receptor-like protein kinase
family protein (HORVU4Hr1G066900.1) mostly showed
upregulated phosphorylation under Pi starvation/
resupply conditions.

Phosphoproteins Involved in Oxidase
Stress
The Plant NADPH oxidases participate in responses to various
biotic and abiotic stresses by facilitating the production of

ROS (Wang et al., 2018). In tomato under Pi starvation,
the malondialdehyde and ROS levels increased to induce
oxidative stress (Zhang et al., 2019b). Recently, a study
demonstrated the close relationship between oxidative stress
and root growth in barley (Wang et al., 2019). Maintaining
root growth is a crucial strategy for plants to adapt to Pi
starvation, which requires differential cell-wall synthesis and
remodeling, including the activity of antioxidative enzymes
(Tenhaken, 2015), such as peroxidase and glutathione
S-transferase. We found that a peroxidase superfamily
protein (HORVU5Hr1G037160.3) and a glutathione S-
transferase family protein (HORVU1Hr1G017050.3) had
downregulated phosphorylation under Pi resupply. This
result indicated that the change in the phosphorylation
level of the antioxidative enzymes may regulate their
activity to maintain the ROS balance and protect plants
from damage.

Respiratory burst oxidase homolog (rboh) genes can encode
NADPH oxidase and have been identified in diverse plant
species. In A. thaliana, a total of 10 rboh genes (AtRbohA–
J) have been identified: AtrbohB plays a key role in the seed
after-ripening; AtRbohC, AtRbohH, and AtRbohJ are essential
for polar root hair growth (Mangano et al., 2017); and
AtrbohD and AtrbohF mainly function in stress responses and
phytohormone signaling (Torres et al., 2002; Kwak et al.,
2003; Torres and Dangl, 2005; Desikan et al., 2006). It
was reported that the phosphorylation of RbohF induced
its activity and triggered the Ca2+-ROS signaling network
(Kimura et al., 2012). In the present study, a respiratory burst
oxidase protein F (HORVU3Hr1G087210.2) showed upregulated
phosphorylation at Thr627 under Pi starvation, suggesting that
phosphorylation could participate in ROS metabolism under
Pi starvation.

Model of the Phosphorylation Mechanisms
Underlying Pi Starvation/Resupply in
Barley Roots
To deeply research the biological processes of P response
regulated by phosphorylation, we mainly analyzed the
phosphorylated proteins involved in root growth and
development under Pi starvation/resupply (Figure 9). We
found that these phosphorylated proteins participated
in diverse regulation of the root P responses, including
phytohormone signaling, carbohydrate metabolism, signaling
translation, cell-wall stress, and oxidases stress. For example,
in phytohormone pathway, two phosphoproteins (PP2Cs)
were upregulated and two phosphoproteins (PYR1 and EIN2)
downregulated under Pi starvation condition. For signaling
translation, most proteins were activated by phosphorylation
under Pi starvation conditions, and Ca2+ had one of
the most important roles. In particular, phosphoproteins
related to cell-wall stress took an active role in the root Pi
starvation responses. Additionally, these biological processes
involved in the root P responses are linked by complex
modes of action to perform their functions, and these need
further exploration.
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CONCLUSION

This is the first extensive data on phosphorylation in barley roots
under Pi starvation/resupply. A total of 7,710 phosphorylation
sites corresponding to 3,373 proteins were identified. The
phosphoproteins played key roles in diverse biological processes
and metabolic pathways, especially in phytohormone signaling,
carbohydrate metabolism, and Ca2+ signaling pathways, and
the phosphoproteins involved in signaling pathways differed
between Pi starvation and resupply. Our results not only broaden
the range of metabolic processes known to be regulated by
phosphorylation under Pi starvation/resupply conditions, but
also provide new information for examining the functions of
phosphorylation in barley roots. However, further studies are
needed to reveal the effect of phosphorylation under Pi stress and
to explain the potential mechanisms of response to Pi nutrition
that are regulated by protein phosphorylation.
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construct protein–protein interaction (PPI) network in response to Pi starvation and

Pi resupply.
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