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Unpredicted variability in temperature is associated with frequent extreme

low-temperature events. Wheat is a leading crop in fulfilling global food requirements.

Climate-driven temperature extremes influence the vegetative and reproductive growth

of wheat, followed by a decrease in yield. This review describes how low temperature

induces a series of modifications in the morphophysiological, biochemical, and

molecular makeup of wheat and how it is perceived. To cope with these modifications,

crop plants turn on their cold-tolerance mechanisms, characterized by accumulating

soluble carbohydrates, signaling molecules, and cold tolerance gene expressions.

The review also discusses the integrated management approaches to enhance the

performance of wheat plants against cold stress. In this review, we propose strategies

for improving the adaptive capacity of wheat besides alleviating risks of cold anticipated

with climate change.
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INTRODUCTION

Climate change is among the core problems of recent times, as it is threatening global food
security (FAO, 2020). Uncertain climatic variations poses a severe challenge in fulfilling the future
food demands of a growing population (Röder et al., 2014). Extreme temperature events have
significantly increased over the past few decades (IPCC, 2014). Persistent cold extremes have been
observed in agricultural regions worldwide with varying frequency, intensity, and duration (Kodra
et al., 2011; Augspurger, 2013). This situation halts plant growth by causing mechanical injury and
metabolic dysfunction through ice crystallization (Yadav, 2010).Most of the wheat-growing areas of
the world often undergo low-temperature stress, such as China (Xiao et al., 2018), the United States
(Holman et al., 2011), Europe (Trnka et al., 2014), and Australia (Zheng et al., 2015; Crimp et al.,
2016). Even though some regions noticed reduced winter duration because of global warming as
plant ecologists revealed a paradoxical connection between plant growth and climatic variations,
confirming that upsurge in warm climate increased the risk of cold injury to plants (Gu et al., 2008).

Every year, 85% of the wheat sown area in the world is affected by spring frost, and it usually takes
place during March and April at the early booting stage (Yue et al., 2016). In the spring season,
when wheat canopy temperature falls 0◦C or below, severe frost damage occurs (Frederiks et al.,
2015; Zheng et al., 2015). Thakur et al. (2010) stated that frequent low-temperature spells during
spring cause severe damage to themicro-organelles of the cell, resulting in excessive reactive oxygen
species (ROS) and the occurrence of lipid peroxidation. A short span of freezing air during frost
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stress is disastrous for the vegetative and reproductive growth
of plants (Frederiks et al., 2015). Cold conditions disrupt root
water uptake, and water inadequacy in the stem results in
drought stress (Aroca et al., 2012). This drought condition due
to imbalanced water relations causes disturbance in smooth
nutrient uptake, decreases the root ion absorption rate, and limits
nutrient transport to other plant parts, ultimately resulting in
stunted plant growth (Nezhadahmadi et al., 2013).

In a study by Fuller et al. (2007), two wheat cultivars were
subjected to cold stress in a freezing chamber with different cold
stress treatments for 2 h. Consequently, severe damage to flag
leaves and spikes has been observed and the damage increased
with temperature decrease. Subsequently, it leads to partial to
complete grain yield loss (Fuller et al., 2007). The cold stress
also influences the grain number per spike and grain filling
rate, leading to a substantial reduction in final wheat production
(Thakur et al., 2010). The cold stress-induced yield losses are
characterized by a reduced number of productive tillers, spikes,
and grains per spike, biologically associated with short stems,
lower leaf area, and reduced photosynthetic capacity (Valluru
et al., 2012; Li et al., 2015).

The ability of plants to endure cold without damaging their
growth cycle is called “cold tolerance” (Liu Y. et al., 2019).
The response of plants toward cold stress induction can be
classified into four different phases: (i) initial alarming response,
(ii) acclimation (the increase in freezing tolerance associated with
exposure to low but non-freezing temperatures), (iii) restoration,
and (iv) destruction if stress prolongs or severity increases
(Larcher, 2003). In addition, after cold stress (i.e., the temperature
has risen from cold to optimum), an innate recovery response
is activated, providing plant regeneration, an active process after
stress cessation, and is vital for further growth and development
of plants (Hasanfard et al., 2021). Although the regeneration
capability depends on the intensity of stress earlier encountered
by the plant (Puijalon et al., 2008), it can be enhanced through
exogenous application of certain hormones (i.e., auxin, cytokinin,
and strigolactone) (Ikeuchi et al., 2016). The temperate crop
plants, including wheat, tend to overcome cold stress through
cold acclimation (Theocharis et al., 2012; Li et al., 2014). Cold
acclimation of winter wheat can be acquired via freeze hardening
(the ability of a plant to withstand sub-zero temperature of up to a
specific time limit) (Trischuk et al., 2014). This process is carried
out through many transcriptional and physiological adjustments,
including activation of cold-regulated genes (Zhu et al., 2007;
Majláth et al., 2012), downstream regulation of photosynthesis,
accumulation of osmoprotectants, and stimulation of antioxidant
system (Theocharis et al., 2012).

To maintain yield stability and curtail the negative impact of
sudden cold events, adopting proper managerial, and husbandry
practices (i.e., sowing method, time, and fertilization) are pretty
handy in limiting the risk of frost injury. It is also necessary
to develop cold-tolerant wheat cultivars (Limin and Fowler,
2006; Zheng et al., 2015). The cold-defense mechanism of
wheat can be improved by implementing integrated multi-
disciplinary systems, including screening of cold-tolerant genes
through modern gene mapping techniques and developing
cold-tolerant cultivars, pre-sowing seed treatments, and

applying compatible osmolytes and growth hormones at critical
growth stages.

This article reviews the current research findings on how
extreme climatic events, particularly cold stress, negatively affect
normal wheat growth, development, and yield. It first describes
how cold-induced disruptions affect the morphophysiological
and metabolic processes, leading to the deterioration of
grain quality and lower final grain yield. Following that, it
explains how wheat reacts to cold stress by expressing various
kinds of adaptive responses. Stress avoidance in wheat (the
avoidance of consequences of stress) involves an array of
physiological and biochemical modifications (i.e., biosynthesis
of compatible osmolytes, protective proteins, alteration in
metabolic composition, downregulation of photosynthesis, and
ROS detoxification, etc.) that occur simultaneously. Although
many studies elucidated cold perception and responsive
mechanism in plants, few exist on wheat; this study particularly
emphasizes a better understanding of wheat cold perception,
with counter-responses concerning futuristic management
approaches, as it proposes suitable husbandry practices and
multi-disciplinary strategies that can help to anchor the defense
of wheat against climatic extremes.

RESPONSES TO COLD STRESS

Wheat needs an optimum temperature range for ideal growth
and functioning, and any deviation from it will affect the
normal growth process (Table 1). Cold stress severely curbs
the physiological and biochemical reactions in the plant cell,
which results in leaf chlorosis, wilting, and even necrosis
of plant cells (Ruelland and Zachowski, 2010). This section
briefly discusses how plants perceive low-temperature stress,
cold-induced morpho-physiological alterations, and the survival
response of the wheat plant.

Morphological Responses and Yield
Losses in Wheat
Vegetative Phase
When a plant undergoes cold stress, several morphological
alterations occur (Equiza et al., 2001); subsequently, root-shoot
growth is restricted and productivity is reduced. In winter
cereals, low-temperature stress at the vegetative phase cause
leaves chlorosis and wilting and ultimately leads to necrosis
and inhibited growth (Janowiak et al., 2002). Cold stress
severely affects germination and seedling establishment causes
delayed germination, poor emergence, reduced plant density,
and uneven stand establishment in wheat (Jame and Cutforth,
2004). Winter wheat initially suffers low-temperature stress when
tillering begins andwhenphotosynthate assimilation and nutrient
absorption sites are under development (Rinalducci et al., 2011).
Cromey et al. (1998) exposed wheat plants to freezing stress
(from 0 to −13◦C) in a controlled chamber for 2 h, frost
devastation begins at −3◦C and complete burning of flag leaf
and ears occurred at−7◦C; consequently, a substantial reduction
in grain yield was observed. Similarly, cold exposure at jointing
leads to reduced leaf size, leaf area, and lower shoot biomass
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TABLE 1 | Temperature threshold values for various wheat growth stages.

# Growth phases Min. and Max.

(Tolerable

Temp. Limit)

Optimum

Temp. (Ideal

Growth Cond.)

Optimum duration for growth phases References

1 Germination and emergence (E) >4 and <40◦C 12–30◦C 3.5–10 d (depending on soil moisture) Spilde, 1989; Mian and Nafziger,

1994; Jame and Cutforth, 2004

2 Floral Initiation (GS1- Prior Vernalization) −20◦C*, >20 21–16◦C 20 d (Spring) 35 d (Winter) Evans, 1975

3 Floral Initiation (GS1-Vernalization) 7 and 18◦C

(Spring) 0 and

7◦C (Winter)

4–10◦C 5–15 d (Spring) 30–60 d (Winter) Ahrens and Loomis, 1963; Trione

and Metzger, 1970; Evans, 1975

4 Heading to Anthesis (GS2) >4.5 and <31◦C 12◦C 100 d (Spring) 130 d (Winter) Fischer, 1985; Stapper and Fischer,

1990; Acevedo et al., 2009

5 Anthesis to Physiological Maturity (GS3) >6 and <35.4◦C 21◦C 140 d (Spring) 170 d (Winter) Lyons, 1973; Porter and Gawith,

1999

*Only for winter wheat, while spring wheat shows mild to no response to frost.

(Valluru et al., 2012) and limits the final output (Li et al., 2014).
Additionally, applying freezing stress (−8 and−9◦C) at the stem
elongation stage limits the internode extension, denatures the
spikelets, reduces assimilate transport, restricts the dry matter
accumulation, and causes a significant reduction in grain yield
(Whaley et al., 2004).

Low temperature also affects the root growth of wheat as root
growth is an ecologically controlled parameter (Buriro et al.,
2011; Kul et al., 2020). Root length is more sensitive to sub-
optimal temperature than dry weight. It causes a significant
reduction in root branching and root surface area; consequently,
normal water and nutrient uptake were disrupted (Hussain et al.,
2018). Restricted root surface area inhibits the ability of the plant
to explore the water and nutrients resources (Richner et al., 1996).

In summary, cold stress at the initial seedling stage results
in delayed emergence and poor stand establishment. Prolonged
exposure to cold stress results in stunted growth, diminished
root-shoot surface area, leaf chlorosis, and disturbed water
and nutrient relations. Such indicators lead to a significant
reduction in wheat yield and quality. Additionally, few studies
have investigated roots activity with reference to low-temperature
stress, which needs to be explored.

Reproductive Phase
The reproductive growth phase is more sensitive to cold stress
than the vegetative phase in wheat (Thakur et al., 2010).
The reproductive growth stage begins with flowering, which
continues with floral differentiation (into male and female parts),
sporogenesis, pollen grain and embryo development, pollination,
fertilization, and, finally, grain development. Plant exposure to
cold contact at the reproductive growth phase causes many
structural and functional deformities, leading to a reduction in
growth and development. Chilling at flowering causes flower
shedding, pollen tube deformation (Chakrabarti et al., 2011),
pollen sterility, and ovule distortion (Ji et al., 2017), and before
anthesis, it lowers down the number of grains and disrupts
the grain development (Dolferus et al., 2011; Barton et al.,
2014). Such conditions lead to incomplete fruit setting, which
reduces the final wheat production (Hussain et al., 2018). Though

counterresponse varies at every growth phase, collectively, all
responses are not enough to resist net yield loss.

Imposing chilling and freezing stress at the jointing stage
has severely damaged the morphological attributes (such
as burned leaf blade, chlorosis, decreased shoot biomass,
and denatured spikelets) compared with control (Figure 1).
Assimilates accumulation during grain filling is extremely
sensitive to suboptimal temperature conditions negatively
influencing the grain quality and quantity (Yang and Zhang,
2006). Cold exposure at booting and flowering stages resulted
in a considerable reduction in the number of grains per spike;
consequently, final grain output diminished to 78% (Subedi
et al., 1998). During the reproductive stage, a 1◦C decrease in
temperature below the threshold level may result in a 10–90%
wheat crop damage (Marcellos and Single, 1984; Ji et al., 2017).
A field experiment revealed that frost damage of a 5 day span
(with a temperature range of 0–4◦C) at the stem elongation stage
might cause a nearly 15% reduction in the number of spikes and
ultimately result in 14% reduction in yield loss (Li et al., 2015).
If these frost spells continue, yield losses will be higher (Wu
et al., 2014). In conclusion, the wheat crop is more sensitive to
cold stress at the reproductive stage, especially the frost spells are
disastrous, causing flower shedding, pollen infertility, denatured
spikes, and incomplete/poor fruit setting, resulting in significant
yield losses (Figure 2).

Physiological and Biochemical Responses
and Wheat Yield
Plant physiological processes, such as photosynthesis and
respiration, are more vulnerable to low-temperature stress
(Yadav, 2010). Cold stress induces a series of changes in various
biological and biochemical processes in the wheat plant cell,
including photosynthesis, respiration, water relations, mineral
nutrition, and other metabolic activities (Tables 2, 3). In this
review, we briefly discussed some of these processes.

Cold-Induced Ultra-Structural Impairments
Primarily, cellular membranes are the first site of the plant,
which is directly affected by cold stress repercussions, leading
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FIGURE 1 | Impacts of low-temperature stress on two winter wheat cultivars, XM and YN (XM: XinMai–Cold Sensitive and YN: YanNong–Cold Tolerant), is shown with

the damage induced by cold stress, as compared with control (CK). Wheat cultivars with treatments (A) XMT2D4 [T2 = 4◦C, D4 = 12 h/3 d], (B) YNT2D4 [T2 = 4◦C,

D4 = 12 h/3 d], (C) XMT6D4 [T6 = −4◦C, D4 =12 h/3 d], and (D) YNT6D4 [T6 =-4◦C, D4 = 12 h/3 d) has clearly exhibited the damage induced by cold stress, as

compared with control (CK) treatments of XM and YN. Growth Conditions: Experiment grown under field conditions, before the heading stage shifted to the controlled

chamber (Humidity: 70%, *Light intensity: 0 µmol·m−2·s−1) for 3 days (4 h/day, Midnight: 12:00 a.m.−4:00 a.m.) for low-temperature treatments, then shifted back to

field conditions. Photos were taken before the flowering stage; extracted leaves are flag/2nd leaf. *In this experiment, in night-time, wheat plants subjected to cold

stress, and light intensity set at 0 µmol·m−2·s−1 because, in field conditions of Huanghuai (China), plants experience late spring cold stress after midnight.

(Unpublished: Own Experiment).

FIGURE 2 | Cold-induced reproductive deformities are briefly illustrated with respect to certain growth stages (i.e., flowering, differentiation, assimilate transport, grain

filling, etc.). These growth disruptions result in a substantial decline in final wheat produce.

to other ultra-structural physiological and biochemical changes
(Figure 3). Cold stress induces many ultrastructural alterations
in cold-sensitive plant species (Pomeroy and Andrews, 1978;

Kratsch and Wise, 2000), which causes the imbalance of
membrane fluid content and permeability that leads to
disturbance to all membrane linked physiological and
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TABLE 2 | Morphological traits of wheat with respect to their growth stages, influenced by cold stress.

# Traits Growth stage *Low Temp. &

Duration

Growth

Conditions

Cold induced alterations

compared to control

References

1 Germination and

emergence

Initial seedling

stage (Vegetative)

≤2◦C (>2 d)

Control: 30◦C

Controlled

(Incubator)

Delayed emergence

Poor vigor

Jame and Cutforth,

2004

2 Leaf initiation Seedling growth

(Vegetative)

≤5◦C (12 h to 1 d)

Control: 20◦C

Controlled

(Phytotron)

Leaf initiation ↓

Growth rate ↓ Biomass ↓

Leonardos et al., 2003

3 Ground

cover/stand

establishment

Tillering

(Vegetative)

≤0◦C (> 5 d) Field (Frost spells) Number of tillers ↓

Uneven stand establishment

Stem apex killed

Whaley et al., 2004

4 Peduncle

development

Stem elongation

(Veg. Rep.)

≤2 to −9◦C (≥ 2 d

consecutively)

Field (Frost spells) Internode extension ↓

Stunted peduncle extension

Shoot biomass ↓

Whaley et al., 2004

5 Flag leaf and head

emergence

Jointing

booting

(Reproductive)

≤0 to −2◦C

(24–60 h) Control:

8◦C

Controlled

andOpen-top

Chambers

Delayed floret growth

Leaf chlorosis and wilting

Denatured spikelet

Li et al., 2015; Zhang

et al., 2019

6 Flowering,

Pollination

Anthesis

(Reproductive)

≤ −2 to −6◦C

(2–6 d) Control:

6◦C

Controlled

(Phytotron)

Floret abortion

Anthers desiccation

Flower shedding

Ji et al., 2017

7 Final grain

development

Grain filling

(Reproductive)

≤ −2 to −6◦C

(2–6 d) Control:

6◦C

Controlled

(Phytotron)

Number of grains/spikes ↓

Incomplete fruit setting

1,000-grain weight ↓

Grain Yield ↓

Ji et al., 2017

8 Root growth and

development

– – – Surface area ↓

Thickened primary root axis.

Lateral branches↓

Hydraulic conductance ↓

Nutrient uptake ↓

Siddique et al., 2000;

Farooq et al., 2009

*Temperature mentioned here is a minimum recorded field/phytotron temperature during certain growth phases [Here, ↓ indicates a decrease].

biochemical processes (Bohn et al., 2007; Los et al., 2013).
Most often, these adverse effects are accompanied by structural
alterations in the membrane (Bohn et al., 2007), which were
subsequently followed by cellular leakage of electrolytes and
amino acids, diversion of electron flow toward alternate pathways
(Seo et al., 2010), alterations in protoplasmic streaming, and re-
distribution of intracellular calcium ions. These severe symptoms
are directly correlated with injury to membrane structures of
cells and changed lipid composition. Cold-induced alterations in
crop plants lead to decreased ATP synthase activity, followed by
inhibition of Rubisco regeneration and photophosphorylation
(Yordanova and Popova, 2007). Cold-induced photo-inhibition
subsequently leads to a reduction in photosynthetic activity
(Groom et al., 1990; Oquist et al., 1993). If cold stress remained
for a shorter duration, plants could recover their normal state,
but such a situation is irreversible under prolonged duration.

Photosynthesis
In grains like wheat, photosynthesis, and bio-mass accumulations
are the major sources for grain production and vital physiological
processes in the crop growth phases; these processes are
highly vulnerable to low-temperature stress (Rinalducci et al.,
2011; Khan et al., 2017). It has been reported that cold
stress causes reductions in final yield, which is associated
with a decline in spike number, spike length (Karimi et al.,
2011), biomass, leaf area, size, and carbohydrate metabolic
reactions. Such morphological and physiological alterations are

correlated with reduced photosynthetic efficiency (Theocharis
et al., 2012; Valluru et al., 2012). Research findings revealed
that imposing low-temperature stress (day:night, 5◦C:5◦C)
at the seedling stage resulted in a 45% decrease in the
photosynthetic rate of primary leaves as compared with
control (day:night, 20◦C:16◦C) (Leonardos et al., 2003).
Similarly, in another investigation, when wheat seedlings are
subjected to low temperature (4◦C) in a closed chamber for
7 days, an 18% decrease in photosynthetic activity has been
recorded after 5 h. Over-excitation of photosystem II has been
observed under cold stress, which triggers energy dissipation
through non-radiative reactions (Cvetkovic et al., 2017). The
maximum efficiency of Photosystem II decreased by 18%
after 1 day exposure to cold (Venzhik et al., 2011). Further,
photosynthetic activity in cold-sensitive cultivars is more
sensitive to cold stress than cold-tolerant cultivars (Yamori
et al., 2009). During the jointing stage, cold exposure inhibits
gaseous exchange, thus reducing the quantum efficiency of
photosystem II, resulting in decreased photosynthesis that
leads to a 5–14% reduction in yield (Li et al., 2015). Flag leaf
burning due to freezing stops the photosynthetic activity that
resulted in up to 100% yield losses (Rajcan and Swanton,
2001).

Cold-induced photosynthetic inhibition is due to various
reasons, i.e., reduced chlorophyll synthesis, poor chloroplast
development, diminished efficiency of photosynthetic apparatus,
restricted carbohydrates transportation, limited stomatal
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TABLE 3 | Physiological and biochemical traits influenced by cold stress.

# Processes Effect *Low Temp. & Duration Growth

conditions

Cold Induced alterations

compared to control

References

1 Photosynthesis Poor

photosynthetic

activity

≤5◦C at vegetative phase (1

d) Control: 20◦C

≤4◦C at vegetative phase

(1–7 d) Control: 22◦C

−2 to −6◦C at reproductive

phase (≥2 d) Control: 6◦C

Controlled (Growth

Chambers,

Phytotrons)

Leaf Area ↓

Leaf water content ↓

Chlorophyll a,b synthesis ↓

CO2 Assimilation ↓

Quantum efficiency of PSII ↓

Stomatal conductance ↓

Electron transport chain (ETR) ↓

Enzymatic activity ↓

Photo-inhibition

Source-sink imbalance

Venzhik et al., 2011;

Dahal et al., 2012; Liu

L. et al., 2019

2 Respiration Reduced

respiration rate

4−12◦C at initial vegetative

phase (>12 h) Control: 22◦C

≤5◦C at vegetative phase (1

d) Control: 20◦C

−2 to −6◦C at reproductive

phase (≥2 d) Control: 6◦C

Controlled

(Incubator,

Phytotrons)

Damaged mitochondrial

structure

Kinetics of energy flow ↓

Gaseous exchange ↓

Enzymatic activity ↓

ATP production ↓

Metabolism dysfunction

Energy reserves ↓

Dahal et al., 2012; Li

et al., 2013

3 Nutrient relations Decreased nutrient

uptake and

transport

Disturbed soil physio-chemical

characteristics

Disturbed microbial activity

Reduced root surface area,

thickened primary root axis and

no lateral branching,

Hydraulic conductivity ↓

Imbalanced water relations

leading drought & reduced

phloem activity

Siddique et al., 2000;

Farooq et al., 2009

*Temperature mentioned here is the minimum recorded field/phytotron temperature during certain growth phases, while 20–25◦C is the optimum temperature for efficient biochemical

functioning Austin, 1990 [Here, ↓ indicates a decrease].

conductivity, suppressed Rubisco activity during carbon
assimilation, disrupted electron transport chain, and decreased
energy stock (Bota et al., 2004; Hussain et al., 2018). The
chilling conditions instigate drought stress, which reduces
molecular oxygen and produces ROS that cause severe damage
to photosynthetic apparatus (Basu et al., 2016). During the
vegetative stage, cold stress reduced the leaf area, which is
considered more critical since it reduces photosynthetic activity,
resulting in a source–sink imbalance (Paul and Foyer, 2001; Liu
L. et al., 2019; Liu Y. et al., 2019).

Cold stress disrupts the photosynthetic activity at every
growth stage, resulting in a reduction in photo-assimilation and
assimilate transportation. These conditions lead to significant
yield losses.

Respiration
The cold stress directly or indirectly induces a series of changes
in biological and biochemical functions of the wheat plant,
such as decreased respiration rate, reduced enzymatic activity,
oxidative stress, and deterioration of seed reserves (Li et al., 2013;
Esim et al., 2014). Cold-sensitive plant species, in general, show
imbalanced homeostasis of respiration in leaves compared with
tolerant species (Yamori et al., 2009). A low respiration rate at
the initial seedling stage limits the ATP synthesis; subsequently,
the germination process is hindered (Cheplick and Priestley,

1986). The prolonged cold stress period causes severe damage
to the mitochondrial structure, slows down the flow of kinetic
energy, and disrupts enzymatic activity, ultimately diminishing
the respiration rate (Pomeroy and Andrews, 1975; Ikkonen et al.,
2020). There are not enough literature studies found in this
aspect; particularly for wheat, it is still an under-explored area.

Some studies in soybean reported increased respiration rate
under prolonged cold stress; the reason for such increase
is irreversible metabolism (dysfunction) and accumulation of
oxidized metabolites (Yadegari et al., 2008). Furthermore, it is
evident from investigations that chilling triggers the alternative
respiratory systems in wheat and maize. Such alternative systems
of respiration play a pivotal role in mitigating chilling stress and
reducing mitochondrial structural damage (Ribas-Carbo et al.,
2000; Feng et al., 2008).

Respiration and photosynthesis are vital processes that define
the fate of any plant life. And both physiological processes
are prone to cold stress. Structural injury to mitochondria
interrupts the energy flow; subsequently, the respiration process
is restricted. Such conditions compelled the plant cell to
exploit the energy molecules (ATP); energy imbalance disturbed
the various biochemical reactions inside the plant cell. Rare
studies depict that chilling prompted respiration activity through
adopting alternative respiratory pathways and prevented the
plant from structural damages.
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FIGURE 3 | Cold-induced damage is clearly illustrated, as membranes are primarily the first site to get cold damage, followed by a series of osmotic, enzymatic, and

metabolic alterations inside the plant cell. Plant cells tolerate shorter cold exposure and restore to normal functioning, but prolonged exposure leads to cell death

(Conceived from Seo et al., 2010; Abdel Kader et al., 2011; Theocharis et al., 2012). [Here, ↑ indicates enhanced activity and ↓ shows diminished activity].

Nutrient Uptake and Transport
Low-temperature stress affects cellular turgidity and instigates
drought stress (Yadav, 2010). This drought situation reduces the
root hydraulic conductivity, limits the root growth, and dents
the leaf turgidity in wheat (Siddique et al., 2000), which causes
unavoidable wilting of leaves. Subsequently, water relations,
nutrient uptake, carbohydrate metabolism, and translocation of
assimilates are severely disrupted (Li et al., 1994). Apart from
this, temperature fluctuation trends alter the soil physiochemical
properties that disturb the beneficial microbial activity in the soil
and influence plant-nutrient relationships (Jezierska-Tys et al.,
2012; Massenssini et al., 2015). Further, low temperature slows
down root growth and development by reducing root length
and biomass. Such a reduction in root volume minimizes the
root opportunities to explore new water and nutrient resources;
consequently, mineral uptake is severely reduced (Al-Hamdani
et al., 1990), resulting in decreased aboveground biomass. Despite
the disruption of primary nutrients (NPK), water-deficient
conditions also triggered the micronutrient (i.e., Mn, Zn, Fe,
Mo, etc.) deficiencies in the plant (Gavito et al., 2001), which
otherwise are readily available under well-watered conditions.

In conclusion, there is a direct relationship between nutrient
acquisition concerning soil temperature and available soil
moisture. It is well-evidenced that chilling and drought directly
influence the macro and micronutrient availability, uptake,
inflow transport, enzymatic activity, and other metabolic
activities in plants. Only few previous studies have been reported
on nutrient relations for chilling and drought stress factors;
hence, there is a dire need for further investigation.

COLD TOLERANCE AND MOLECULAR
RESPONSE

Most of the cereal crops tend to survive and continue their
life cycle by developing their tolerance ability under increasing
freezing degrees (Dubcovsky and Dvorak, 2007; Thomashow,
2010), through exhibiting a wide range of genetic expressions;
such a behavior is termed as cold acclimation (Monroy et al.,
2007). Plants having a higher capacity of cold acclimation have
more survival chances (McKhann et al., 2008). Generally, winter
cereals (wheat) have two types of cultivars: cold sensitive and cold
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tolerant. Cold tolerant verities have a higher capacity to tolerate
sub-optimal cold stress; on the other hand, cold sensitive verities
cannot withstand harsh cold conditions. However, winter wheat
cultivars having the ability to tolerate suboptimal conditions also
requires adequate exposure to non-freezing low temperature,
which is crucial for acclimatizing freezing stress (Sung and
Amasino, 2005; Majláth et al., 2012). It is revealed in recent
developments that the ability of plants to acclimate to the severity
of winter gradually decreases with consistent changes in climatic
attributes (Dalmannsdottir et al., 2017). Cold acclimation is a
complex phenomenon of winter annuals that is accomplished by
an extensive range of physiological, biochemical, and molecular
changes (Figures 3, 4), which begins with membrane alterations
and transforms it into a rigid structure (Theocharis et al., 2012;
Takahashi et al., 2013).

Cold Responsive Protein Expressions
It is stated that the counter action of plants to low-temperature
stress is carried out through detection (sensing) of stress
followed by signal perception, transduction, and induction of
cold-tolerant gene expression (Ganeshan et al., 2008). Plenty
of cold responsive genes have been found in wheat (Guo
et al., 2019) and are recognized as Dehydrin (DHN), Late
Embryogenesis Abundance (LEA), Cold responsive (COR), and
Responsive to Abscisic Acid (RBA), among others. These genes
are categorized into two parts (Seki et al., 2003): first, those
that directly respond to low-temperature stress, i.e., LEA (Liu
et al., 2016), and second, those proteins which take part in
the regulation of other molecular expressions. In response to
cold conditions, these proteins have several other functions
as they are also involved in countering other abiotic stresses
such as drought and salinity (Seki et al., 2003). During cold
tolerance, multiple gene expressions (Arabidopsis, COR and
Wheat, WCS) are generated and subsequently initiate the
cascade of transcriptional, biochemical, and physiological events
vital for cold tolerance in the plant (Kosová et al., 2008).
These cold regulatory responses include the release of Ca2+,
accumulation of osmolytes and reduced water content (Thakur
and Nayyar, 2013), ROS scavenging (Larcher, 2003), and carbon
metabolic adjustments (Ruelland and Zachowski, 2010). Gene
expression, in winter wheat, against cold stress is generated
after 1 day (Kurepin et al., 2013), as complete gene expression
does necessarily require frequent cold exposure (Ruelland and
Zachowski, 2010). The required threshold temperature for
initiating this tolerant mechanism varies within two different
cultivars of the same species; winter wheat cultivar Norstar
and spring wheat cultivar Maintou have rational threshold
temperatures of 18 and 8◦C, respectively (Fowler, 2008). For
the best cold acclimation, the temperature must fall below the
threshold level as the acclimation rate is inverse to temperature
drop (Chinnusamy et al., 2003).

Role of ABA in Gene Expression
Abscisic acid induces multiple changes in plant growth,
development, and various physiological and molecular processes
to cope with stress conditions. It plays a vital role in the
tolerance against suboptimal temperature stress by inducing

dehydration tolerance gene expressions (Shen et al., 2003).
Subjecting to the role of ABA in cold tolerance mechanism (i.e.,
signaling, perception, and then transduction), it is categorized
into twomajor pathways: ABA-dependent andABA-independent
pathways (Knox et al., 2008; Roychoudhury et al., 2013). ABA-
dependent signaling perception of cold stress required ABA
activation and vice versa. The gene expressions induced by ABA
are carried out through the interaction of various transcriptional
factors (such as MYC/MYB, RD22BPI, AREB1, and DREB2A)
and their matching cis-elements (such as MYCRS/MYBRS,
ABRE, and DRE/CRT), respectively (Tuteja, 2007; Morran et al.,
2011).

Abscisic Acid-Dependent Pathway
Generally, stress accelerates the biosynthesis of ABA, followed
by the closure of stomata and gene expressions (Lee and Luan,
2012). ABA is a primary intracellular receptor that stimulates
the activity of secondary messengers, i.e., ROS and Ca2+ (Xue-
Xuan et al., 2010). The instant signal perception of abiotic stress
is transduced via the increased ROS and hydrogen peroxide
(H2O2) (Saxena et al., 2016). ROS oxidative surge responded
by the release of Ca2+ (Rao et al., 2006) that triggers the
NADPH oxidase course of action and subsequently proceeds
to the accumulation of antioxidant compounds (i.e., H2O2)
(Agarwal et al., 2005). Therefore, Ca2+ is recognized as an
essential component in signal transduction. Primarily, three types
of Ca2+ proteins include CaM (calmodulin), Ca2+ dependent
kinases, and calcineurin binding proteins. CaM was found
to regulate the CBF regulon by binding with the regulatory
element of gene promoter and help in cold tolerance (Doherty
et al., 2009). Enhanced Ca2+ concentration initiates the calcium-
regulated protein kinase (CDPKs), which helps in mitigating
cold stress. Among 20 CDPKs, 7 responded to various abiotic
stresses (Li et al., 2008). ABA-dependent pathway is also
dependent on MYB/MYC (myeloblastosis) transcription factors
(TFs) (Abe et al., 2003). Among 60 MYB genes of wheat, 15 were
characterized as ABA regulated genes (Zhang et al., 2012), such as
TaMYB33, which plays a part in the production of antioxidants,
favoring ROS scavenging, assisting in proline accumulation, and
modifying osmotic imbalance (Qin et al., 2012).

Abscisic Acid-Independent Pathway
Cereal crops (wheat, barley, and rye) from the Poaceae family
contain a large number of DRE or CBF genes, as only wheat
contains 25 various kinds of CBF genes (Badawi et al., 2007).
COR gene expressions are mainly regulated by CBF TFs
(CBF1, CBF2, and CBF3) (Thomashow, 2001). In wheat, the
role of CBF has been well-recognized toward many signal
perception pathways and enhanced cold tolerance capacity
(Morran et al., 2011). Vágújfalvi et al. (2003) found a positive
comparative relationship between COR expression and wheat
cold acclimation. The COR proteins are labeled as hydrophilic
proteins that are considered affiliated with LEA or DHNs (Close,
1997). For instance, in Arabidopsis thaliana, overexpression of
LEA and wheat cold specific (WCS19) augments the freeze
tolerance capacity (Dong et al., 2002). DHNs or LEA protein
groups are highly tolerant to osmotic stress, as cold stress also
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FIGURE 4 | A schematic exhibition of cold perception, transduction, and final counter-response of wheat. The plasma membrane is the first site to perceive cold

stress. Membrane rigidity increased with the accumulation of carbohydrates and inside fluid transited to less mobile (gel) or amorphous glassy state. Subsequently, the

influx of receptors (Ca2+, ROS, Phytohormones), initiation of cascades of protein kinases, and protein cascade-driven up/downstream regulation generate gene

expressions to aid cold tolerance (Modified from Guo et al., 2018, 2019). [Here, ↑ indicates enhanced activity]. ROS, Reactive Oxygen Species; ABA, Abscisic Acid;

JA, Jasmonic Acid; SA, Salicylic Acid; CDPKs, Ca2+-Dependent Protein Kinase; CBL, Calcineurin B-like Proteins; CaM, Calmodulin Proteins; MAPK,

Mitogen-Activated Protein Kinase; PKABA, Protein Kinase induced by ABA; ICE, Inducer of CBF Expressions; CBF, Carbon Repeating Binding Factor; COR, Cold

Responsive Proteins.

causes an osmotic imbalance in winter cereals. Hence, their
accumulation is equally essential in cold acclimation (Borovskii
et al., 2005). The WCS120 is an impressive cold responsive gene
of wheat; it also belongs to the LEA protein family (Fowler,
2001). Along with WCS120, other COR genes responsible
for cold tolerance include WCS180, WCS200, WCS66, and
WCS40 (Sarhan et al., 1997); however, proteins that belong to
WCS120 showed higher transduction in winter cereals and were
characterized as best in cold tolerance (Vítámvás and Prášil,
2008).

Accumulation of Soluble Sugars
Accumulation of soluble sugars is another easier tactic against
cold stress. Plants belonging to cereals and grasses families
accumulate fructans (fructose polymers derived from sucrose)
upon exposure to a cold environment, which plays a stabilizer
role in preventing membrane (Livingston et al., 2009). Yokota
et al. (2015) also stated a positive correlation between the
accumulation of fructans and cold tolerance in wheat plants
with varying intensity of cold stress. Carbohydrates accumulation
under suboptimal conditions partially support reaching cold
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tolerance during acclimation (Yoshida et al., 1998; Janská et al.,
2010).

Although their specific role at sub-optimal temperature
is not fully understood, they are primarily considered as
compatible osmoprotectants, ROS scavengers, and signaling
compounds. Some plant studies revealed that accumulation of
oligosaccharides upon cold exposure anchors the acclimation
process (Janská et al., 2010; Theocharis et al., 2012). Fernandez
et al. (2010) discussed the role of trehalose (glucose disaccharide)
in regulating the cold-tolerant ability, and it is supposed to be
involved in starch-accumulation.

Studies on photosynthesis have revealed that some cultivars
of winter wheat, compared with spring wheat, sustain carbon
assimilation even at cold temperatures, which is associated
with increased concentrations of sucrose biosynthetic enzymes
(Savitch et al., 1997). Hence, spring wheat lacks in sustaining
carbon metabolism under harsh low-temperature conditions.
Similarly, another investigation on spring and winter wheat
depicted the increased carbohydrate (i.e., sucrose, fructose, and
glucose) content in winter wheat, but no upsurge was found in
spring wheat, and it also confirmed the role of carbohydrates
in the inability of wheat crops to counter low-temperature
stresses during spring (Hurry et al., 1995). The role of soluble
sugars in responding to the cold signal in plants can be further
investigated by advanced molecular techniques to examine how
sugar regulates gene expression in a cold environment.

MANAGEMENT STRATEGIES

Several adaptation strategies facilitate the wheat crops to
minimize the negative impacts of low-temperature extremes and
are valuable in maintaining global food security. Crop husbandry
practices, including the selection of cold-tolerant varieties,
nutrient management, appropriate sowing technique and time,
seed enhancements, exogenous application of osmoprotectants,
and irrigation management, may help improve cold tolerance
in wheat. Exogenous application of organic compounds, such as
plant polyamines and their derivatives, are considered to be more
helpful in enduring both (high and low) temperature extremes
(Liu et al., 2007).

Breeding Advancement Through Implying
Multi-Disciplinary Technologies
Breeders are continuously in the quest for developing new
cultivars that are more compatible with changing environmental
conditions. However, traditional breeding techniques require
more than 10 years to develop a new variety. Sudden changes
in climatic conditions, especially temperature extremes with
drought, are a real challenge for breeders, as it limits the efficiency
of new cultivars for a longer time. Along with conventional
breeding techniques, it is necessary to implement modern
disciplinary techniques in a simultaneous manner, e.g., aid of
crop simulation models (i.e., CERES-Wheat Model) is handy in
predicting the life duration of the particular cultivar in varying
weather extremes and future development of varieties (Koç,
2020). Future assessments will sustainably ensure food security

(like availability, accessibility, and continuity) for the growing
population (Ray et al., 2013), and it provides enough time for
taking decisions against upcoming weather extremes (Archer,
2003). Crop simulation techniques are best in identifying the
possible future threats to crop cultivation (Olesen et al., 2007).
Furthermore, the addition of modern molecular strategies (like
genomics, omics, gene silencing, inducing stress-specific genes,
accelerated marker aided selection) and their significance count
in the development of high yielding wheat cultivars (Ahmad
et al., 2014; Jha et al., 2017). In contrast with traditional breeding
tactics, these approaches are more advantageous in improving
crop stress responses toward cold and drought conditions
(Chaves and Oliveira, 2004).

Crop Husbandry Practices
Crop husbandry practices may help wheat performance under
cold stress. The practices included are as follows: (1) seed
enhancements (Farooq et al., 2017), (2) plant seeds of improved
wheat varieties following the appropriate planting geometry at
optimum sowing time with precision planting (Lamichhane and
Soltani, 2020), (3) exogenous application of osmoprotectants, (4)
seed inoculation with rhizobacteria (Shirinbayan et al., 2019), (5)
nutrient management, and (6) irrigation management.

Positive impacts of seed priming techniques are elucidated
in various crop plants under chilling stress (Jisha et al., 2013;
Paparella et al., 2015). Primed seeds under low-temperature
stress showed enhanced germination rate, improved vigor, and
uniform stand establishment, leading to increased crop quality
and produce (Paparella et al., 2015). At present, many priming
techniques are in practice, such as hormonal priming, biological
priming, redox priming, and chemical priming. (Wang et al.,
2016). Along with cold stress, these techniques are vital in
improving economic output and quality of wheat (Khaliq et al.,
2015), maize (Foti et al., 2008), cotton (Casenave and Toselli,
2007), and other field crops.

The foliar application of nutrients and growth hormones
is another effective agronomic approach to acclimate the low-
temperature stress. Applying phytohormones [i.e., strigolactone,
ABA, salicylic acid (SA), jasmonates] accelerate the various
protein cascades associated with the expression of cold tolerance
genes (Kolaksazov et al., 2013). It also plays a significant role in
root–shoot signaling (Wilkinson et al., 2012) and is known to be
efficient in minimizing the impact of chilling (Miura and Tada,
2014) and freezing stress (Taşgín et al., 2003).

Additionally, wheat growth sustainability under unfavorable
environmental conditions can be achieved by following the
agronomic fundamentals, such as optimum planting time, that
varies for different regions and cultivars. Optimal sowing
time can be determined by certain climatic factors (i.e., air
temperature, soil temperature, and moisture content under
different climatic conditions). As sowing time depends on
climatic variables, it is too difficult to figure out conventional
farming approaches under changing climate trends. Therefore,
decision support tools of crop modeling are very useful in
estimating the optimum sowing time for field crops (Waha
et al., 2012). Crop modeling tools can make considerable
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improvement in evaluating better management strategies for
future climatic threats.

Thus, adapting interdisciplinary integrated approaches to
tackle the several alarming fronts of climate variability and to
ensure the food security of growing populations of the world is
urgently needed.

CONCLUSION AND PROSPECTS

Cold stress causes morphological, physiological, biochemical,
and molecular modifications in wheat. Although most winter
wheat cultivars tend to tolerate such severe low-temperature
extremes, prolonged exposure may result in partial or
sometimes complete failure of the final produce. Such an
environment/climate induces multiple alterations throughout
the crop life cycle, from germination to harvesting. At the early
growth stage, suboptimal temperature inhibits the seedling
growth and inhibits the developmental process as reduced leaf
size, diminished peduncle elongation, and decreased number
of tillers and spikes. During the reproductive stage, cold stress
results in pollen infertility, floret abortion, reduced fertilization,
delayed maturity, and a reduced number of grains. Subsequently,
it leads to significant yield losses. Besides, it is well-explained
how low-temperature stress influenced physiological and
biochemical events, including photosynthesis, respiration,
energy imbalance, nutrients, and water relations. Further,
to combat cold stress conditions, crop plants exhibit several
biochemical and molecular expressions. In addition, the cold-
response of wheat can be better regulated by integrating breeding
and agronomic approaches, such as phenotypic screening of
cold-tolerant genes, pre-sowing seed treatments, and exogenous
application of growth hormones.

Due to unexpected climate changes in the last few decades,
winter becomes shorter with more severity, damaging winter
cereals. There is a greater need to explore and focus on the
genetic traits of wheat, due to which it withstands under cold
stress and continue their normal growth and development. In

this regard, traditional breeding will favor exploiting the wild
wheat sources that are more adaptable to natural environmental
conditions. It was further improved by identifying diversified
genetic traits and mapping through various gene mapping tools,
such as QTL mapping and genome-wide association studies
(GWAS). In addition, precise and correct gene editing, such as
the CRISPR-Cas9 system, will incorporate high yielding cultivars
by using genetic engineering techniques. It will also help in
ensuring global food security in both quality and quantity aspects.

Apart from this, many other osmolytes (such as glycine
betaine) and plant hormones (such as brassinosteroids, ABA,
SA, strigolactone) are still not well-exploited and are easier
in regulating the plant responses against cold stress. That
is why adopting integrated multi-disciplinary approaches to
explore these missing links and explore new research horizons
is currently needed.
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