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Photosynthesis is an important biophysical and biochemical reaction that provides food 
and oxygen to maintain aerobic life on earth. Recently, increasing photosynthesis has 
been revisited as an approach for reducing rice yield losses caused by high temperatures. 
We found that moderate high temperature causes less damage to photosynthesis but 
significantly increases respiration. In this case, the energy production efficiency is enhanced, 
but most of this energy is allocated to maintenance respiration, resulting in an overall 
decrease in the energy utilization efficiency. In this perspective, respiration, rather than 
photosynthesis, may be the primary contributor to yield losses in a high-temperature 
climate. Indeed, the dry matter weight and yield could be enhanced if the energy was 
mainly allocated to the growth respiration. Therefore, we proposed that engineering smart 
rice cultivars with a highly efficient system of energy production, allocation, and utilization 
could effectively solve the world food crisis under high-temperature conditions.

Keywords: energy utilization efficiency, photosynthesis, respiration, yield loss, smart crops breeding, 
high temperature

INTRODUCTION

The global mean temperature has increased by about 1°C because of greenhouse gases 
containing CO2 and CH4 released by human economic activities (IPCC, 2014). By the end 
of the 21st century, the CO2 concentration will increase to 421–936 ppm, and the temperature 
is expected to rise by 1.4–5.8°C (IPCC, 2013, 2014). As reported in a previous study, the 
yields of wheat and rice were increased by CO2 enhancement, but higher temperatures 
reduced their grain yield (Cai et  al., 2016). The increase in CO2 could not compensate 
for the negative impact on biomass and grain yield caused by higher temperatures; under 
the combination of elevated CO2 and temperature, there were about 10–12% and 17–35% 
decrease in the yield of wheat and rice, respectively (Cai et  al., 2016). This threatens 
global food security in the face of a continuously growing world population (Wheeler 
and von Braun, 2013; Shi et  al., 2017; Gong et  al., 2020). The greater and more consistent 
crop production must be  achieved against a backdrop of climatic stress that limits yields, 
and the higher photosynthetic efficiency is therefore required (Shi et  al., 2018; 
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Bailey-Serres et  al., 2019). Several reports have shown that 
engineering the D1 subunit of photosystem II and RuBisCo 
activase to improve the photosynthesis can enhance the 
thermal resistance in rice and wheat without incurring a 
yield penalty (Chen et al., 2020; Degen et al., 2020). Therefore, 
Ahmad et  al. (2020) have highlighted the importance of 
improving photosynthesis in field crops to reduce yield losses 
caused by high temperature. By contrast, Sinclair et al. (2019) 
have argued that increasing photosynthesis is unlikely to 
provide a solution to world food shortages. It, therefore, 
remains unclear whether photosynthetic engineering can 
enhance crop yields in a high-temperature climate.

THE FUNCTION OF RESPIRATION AND 
PHOTOSYNTHESIS IN DETERMINING 
YIELD LOSS UNDER 
HIGH-TEMPERATURE CONDITIONS

Photosynthesis would be  completely inhibited in rice plants 
by a temperature of approximately 45°C (Crafts-Brandner and 
Salvucci, 2002; Li et  al., 2020). When such stress lasts for 
more than 24  h, rice plants will die (Liu et  al., 2018; Li 
et  al., 2020). However, ambient air temperatures above 40°C 
typically last for only 1 or 2  h, but not the whole day. Due 
to intensive transpiration and morphological and phenological 
factors, the leaf temperatures tend to be  5–10°C lower than 
the ambient air temperature (Mathur et  al., 2014; Fu et  al., 
2016; Zhang et al., 2016). In order to evaluate the temperature 
difference between the organ tissues (i.e., leaf and panicle) 
and air, a study was carried out by authors, and the air 
temperature was found to be  37–38°C in the field condition, 
while the panicle and leaf temperatures were about 35.5 and 
31.0°C, respectively (Figure 1Aa). In the semi-open greenhouse, 
the water (1) and leaf (2) temperatures were approximately 
37.0 and 31.7°C, respectively, when the air temperature reached 
40–41°C (Figure 1Ab). This panicle temperature could induce 
spikelet sterility (Fu et  al., 2016; Zhang et  al., 2016), but the 
corresponding leaf temperature is not sufficient to inhibit 
photosynthesis unless it is accompanied by another abiotic 
stress such as high relative humidity, high light, or drought 
(Mathur et  al., 2014; Zhang et  al., 2016; Rashid et  al., 2020). 
Also, the leaf temperature of rice plants were significantly 
lower than the air temperature in a plant growth chamber 
under different temperature conditions, which might be mainly 
ascribed to the intensive transpiration (Figure 1B). Accordingly, 
no obvious difference in net photosynthetic rate (PN) was 
shown among the temperature treatments of 28, 34, and 38°C 
in either rice genotypes, but the day respiration was significantly 
enhanced as the temperature increased (Figure  1C). It has 
been reported that the yield loss in rice and wheat by high 
night temperature is mainly ascribed to higher dark respiration, 
which increases the consumption of photoassimilates and 
thereby results in the reduction of nonstructural carbohydrates 
(NSC) in stem tissues (Impa et  al., 2021; Xu et  al., 2021). 
Moreover, the enhanced dark respiration restrains source 

availability under the combined stress of high day-and-night 
temperatures, leading to a considerably more severe yield 
penalty due to carbon loss (Xu et  al., 2020). Additionally, the 
high midday temperature stress of 40°C caused less damage 
to photosynthesis but significantly decreased biomass in seagrass 
(George et  al., 2018). Likewise, the high-temperature-tolerant 
wheat cultivar in Tascosa exhibited smaller reductions in 
biomass and lower rates of both net photosynthesis and 
respiration under high nighttime temperatures compared with 
other wheat cultivars (Impa et  al., 2019). Therefore, 
photosynthesis might not be  the main factor that leads to 
yield loss of rice in hot climates.

It has been reported that the average yield of four major 
field crops, namely, maize (Zea mays), wheat (Triticum 
aestivum), rice (Oryza sativa), and soybean (Glycine max), 
is predicted to decline by 7.4, 6.4, 3.2, and 3.1%, respectively, 
with every 1°C increase in the mean global temperature 
(Zhao et  al., 2017). Interestingly, the greatest yield losses 
caused by the high-temperature climate were found in the 
C4 crop maize but not in C3 crops. This finding was 
inconsistent with the earlier results that C4 plants always 
showed high-temperature and high-light tolerance than C3 
plants (Ishii et al., 1977; Berry and Björkman, 1980; Edwards 
and Walker, 1983). As reported by Ruiz-Vera et  al. (2015), 
global warming resulted in a decrease in maize yield; however, 
the CO2 concentrations were enhanced by 200  ppm above 
the current concentration, and the photosynthetic biochemical 
parameters and the electron transport rate were adversely 
inhibited in this process. However, Rotundo et  al. (2019) 
argued that the optimum temperature of photosynthesis in 
maize was approximately 40°C, rather than the common 
temperature-limiting functions indicating a decline in carbon 
assimilation above 30–33°C. This suggests possible 
overestimations of the negative impacts of global warming 
on maize yield due to the use of inadequate response functions 
relating carbon assimilation to temperature (Rotundo et  al., 
2019). In contrast, the respiration was enhanced irrespective 
of the enhancement of CO2, temperature, or in combination 
(Ruiz-Vera et  al., 2018). Thus, the effect of global warming 
on maize yield loss may be  due mainly to respiration rather 
than photosynthesis.

ENERGY PRODUCTION EFFICIENCY IS 
ENHANCED IN PLANTS UNDER 
MODERATE HIGH-TEMPERATURE 
CONDITIONS

Respiration is an important biochemical process that produces 
ATP by oxidizing organic substrates. In annual and perennial 
crops, about 30–60% of the carbon assimilated during 
photosynthesis is lost through respiration (Cannell and Thornley, 
2000). This percentage may increase with rising global 
temperatures according to the data presented by our group, 
that is, respiration is positively correlated with temperature in 
the physiological temperature ranging from 0 to 
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38°C (Figure  1Cb). A 10% yield reduction was reported in 
rice when the minimum nighttime temperature increased by 
1°C during the growing season (Peng et  al., 2004). Among 
winter wheat cultivars widely grown in the US Great Plains, 
every 1°C increase in the nighttime temperature during the 
seed-fill period decreased the yield by 6% (Hein et  al., 2019). 
All these results were explained by the increased respiration 
at night (Sadok and Jagadish, 2020; Impa et  al., 2021).

Multiprotein complexes, such as NADH dehydrogenase 
(Complex I), succinate dehydrogenase (Complex II), 
cytochrome bc1 (Complex III), cytochrome c oxidase (Complex 
IV), ATPase (Complex V), and alternative oxidase (AOX), 
are involved in the respiration process and drive the cellular 
energy (ATP) production (Millar et  al., 2011; Meyer et  al., 
2019). These proteins are frequently affected by abiotic stresses 
such as drought (Dahal et  al., 2014), high temperature (Li 
et al., 2020; Rashid et al., 2020), cold stress (Yang et al., 2011), 

and high light stress (Shameer et al., 2019), thereby influencing 
the efficiency of ATP production. As reported earlier, 
respiration is controlled by the demand for ATP utilized in 
biosynthesis and other energy-demanding processes (Atkin 
and Tjoelker, 2003). Under high temperatures, rice plants 
exhibited higher activities of NADH dehydrogenase, 
cytochrome c oxidase, and ATPase and lower activity of 
AOX (Figures  2Aa–d). This result indicated that the energy 
production efficiency was enhanced by moderate high 
temperature, which might be ascribed primarily to the larger 
amount of energy required by the plants. Consistent with 
this interpretation, ATP content and dry matter weight were 
significantly decreased in plants under moderate high-
temperature conditions (Figures 2Ae,f), suggesting that energy 
produced by respiration under high-temperature condition 
was mainly allocated to maintenance respiration rather than 
growth respiration (Amthor et  al., 2019).

FIGURE 1 | Response of rice plants to high temperatures. (A) Changes in leaf temperature of rice plants under high temperatures: (a) Panicle and leaf 
temperatures of rice plants grown in the paddy field under a high temperature of 37–38°C at the anthesis stage; (b) Leaf temperatures of rice plants grown in a 
greenhouse under a high temperature of 41°C at the tillering stage. (Ba–c) The thermal images of rice plants under 28, 34, and 38°C conditions in plant growth 
chambers; (Bd) Leaf temperature; and (Be) Transpiration rate (TR). (Ca) Net photosynthetic rate (PN); (Cb) Day respiration (Rd).
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HIGH ENERGY COST OF 
MAINTENANCE RESPIRATION 
PROCESSES UNDER MODERATE 
HIGH-TEMPERATURE CONDITIONS

Respiration can be  separated into two components, namely, 
growth respiration and maintenance respiration. In growth 
respiration, reduced carbon compounds are metabolized to provide 
energy for the addition of new biomass, whereas, in maintenance 
respiration, this energy is used to maintain the existing mature 
cells in a viable state (Amthor, 2000). Protein turnover, metabolic 
activity, ion transport, futile cycling, sucrose transport, and the 

uptake and utilization of nitrogen are enhanced in plants as 
temperature increases, and these processes cost large amounts 
of energy (Amthor et  al., 2019). In fact, maintaining energy 
homeostasis is a challenge for all living organisms under abiotic 
stress conditions, and an intimate relationship exists between 
energy availability and stress tolerance in plants (De Block and 
Van Lijsebettens, 2011; Dröge-Laser and Weiste, 2018). The 
enhancement of antioxidant capacity and the accumulation of 
heat shock proteins are such energetically expensive processes 
that plant growth and development are inhibited, and plants 
may die if extreme stress lasts until an energy threshold is 
reached above which the damage can no longer be  repaired 
(Baena-González and Sheen, 2008; Yu et  al., 2020). Plants with 

A a
B a

b

b

c d

e f

FIGURE 2 | Effect of heat stress on dry weight and energy metabolism of rice plants. (Aa) NADH dehydrogenase; (Ab) Cytochrome c oxidase; (Ac) ATPase; (Ad) 
Alternative oxidase (AOX); (Ae) ATP content; and (Af) Dry weight. (Ba) The effect of leaf temperature on photosynthesis, respiration, and biomass of rice plants 
under high-temperature conditions. Leaf temperature and transpiration rate increase with increasing ambient temperature. Due to transpiration, plant leaf 
temperatures tend to be far below the ambient temperature, particularly under high-temperature conditions. In this case, moderate high temperature caused little 
damage to photosynthesis but increased respiration, requiring the consumption of more carbohydrates to produce ATP through respiration for the maintenance of 
biological activity. Plant biomass or harvest yield is determined by growth respiration and maintenance respiration under high-temperature conditions. (Bb) A model 
of the relationship between growth respiration and maintenance respiration in plants under global warming. The maintenance respiration processes, such as 
unnecessary protein turnover, futile cycling, THI4 thiazole synthase, glycation, antioxidant capacity, heat shock proteins, and even the emission of BVOCs, are 
activated under high temperatures. By contrast, the growth respiration processes, such as nutrient uptake and assimilation, biosynthesis of building blocks, and 
biosynthesis of growth machinery, are inhibited. These effects of high temperature are seen in crops with low energy utilization efficiency. Therefore, crops with high 
energy utilization efficiency can be engineered by inhibiting maintenance respiration processes and increasing growth respiration activities under high temperatures.
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reduced poly(ADP-ribose) polymerase activity consumed less 
NAD(H) in stressful environments and improved their energy 
utilization efficiency by reducing overactive mitochondrial 
respiration and ROS production, thereby increasing stress tolerance 
(Vanderauwera et al., 2007; Rissel et al., 2017; Jiang et al., 2020).

An interesting hypothesis is that plant emission of biogenic 
volatile organic compounds (BVOCs) and methane (CH4) consumes 
energy produced by respiration (Figure 2Ba). It has been reported 
that isoprene emissions are increased as the temperature enhanced 
in velvet bean by regulating the enzyme isoprene synthase activity 
(Monson et al., 1992). Similarly, the VOCs, such as acetaldehyde 
and (E)-2-hexenal, were released by leaves exposed to high 
temperatures (Loreto et al., 2006). Interestingly, these enhancements 
in the emission of BVOCs could confer thermal tolerance in 
plants and affect the atmospheric chemistry and physics that 
increase greenhouse gases (Peñuelas and Llusià, 2003; Peñuelas 
and Staudt, 2010; Kramshøj et  al., 2016; Wang et  al., 2019). 
Temperatures of 20–40°C have a strong and immediate influence 
on the activity of the enzymes that catalyze the synthesis of 
many BVOCs (Monson et  al., 1992; Loreto et  al., 2006; Loreto 
and Schnitzler, 2010). This process not only consumes energy 
(Niinemets et  al., 1999) but also results in a large carbon loss 
that up to 10% of that fixed by photosynthesis under stressful 
conditions (Peñuelas and Llusià, 2003). Similar results were also 
found in the emission of CH4 in plants (Keppler et  al., 2006; 
Dueck and Van Der Werf, 2008; Fraser et  al., 2015; Jansson 
et al., 2018). Interestingly, whether in paddy fields or plant growth 
chambers, high-temperature-sensitive cultivars had higher rates 
of CH4 emission than high-temperature-resistant cultivars 
(Supplementary Figure S1). This suggests that the energy 
consumed in the process of CH4 production causes an energy 
deficit in the high-temperature-sensitive cultivars, thus impairing 
high-temperature tolerance (Figure  2Ba).

CAN THE ENGINEERING OF CROPS 
WITH HIGH ENERGY UTILIZATION 
EFFICIENCY REDUCE YIELD LOSSES 
CAUSED BY HIGH TEMPERATURE?

Low respiration rates are generally correlated with high crop 
yields (Nunes-Nesi et  al., 2005; Hauben et  al., 2009), but very 
low respiration rates may not be  sufficient to sustain energy 
production (De Block and Van Lijsebettens, 2011). Improved 
energy utilization efficiency is therefore immediately required 
to increase crop yields in a high-temperature climate. In fact, 
higher crop respiration does not always reduce biomass 
accumulation. A recent meta-analysis indicated that a high-
temperature climate significantly increased biomass by 12.3% 
across all terrestrial plants, and this effect did not change with 
mean annual precipitation, experimental duration, CO2 
enrichment, or the addition of nitrogen, drought, or irrigation 
(Lin et  al., 2010). Similarly, grain yield was increased when 
plants were only subjected to high nighttime temperatures in 
growth chambers (Glaubitz et  al., 2014). Interestingly, indica 
cultivars had higher respiration rates than japonica cultivars 

under high nighttime temperatures. Indica cultivars also showed 
a significant increase in biomass compared with controls, whereas 
japonica cultivars showed a slight decrease (Peraudeau et  al., 
2015). This suggested that the cultivars with increased biomass 
accumulation and higher respiration rates under high nighttime 
temperatures had greater energy utilization efficiency. More 
energy was allocated to growth respiration relative to maintenance 
respiration and even the other futile processes (Figure  2Ba). 
Therefore, engineering the crops with high energy efficiency 
in the respiration process is a feasible means of reducing yield 
losses caused by high temperatures.

Numerous pathways are involved in respiratory metabolism, 
and they are modulated by multiple genes related to all the 
facets of crop physiology and growth (Amthor et  al., 2019). It 
is therefore difficult to obtain the low energy use cultivars by 
using conventional breeding methods. However, it is now possible 
to pinpoint the specific molecular targets in order to engineer 
greater respiratory efficiency and minimize CO2 loss. A number 
of processes have been suggested as targets for the engineering 
of energy-efficient crops, such as THI4 thiazole synthase activity, 
protection of proteins from glycation damage, nitrate acquisition, 
root-to-shoot nitrate assimilation, switching biosynthetic processes 
from nighttime to daytime, mitochondrial alternative oxidase 
activity, sucrose synthesis and degradation, and F6P/F16BP cycling 
(Amthor et  al., 2019). These processes are related to energy 
production and consumption in plants. However, the interactions 
between these processes and their specific functions in the energy 
production and consumption of plants have not been fully 
characterized. Engineering the highly energy-efficient cultivars 
by improving these processes to increase the yields under a 
high-temperature climate is a worthwhile, but challenging, task.

Another promising strategy is the engineering of crops with 
lower BVOCs and CH4 emissions (Figure  2Bb). Such crops 
not only would have better energy utilization efficiency, reduced 
carbon loss, and increased yields but would also help to reduce 
greenhouse gas production as global warming increases. 
Engineering of isoprene synthesis has been reported in 
Cyanobacteria (Chaves and Melis, 2018), Escherichia coli (Liu 
et  al., 2019; Lee et  al., 2020), and Saccharomyces cerevisiae (Lv 
et  al., 2016) but not in field crops.

ENGINEERING “SMART CROPS” TO 
REDUCE YIELD LOSSES CAUSED BY 
MODERATE HIGH TEMPERATURE

Recently, Yu and Li (2021) proposed their views of breeding 
the so-called “smart crops,” which were defined as novel crop 
cultivars or even nonexisting cultivars, beyond the improved 
existing crop varieties. In their views, smart crops with high 
yield, superior quality, and high stress resistance can adapt to 
the climate changes rapidly by sensing the environmental 
signaling, nutrient, and energy status. In this case, smart crops 
must have a highly efficient system of energy production, 
utilization, and allocation to balance the growth and stress 
response. As analyzed earlier, the energy production efficiency 
is improved under higher temperature conditions, but most 
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of which is allocated to maintenance respiration, leading to 
lower energy utilization efficiency (Figure 2). Therefore, energy 
allocation might be  the most important component of smart 
crops, and the energy sensors of SNF1-related kinases (SnRKs) 
and target of rapamycin (TOR) might play a key role in this 
process (Dobrenel et  al., 2016; Rosenberger and Chen, 2018; 
Crepin and Rolland, 2019). Although very few studies were 
conducted to reveal the relationship among SnRKs, TOR, and 
growth and maintenance respiration in plants under high-
temperature conditions, smart crops with intelligent energy 
allocation are worthy of breeding to reduce the yield loss.

FUTURE PERSPECTIVES

The moderate high temperature causes less damage to photosynthesis 
but significantly increases crop respiration, and this is the main 
determinant of crop yield losses. The energy production efficiency 
is enhanced in crops under moderate high temperature, but most 
of this energy is allocated to maintenance respiration, decreasing 
energy utilization efficiency and reducing yields. In addition to 
protein turnover, metabolic activities, ion transport, futile cycling, 
sucrose transport, nitrogen uptake and utilization, antioxidant 
capacity, and the accumulation of heat shock proteins, plant 
emissions of BVOCs and CH4 may also consume the energy 
produced by respiration and release carbon fixed by photosynthesis. 
Engineering crops with low respiration and high energy utilization 
efficiency by improving these biochemical processes is both 
promising and challenging. The engineering of smart rice cultivars 
with intelligent energy allocation is seemingly an effective strategy 
for ensuring food security under high-temperature conditions.

The utilization of energy produced by respiration is important 
for crop growth and development under high temperatures; 
nonetheless, it has attracted relatively less attention, and there 
are still many outstanding questions. The interactions among 
the maintenance respiration processes and their functions in 
energy production and consumption require further 
characterization. The specific mechanisms by which crop plants 
consume energy to release BVOCs and CH4 must be investigated. 
Engineering crops with low BVOCs and CH4 emissions holds 
promise for reducing yield losses in a high-temperature climate.
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