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Biostimulants are emerging as a feasible tool for counteracting reduction in climate

change-related yield and quality under water scarcity. As they are gaining attention, the

necessity for accurately assessing phenotypic variables in their evaluation is emerging

as a critical issue. In light of this, high-throughput phenotyping techniques have been

more widely adopted. The main bottleneck of these techniques is represented by

data management, which needs to be tailored to the complex, often multifactorial,

data. This calls for the adoption of non-linear regression models capable of capturing

dynamic data and also the interaction and effects between multiple factors. In this

framework, a commercial glycinebetaine- (GB-) based biostimulant (Vegetal B60, ED&F

Man) was tested and distributed at a rate of 6 kg/ha. Exogenous application of

GB, a widely accumulated and documented stress adaptor molecule in plants, has

been demonstrated to enhance the plant abiotic stress tolerance, including drought.

Trials were conducted on tomato plants during the flowering stage in a greenhouse.

The experiment was designed as a factorial combination of irrigation (water-stressed

and well-watered) and biostimulant treatment (treated and control) and adopted

a mixed phenotyping-omics approach. The efficacy of a continuous whole-canopy

multichamber system coupled with generalized additive mixed modeling (GAMM)

was evaluated to discriminate between water-stressed plants under the biostimulant

treatment. Photosynthetic performance was evaluated by using GAMM, and was then

correlated to metabolic profile. The results confirmed a higher photosynthetic efficiency

of the treated plants, which is correlated to biostimulant-mediated drought tolerance.

Furthermore, metabolomic analyses demonstrated the priming effect of the biostimulant

for stress tolerance and detoxification and stabilization of photosynthetic machinery. In

support of this, the overaccumulation of carotenoids was particularly relevant, given their

photoprotective role in preventing the overexcitation of photosystem II. Metabolic profile
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and photosynthetic performance findings suggest an increased effective use of water

(EUW) through the overaccumulation of lipids and leaf thickening. The positive effect of

GB on water stress resistance could be attributed to both the delayed onset of stress

and the elicitation of stress priming through the induction of H2O2-mediated antioxidant

mechanisms. Overall, the mixed approach supported by a GAMM analysis could prove

a valuable contribution to high-throughput biostimulant testing.

Keywords: water stress, biostimulant, GAMM, metabolomics, tomato, gas exchange, glycinebetaine, climate

change

INTRODUCTION

Adaptation to climate change is becoming central to the
conversation about water management for agriculture (Iglesias
and Garrote, 2015). Among the suggestions to improve
resiliency and adaptive capacity, the most cited approach is
the introduction of drought-resistant crops. While this can be
achieved through classical breeding and biotechnology, such
efforts have so far produced little results (Nuccio et al., 2018).
Moreover, in the second case, even when plants are successfully
genetically modified (GM), resistant plants typically represent
a restricted number of crops. In this sense, a technology
applicable tomultiple crops inmultiple locations would represent
a desirable alternative: as pointed out by Del Buono (2020),
biostimulants could represent a sustainable measure to foster the
resilience of cropping systems under limited water conditions.
The earliest response of plants to drought is represented by
stomatal closure, which results in the inhibition of photosynthesis
(Michaletti et al., 2018), and therefore leads to CO2 uptake
and concentration reduction (Medrano et al., 2002). Multiple
osmolytes can be found among biostimulant constituents
targeting water stress resistance in plants, such as glycinebetaine
(GB). GB not only acts as an osmoregulator but also stabilizes
the structures and activities of enzymes and protein complexes
via detoxification of reactive oxygen species (Papageorgiou et al.,
1991; Papageorgiou and Murata, 1995), while maintaining the
integrity of membranes against the damaging effects of excessive
salt (Tang et al., 2014, Tian et al., 2017, Yang and Lu, 2005;
Mbarki et al., 2018), cold (Quan et al., 2004), heat (Yang et al.,
2006; Allakhverdiev et al., 2007), freezing (Razavi et al., 2018;
Wang et al., 2019), and also drought (Ma et al., 2006). The
role of GB in plant resistance to abiotic stress has been widely
investigated and documented (Gorham, 1995; Sakamoto and
Murata, 2002; Ashraf and Foolad, 2007; Chen and Murata, 2010;
Huang et al., 2020), ranging from exogenous application to
genetic engineering (Fariduddin et al., 2013), to its biosynthesis
and the underlying molecular mechanisms behind in planta
accumulation under stress (Annunziata et al., 2019). While it
has been argued that the osmolyte accumulation does not entail
positive effects on yield under drought conditions (Serraj and
Sinclair, 2002), many reports demonstrate the positive effect of
osmolyte accumulation generally (notably Blum, 2016) and GB
specifically on plant growth and final yield. Among drought
resistance mechanisms activated by GB, osmotic adjustment
has been observed to enhance soil moisture extraction and,

therefore, transpiration (Blum, 2016). At the same time, higher
yielding plants are characterized by high stomatal conductance
over time and higher transpiration (Blum, 2009). Indeed, Mäkelä
et al. (1999) found that GB could enhance photosynthetic
efficiency by reducing photorespiration and enhancing stomatal
conductance in tomato plants grown under drought and salinity.
This resulted in increased net photosynthesis of stressed plants.
This is of particular relevance since tomato plants (Solanum
lycopersicum L.) do not naturally accumulate GB (Wyn Jones
and Storey, 1981). GB foliar application was also found to
increase the yield of tomato plants under saline or heat stress
(Mäkelä et al., 1998). Likewise, Agboma et al. (1997a,b) found
that exogenous application of GB was indeed involved in the
maintenance of a higher yield in maize and sorghum grains and
tobacco leaves and resulted in improved water-use efficiency. GB
was found to have a positive effect on yield also on soybean
(Agboma et al., 1997b), common beans (Xing and Rajashekar,
1999), wheat (Agboma et al., 1997a), sunflower (Hussain et al.,
2008), and cotton (Ahmad et al., 2014). Moreover, Park et al.
found that genetically engineered GB (2004) and exogenously
applied GB (2006) increased the tolerance of tomato plants
to chilling stress. Interestingly, they suggest that, in addition
to its macromolecule and membrane protecting action, GB-
enhanced chilling tolerance might imply stress priming through
the induction of H2O2-mediated antioxidant mechanisms.

According to Fleming et al. (2019), scientific recognition of
the potential of biostimulants has not grown as fast as the
interest from industry. This has been due to limited fundamental
research of their modes of action and the speed at which
new multi-compound products have entered the market. In the
investigation of biostimulant activity, the necessity of accurate
assessment of phenotypic variables is emerging as a critical issue
(Rouphael et al., 2018) while at the same time the combined
phenotypic-omic approach is gaining momentum. In recent
years, emerging digital technologies such as sensors, automatic
image acquisition, and the connected algorithms and models
have seen an increasing adoption, resulting in increasing volumes
and complexity of data. Large-scale acquisition of data has
allowed data interpretation to shift from amodel-based to a data-
based paradigm, by improving the possibility to generalize the
data acquired and consequently allowing for an increase inmodel
accuracy. On the flip side of the coin, the main challenge lies
in data management: the huge amount of data generated needs
to be handled both at the acquisition and analysis stage through
proper, often custom, tools (Coppens et al., 2017). In this context,
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non-destructive phenotyping techniques characterized by high
accuracy (high-throughput techniques) have gained popularity
in the scientific community and have been successfully employed
in plant breeding (Araus and Cairns, 2014; Halperin et al., 2017;
Tardieu et al., 2017; Campbell et al., 2018; Mir et al., 2019),
precision agriculture (Chawade et al., 2019), and biostimulant
activity testing (Petrozza et al., 2014; Rouphael et al., 2018;
Paul et al., 2019a,b). High-throughput phenotyping technologies
have attracted attention for their potential in: (1) screening
and monitoring multiple morpho-physiological traits; (2) time-
series measurements, crucial in the acquisition and interpretation
of high spatial and temporal resolution data; and (3) labor
automation, time, and cost efficiency (Rouphael et al., 2018).
Halperin et al. (2017) have proposed a platform, which uses
a custom algorithm to select genotypes based on their abiotic
stress resistance characteristics. The system coupled with single-
leaf gas exchange acquisition provides high-resolution whole
plant transpiration, biomass gain, stomatal conductance, and
root flux. As pointed out by Teklić et al. (2020), in addition to
the investigation of the effect of biostimulants on plant stress
response, there is a growing necessity to elucidate stress and
interactions of biostimulants in terms of metabolic changes.
To further explore the variation in physiological traits, the
integration of phenotyping data and omics data represents the
next frontier and a promising tool to bridge the phenotype–
genotype gap (Coppens et al., 2017) and to understand
dynamic plant stress responses in a changing environment
(Gosa et al., 2019). Specifically, high-throughput phenotyping
data in combination with metabolomics have already been
successfully applied to biostimulant testing (Lucini et al., 2015;
Paul et al., 2019a,b; Rouphael et al., 2020). In metabolomics,
two commonly used analytical strategies can be distinguished:
untargeted and targeted strategies. Untargeted metabolomics,
by aiming to detect as many metabolites as possible in a
biological sample, is particularly suited to identifying metabolite
abundance variations connected to either environmental stimuli
or genetic variations (Cheng et al., 2018). Metabolomics has
a recognized potential to provide significant insights into
the mechanisms of the stress response (Shulaev et al., 2008;
Arbona et al., 2013) by identifying different compounds, such
as the molecules involved in stress acclimation (e.g., secondary
metabolites) and by-products of stress metabolism, and has
been successfully applied to the investigation of biostimulant
action in general (Lucini et al., 2015, 2018; Paul et al., 2019a,b)
and especially under abiotic stresses (Nephali et al., 2020).
Lastly, responding to the necessity to analyze the volumes
and complexity of data produced through high-throughput
phenotyping, non-linear regression models are emerging. These
models need to be capable of capturing dynamic data, often time
series, as well as the interaction and effects between multiple
factors (Ohana-Levi et al., 2020). Among these, generalized
additivemixedmodels (GAMMs) have been successfully featured
in several applied science fields (Murase et al., 2009; Zuur
et al., 2009; Pedersen et al., 2019; Boswijk et al., 2020;
Ohana-Levi et al., 2020) including ecology at large and plant
ecophysiology. In particular, Ohana-Levi et al. (2020) highlighted
the potential of GAMs tomodel non-linear relationships between

evapotranspiration (ETc) drivers and evaluating their impacts on
grapevine transpiration.

In light of this, GB is particularly fit to test the suitability
and accuracy of GAMMs in modeling dynamic plant response
to drought: widely investigated, its protective action on the
photosystem is documented for several abiotic stresses (Huang
et al., 2020). At the same time, while available research
concentrates mostly on the effect of GB application on yield
traits and cell-level effects (Annunziata et al., 2019), a correlation
between GB treatment and modifications in photosynthetic rates
has received little attention: published research mainly concerns
enhanced photosynthetic performance under salt stress (Yang
and Lu, 2015; Hamani et al., 2020) and drought (Nawaz and
Wang, 2020). Likewise, the effects of GB on water-use efficiency
(WUE) have been scarcely investigated (Ahmed et al., 2019)
and although both of its abundance (natural or GM) in plant
tissues and its exogenous application have been widely linked to
stress response, the effects of exogenous application of GB on the
metabolomic profile of leaves are yet to be investigated.

Based on the current literature, the hypothesis tested here
was whether a biostimulant (GB-based) treatment can be
efficiently modeled through GAMM and whether the treatment
would result in tangibly different metabolite expression profiles,
thereby completing the information derived from GAMM. In
order to achieve this, the duration and dynamics of the effect
on photosynthesis, transpiration, and WUE were investigated,
jointly with a snapshot analysis of metabolic profile.

MATERIALS AND METHODS

Plant Material and Growing Conditions
The experiments were conducted in a greenhouse and the
metabolomics analysis in the laboratory of the Department of
Sustainable Crop Production of the Università Cattolica del Sacro
Cuore, Piacenza. Tomato seeds (H1281 variety, Heinz) were
directly sown in a greenhouse at 20◦C at 2 cm in a seeding tray
(35-ml cell plug) containing a commercial complete mixture of
sand—blonde peat—humus. Seeds were kept in dark conditions
for 5 days until germination, thereafter they were provided with
a PPFD of 800 µmol m−2 s−1 through light-emitting diode
(LED) lighting. Seven days after emergence (DAE), 50 uniformly
developed seedlings, at second true leaf unfolded (BBCH 12),
were transplanted in 2.3-L pots filled with a commercial complete
mixture of sand—blonde peat—humus (1,000± 1 g). Plants were
fertilized at a transplant with 40ml of a complete commercial
solution (COMPO, Concime Liquido Universale, Bologna, Italy)
at 1.05% w/v (7% N; 5% P; 6% K; 0.01% B; 0.004% Cu; 0.04%
Fe; 0.02% Mn; 0.001% Mo; and 0.002% Zn). Fertilization was
provided every 2 weeks. The pots were placed under LED lamps
to provide a PPFD of 800 µmol m−2 s−1 to the top canopy
with a photoperiod of 16 h light and 8 h dark. Pots were watered
to field capacity (FC) every second day. The temperature was
not controlled and in the range between 35◦C during the day
and 8◦C during the night (19.5◦C average). Of the 50 plants,
32 homogeneously developed plants were selected, of which
12 plants were destined for gas exchange analysis and 20 for
metabolomics analysis, while the rest was discarded.
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The experiment was designed as a factorial combination of
irrigation (water-stressed and well-watered) and biostimulant
treatment (treated and control). The water-stressed plants were
allowed to dry down for three consecutive days by the withdrawal
of irrigation. Thereafter, all plants were irrigated. Gas exchange
analysis was carried out on three replicates for each treatment,
for a total of 12 plants while metabolomics analyses were carried
out on five replicates per each treatment, totaling 20 plants.
Plants dedicated to gas exchange analyses were kept in the gas
exchange acquisition system for 9 days until the end of the
experiment (3 initial days to adapt to the ventilation and lighting,
followed by dry down) while plants dedicated to metabolomics
analysis were kept in the greenhouse under a tunnel replicating
the conditions of the gas exchange acquisition system (same air
inlet and LED lighting).

Biostimulant Characteristics and
Treatment
The day before the beginning of the gas exchange analysis, the
pots were irrigated to saturation and allowed to drain overnight.
The treatment with the biostimulant was carried out on 36 DAE
on one half of the plant while the other half was sprayed with
distilled water. Biostimulant was sprayed at a rate of 6 kg/ha,
with a dilution of 300 L/ha to a total of 10 g/plant. Dose and
dilution were chosen based on commercial use of the product
(Vegetal B60 R©, ED&F MAN Liquid Products Italia, Bologna,
Italy). Vegetal B60 R© is an organic product extracted exclusively
from sugar beet without any added chemical additives. It contains
30% of GB and 5% of L–amino acids, 5% of total organic nitrogen,
and 12% of organic carbon.

All pots were sealed in plastic bags fitted around the base
of each plant stem to prevent soil evaporation. Well-watered
plants were kept at 80% FC throughout the experiment, while for
water -stressed plants irrigation was interrupted 3 days after the
treatment (on 39 DAE). About 200 g of water were reintegrated
to WS plants on 41 DAE, 2 days after irrigation was stopped,
to contrast the high rate of soil drying and allow for a longer
dry-down period and a more gradual onset of drought stress
(a transpiration exceeding 200 g d−1 would have brought the
plant at wilting point on DAE 41). Leaf area (LA) of each plant
was calculated every 3 days from the start of stress imposition
(39 DAE). Leaves were placed on squared paper (square of side
0.5 cm, used as the reference of known size) reinforced with a
rigid base and photographed with a phone camera, taking care
that no leaves overlapped. Images were then processed by using
ImageJ (Schneider et al., 2012) to extract LA and compute the
total LA of each plant.

Gas Exchange Analysis
Gas exchange was evaluated through a semiautomated
multichamber whole-canopy system [slightly modified from
the system previously described in Fracasso et al. (2017)]. In
particular, the system computes net photosynthetic rate (Pn),
transpiration rate (E), and WUE. Every pot was measured every
12min for a total of 120 measurements per day. Pn (µmol s−1

m−2) and E (mmol s−1 m−2) were calculated based on flow
rates and CO2 and water vapor differentials by using the formula

provided in Long and Hallgren (1985). Data were acquired 24 h
per day at intervals of 1min. The semiautomated multichamber
system is composed of 12 adjustable open chambers connected
to a CIRAS-DC double channel absolute CO2/H2O IR gas
analyser (PP-System, Amesbury, MA, USA). Air drawn at 3m
above ground from outside the greenhouse is collected in a
buffer tank (0.44 m3 capacity) to ensure the stability of inlet
CO2 concentration and then, forced by one centrifugal blower
(Vorticent C25/2M Vortice, Milan, Italy), to distribute air to
the chambers through 50-mm-diameter rigid plastic pipes. The
air flow rate of each chamber is controlled by a baffle and is
constantly measured at least 50 cm downstream of the baffle
itself with digital flowmeters (50 Pa D6F-PH0026AD1, OMRON,
Kyoto, Japan) according to a flow-restriction method (Osborne,
1977). Each chamber is connected to a set of 12 solenoid valves
in series (model 177 B04/Z610, Sirai, Bussero, Italy) through a
sampling tube (Ø 10mm). Air sampling is switched from one
chamber to another at programmed time intervals (Raspberry
Pi B+, Raspberry Pi Foundation, Northants, UK). In order to
ensure air flushing inside the sampling tubes and the complete
air exchange inside CIRAS-DC, rotary vane pumps (model G
6/01-K-LCL; Gardner, Denver Thomas, Pucheim, Germany)
with 33.3 cm3 s−1 of flow rate were added before CIRAS-DC.
Both the inlet air temperature and the air temperature of each
chamber (outlet) were measured by using digital temperature
sensors (Dallas DS18B20, Dallas Semiconductor Corp., Dallas,
TX, USA).

On 36 DAE, 12 plants were transferred under the gas exchange
acquisition system and were kept in the system for 9 days until
the end of the experiment (as mentioned above) while 20 plants
were kept under a tunnel replicating the conditions of the gas
exchange acquisition system and were sampled for metabolomics
analyses. Both the tunnel and the gas acquisition system were
provided with the same air inlet, namely forced air collected from
outside (as described above), and the same LED lighting, namely
800 µmol m−2 s−1 PPFD.

Sample Harvest and Metabolomic Analysis
Gas exchange was measured throughout the duration of the
stress: as soon as the Pn of stressed plants started decreasing,
plants were sampled for metabolomics. Sampling of the 20
plants kept under the tunnel replicating the conditions of the
gas acquisition system was carried out on 42 DAE. The second
and third fully expanded leaves from the top of each plant
were excised and dipped into liquid nitrogen. Samples were
kept at −20◦C and subsequently analyzed. Plant samples were
homogenized in pestle and mortar by using liquid nitrogen and
extracted as previously reported (Paul et al., 2019b). Briefly,
an aliquot (1.0 g) was extracted in 10ml of 0.1% HCOOH in
80% aqueous methanol by using an Ultra-Turrax (Ika T-25,
Staufen, Germany). The extracts were centrifuged (12,000 g) and
filtered into amber vials through a 0.22-µm cellulose membrane
for analysis. Thereafter, metabolomic analysis was carried out
by ultra-high performance liquid chromatograph (UHPLC)
coupled to a quadrupole-time-of-flight mass spectrometer
(UHPLC/QTOF-MS). The metabolomic facility included a
1,290 ultra-high-performance liquid chromatograph, a G6550
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iFunnel Q-TOF mass spectrometer, and a JetStream Dual
Electrospray ionization source (all from Agilent Technologies,
Santa Clara, CA, USA). The untargeted analysis was carried
out as previously described (Rouphael et al., 2016). Briefly,
reverse-phase chromatography was carried out on an Agilent
PFP column (2.0 × 100mm, 3µm) and by using a 33-min
linear elution gradient (6–94% acetonitrile water, with a flow of
200 µl min−1 at 35◦C). The mass spectrometric acquisition was
done in SCAN (100–1,000 m/z) and positive polarity (Pretali
et al., 2016). Quality controls (QCs) were analyzed in data-
dependent MS/MS mode by using 12 precursors per cycle
(1Hz, 50–1,200 m/z, positive polarity, active exclusion after 2
spectra), with collision energies of 10, 20, and 40 eV for collision-
induced decomposition.

Raw spectral data were processed by using Agilent Profinder
B.07 software, (Santa Clara, CA, USA) as described in Miras-
Moreno et al. (2020). The PlantCyc 12.6 database (Plant
Metabolic Network; Release: April 2018) was used to putatively
annotate compounds according to Level 2 with reference to the
COSMOS Metabolomics Standards Initiative (Salek et al., 2015).
QCs were analyzed by using the MS-DIAL 3.98 (RIKEN Center
for Sustainable Resource Science: Metabolome Informatics
Research, Yokohama, Japan) to compare the MS/MS spectra to
the publicly available MS/MS experimental spectra built in the
software (e.g., MoNA) (Tsugawa et al., 2015).

Data Analysis
Gas Exchange Curve Fitting Using GAM(M)
The experiment was evaluated from the day prior to stress
imposition (38 DAE) for three consecutive days of water stress
(DAE 39-41) until the start of stress recovery (42 DAE). Statistical
analyses on gas exchange data were carried out via GAMMs.
GAMMs are regression models, which allow for modeling
non-linear regressions (Wieling, 2018). Unlike linear models
(1), which feature a sum of linear terms, GAMMs (2) are
characterized by a sum of smooth functions. GAMMs are used
to estimate smooth functional relationships between predictor
variables and the response. GAMM data fitting is characterized
by a penalized fit: the fit of the data is balanced with the
complexity of the model by penalizing wiggliness, namely the
deviation from total smoothness, and thus avoiding overfitting
(Pedersen et al., 2019).

Yij= β0 +
∑

βjxi + ∈ij (1)

Yij= β0 +
∑

fj(xi)+ ∈ij (2)

Among the multiple advantages of this approach is the possibility
to handle the complexity of the data without oversimplifying
them, the determination of the relationship between the
dependent variable and the predictors as a function of the
algorithm, which can be linear but is not necessarily linear, the
inclusion of multiple numeric predictors and the possibility to
include autoregressive AR(1) error model for Gaussian models in
order to handle the autocorrelation component of the error (van
Rij et al., 2019). The inclusion of autocorrelation is particularly

relevant in time-series data sets, where each datapoint is clearly
correlated to (and therefore dependent on) the previous and
the next datapoints. Therefore, this analysis is particularly useful
to data sets characterized by dynamic and time-series data
(Boswijk et al., 2020).

After Wieling (2018), the analysis started from a simple
generalized additive model, the sophistication of which was
progressively increased and extended step-by-step. While one
would normally directly choose the model reflecting the
hypothesis, this approach was chosen to shed light on the process
using generalized additive modeling.

Net photosynthesis (Pn), transpiration rate (E), and WUE
were used as the response variable for the following series
of GAM(M)s:

a. Sole irrigation as a fixed factor, including a smooth for day-of-
treatment and hour in the day, based on treatment.

b. Irrigation treatment and biostimulant treatment as fixed
factors, no interaction between the factors. Including a
smooth for day-of-treatment and hour in the day, based on
both treatments.

c. Irrigation treatment and biostimulant treatment as fixed
factors, interaction between the factors. Including a smooth
for day-of-treatment and hour in the day, based on
both treatments.

d. Introduction of tensor product-based smooths between hour
and day.

e. Inclusion of a smooth for day-of-treatment and hour in the
day, based on both treatments, and allowing for random effect
per individual.

f. Addition of non-linear random effects per individual for day-
of-treatment.

g. Introduction of individual-based autocorrelation.

Models d:g are nested within model c, allowing for comparison
of methods using log-likelihood/F tests. This allowed us to
evaluate Akaike information criterion (AIC) changes among
models and, thus, to find the model with the most explanatory
power given the degrees of freedom, while at the same time
assessing whether better or worse models explained significantly
different amounts of the deviance in the data. Statistical
tests were performed by using the software R version 4.0.2
(R Core Team, 2020). GAMM models were fitted in R by
using a cubic regression spline smoother, with the package
itsadug (van Rij et al., 2020). Mixed model selection, fitting,
and validation followed (Zuur et al., 2009). Biostimulant and
stress treatment factors were used in mixed linear models for
hypothesis testing.

Chemometric Interpretation of Metabolites
Chemometric interpretation of metabolites was performed by
using Mass Profiler Professional B.12.06 from Agilent (Santa
Clara, CA, USA) as previously described (Corrado et al., 2020).
The unsupervised hierarchical cluster analysis (HCA—distance
measure: Euclidean; clustering algorithm: Ward’s) was produced
based on the normalized molecular features. The supervised
orthogonal partial least squares-discriminant analysis (OPLS-
DA) was carried out with SIMCA 16 (Umetrics, Umeå, Sweden)
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TABLE 1 | Characteristics of the nine compared models of influence on

photosynthesis.

Model Resid. Df Resid. Dev AIC dAIC Dev. Expl (%)

a 3391.454 11624.1257 13974.67 5006.285 61.5

b 3378.586 10206.6696 13552.31 4583.922 66.2

c 3377.564 9648.388 13361.94 4393.553 68

d 3265.717 7618.79372 12724.36 3755.977 74.7

e 3231.964 4454.29886 10950.84 1982.455 85.2

f 3182.686 3307.85823 10024.21 1055.83 89

g 3214.175 3679.9617 8968.384 0 87.8

Model names as in the text: a is the sole irrigation as a fixed factor, including a smooth

for day-of-treatment and hour in the day, based on treatment. b has both irrigation and

biostimulant treatment as fixed factors. c adds the interaction between the factors and

includes a smooth for day-of-treatment and hour in the day, based on both treatments.

d introduces tensor product-based smooths between hour and day. e includes a smooth

for day-of-treatment and hour in the day, based on both treatments, and allowing for

random effect per individual. f adds non-linear random effects per individual for day-of-

treatment. g introduces individual-based autocorrelation. Resid.Df, residual degrees of

freedom; Resid.Dev, residual deviance; dAIC, difference in AIC based on model g. Dev.

Expl. (%) = deviance explained.

at default parameters. CV-ANOVA (p < 0.01) and permutation
testing (n = 100) were also applied to validate and to exclude
overfitting. Goodness-of-fit R2Y and goodness-of-prediction
Q2Y were also calculated from the OPLS-DA model. Outliers
were investigated according to Hotelling’s T2 (95 and 99%
confidence limit for the suspect and strong outliers, respectively).
Themost discriminant compounds in separationwere selected by
performing the variables importance in projection (VIP) analysis.

Thereafter, differential compounds were investigated through
Volcano plot analysis, combining fold-change (FC > 2) and
ANOVA (p < 0.0, 1, Bonferroni multiple testing correction)
and were then uploaded into the Omic Viewer Pathway Tool of
PlantCyc (Stanford, CA, USA) to identify pathways affected by
the treatments as in Caspi et al. (2013).

RESULTS

Gas Exchange Analysis
On 36 DAE, 12 plants were transferred under the gas exchange
acquisition system and were kept in the system for 9 days until
the end of the experiment. Plants were treated with a factorial
combination of irrigation (well-watered and water-stressed) and
biostimulant treatment (treated and control). Water-stressed
plants were allowed to dry down for three consecutive days by the
withdrawal of irrigation. Gas exchange data were processed via
GAMMs. GAMMs are non-linear regression models which are
characterized by a sum of smooth functions. Data were analyzed
by building models of growing complexity (Table 1, model a–
g), as previously explained. The regression models allowed to
explore the dynamics of the influence of the biostimulant and
water treatments on photosynthetic performance.

Among the candidate GAMMs, the optimal model was model
g, including Photosynthesis∼ irrigation treatment ∗ biostimulant
treatment and non-linear interactions between both treatments
and the duration of the experiment (expressed in days) and the

time of the day (expressed in hours), smooths for the duration
of the experiment and the time of the day on both treatments
and non-linear variability of the individuals over the duration
of the experiment. Moreover, model g included autocorrelation
for time over the individual. The model explained 87.8% of the
total deviance with an Adj.R2 of 0.872.While the next best model,
which did not include autocorrelation (model f), explained 89%
of the deviance (Adj.R2 0.883), when the models were confronted
via AIC (Akaike, 1974), and model g scored consistently lower
in terms of AIC score although bearing more degrees of freedom
(Table 1).

The inclusion of the sole irrigation treatment factor (model a)
explained 61.5% of the deviance in the data. The addition of the
biostimulant treatment factor (model b) increased the deviance
explained by 4.7%. The addition of further information increased
the deviance explained as follows: the inclusion of the interaction
between the fixed factors (model c) resulted in an additional
1.8%. The further introduction of tensor product-based smooths
between hour and day (model d) added 6.7% deviance explained,
while allowing for random effect per individual (model e) further
added 10.5% to it. Lastly, the addition of non-linear random
effects per individual for day-of-treatment (model f) resulted in
1.8% more deviance explained.

Under water-stressed conditions, model g highlighted
statistically higher Pn (Figure 1) in plants treated with
biostimulant compared to control plants starting shortly
before 39 DAE and lasting throughout the experiment until 42
DAE. Conversely, under well-watered conditions, there was no
significant difference between treatments. When considering
biostimulant-treated (BT) plants, the difference between water-
stressed and well-watered plants was significantly lower for
water-stressed plants starting half 40 DAE to half 41 DAE. Lastly,
well-watered and water-stressed untreated plants displayed a
significant negative difference frommid-39 DAE to mid-42 DAE.

The influence of day-of-treatment (38–42 DAE), starting from
the day prior to stress imposition, and hour was evaluated
separately for each treatment (biostimulant and water treatment).
Through the use of GAMMs, the significance of the effect
of day and hour on biostimulant and water treatment was
further investigated singularly for each dimension of both factors
(biostimulant treated/control treated and water-stressed/well-
watered) (Table 2). The results show that all the partial
correlations were statistically significant for at least one of the
two levels of the factors at the value of p < 0.001 level, except
for the effect of hour and day of week on biostimulant treatment,
which was significant at the value of p < 0.05. While the
significance of the smooth terms does not provide information on
whether the patterns are statistically significant, this suggests that
each individual variable has a statistically significant influence
on modeling the wiggliness of Pn, which in turn confirms the
distance of Pn from a linear function.

The partial effect (referred solely to biostimulant treatment)
of biostimulant treatment on Pn observed for each day-of-
treatment is of particular interest (Figure 2): while no effect can
be detected for the control treatment (which is represented by
a linear function), the biostimulant treatment has a detectable
effect on the wiggliness of the Pn curve.
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FIGURE 1 | Graphs showing differences in Pn according to model g among all combinations of treatments (irrigation and biostimulant). Random effects were

excluded. The baseline is represented by untreated plants above and by watered (control) plants below. The pointwise 95% CI is shown by a shaded band. When the

shaded confidence band does not overlap with the x-axis (i.e., the value is significantly different from zero), this is indicated by a red line on the x-axis (and vertical

dotted lines). (A) Water-stressed (WS), comparison between no biostimulant (NB) and biostimulant treatment (BT). (B) Well-watered (WW), comparison between NB

and BT. (C) BT, comparison between WS and WW. (D) NB, comparison between WS and WW.

Transpiration (E, mmol m−2 s−1) was evaluated through
increasingly complex models, as Pn. Model g was once more
the best fitting model, with 88.2% of deviance explained and
0.875 Adj.R2. As for Pn, water-stressed BT plants performed
significantly better than untreated plants (Figure 3). In particular,
the performance of BT plants was significantly higher from
mid-38 DAE to mid-40 DAE. Conversely, non-stressed plants
(biostimulant treated/untreated) did not show any significant
difference in transpiration.Water-stressed BT plants had a higher
E than well-watered plants from mid-41 DAE until mid-42 DAE.
Untreated plants differed from late 39 DAE throughout the end
of the experiment.

As for Pn and E, WUE was evaluated through increasingly
complex models (Figure 4). Model g was confirmed as the best
model, with 85.3% deviance explained and 0.843 Adj.R2.: As
for Pn and E, no significant difference was highlighted among
well-watered plants (both biostimulant treated and not). The
difference inWUE between treated and untreated plants spanned
from shortly before the day of stress imposition (39 DAE) to the
third day (41 DAE). The duration of the difference among BT

plants (well-watered/water-stressed) extended from early 40 DAE
to 42 DAE while the difference among untreated well-watered
and water-stressed plants went from 40 DAE to 42 DAE.

Untargeted Metabolomics
In this study, the untargeted metabolomics approach was able
to reveal more than 3,400 molecular features. The annotated
compounds and composite mass spectra (mass and abundance
combinations), together with compounds confirmed by MS/MS,
are listed in Supplementary Table 1. The data set was first
interpreted through an unsupervised hierarchical clustering.
This unsupervised clustering approach enabled the description
of similarities/dissimilarities among treatments, as shown in
Figure 5A.

Two main clusters were generated—one including the
BT water-stressed treatment and the other including both
irrigated and stressed untreated treatments and the treated
irrigated one. Two distinct subclusters, one including the
untreated water stressed (WS) and the other both the treated
and untreated irrigated treatments, could be identified. The
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TABLE 2 | Influence of partial effects on Pn using generalized additive mixed

modeling (GAMM) multivariate analysis.

Partial effect Edf F p-value

te(day_of_treatment,

hour):WellWatered

1.819e+01 0.481 0.000509***

te(day_of_treatment,

hour):WaterStressed

3.084e+01 5.554 <2e−16***

te(day_of_treatment,

hour):NoBiostimulant

6.220e+00 0.219 0.000288***

te(day_of_treatment,

hour):BiostimulantTreated

2.847e+01 1.636 <2e−16***

s(day_of_treatment):

WellWatered

1.000e+00 2.872 0.090207

s(day_of_treatment):

WaterStressed

3.803e+00 17.018 8.28e−12***

s(day_of_treatment):

NoBiostimulant

9.612e−05 0.666 0.993127

s(day_of_treatment):

BiostimulantTreated

3.415e+00 3.049 0.010673*

s(hour):

WellWatered

1.632e+01 11.215 <2e−16***

s(hour):

WaterStressed

6.051e+00 3.626 0.000573***

s(hour):

NoBiostimulant

1.000e+00 1.258 0.262130

s(hour):

BiostimulantTreated

5.880e+00 2.523 0.012176*

s(day_of_treatment,

ID_plant)

3.805e+01 26.618 <2e−16***

*significant difference at P < 0.05, ***significant difference at P < 0.001.

WS, BT profile differed starkly from the others: the naive
(unsupervised) hierarchical clustering of metabolomic signatures
revealed distinctive profiles in tomato leaves under limited
water availability, which is the result of the application of
the biostimulant.

OPLS-DA analysis allowed separating predictive and
orthogonal components (i.e., the components ascribable to
technical and biological variation) of variance. The subsequent
supervised statistics were used to discriminate the tomato
samples according to the treatment. The OPLS-DA (Figure 5B)
effectively separated the stressed from the non-stressed plants
and pointed out irrigation as the main separation factor. Among
the stressed plants, treated plants presented the most distinct
profile as suggested by the HCA, and were clearly separated
from the non-treated ones. Similar metabolic profiles were
found for non-stressed plants regardless of the treatment.
The model parameters of the OPLS-DA regression were
R2Y = 0.89 and Q2Y = 0.73, respectively. The model was
validated (CV-ANOVA p = 1.50 × 10−5) and overfitting
was excluded through permutation testing (N = 100). Given
the validated model outcomes, the VIP variable selection
method was used to identify compounds explaining the
observed differences. The discriminating compounds with a
VIP score >1.3 were considered as discriminants. About 147
compounds resulted from this selection and are summarized

FIGURE 2 | Uncoupling of the partial effects of BT/control treatment on the

wiggliness of Pn curve. (A) partial effects of control treatment (NB) over the

day of treatment [in days after emergence (DAE)] on Pn. (B) partial effects of

BT over the day-of-treatment (in DAE) on Pn.

in Supplementary Table 2. Thereafter, a Volcano analysis
(p < 0.01; FC > 2) was performed and the significant
compounds were then uploaded into the Omics Dashboard
tool from PlantCyc to facilitate the discussion of results
(Supplementary Table 3).

Notably, relatively few biochemical classes included most of
the discriminant metabolites (Figure 6).

The metabolic profile of water-stressed BT plants sharply
differs from the others. The most affected classes of compounds
were secondary metabolites, particularly in their biosynthesis,
followed by cellular structure synthase and fatty acid and lipid
synthesis. Regarding secondary metabolite biosynthesis,
terpenoid biosynthesis, nitrogen-containing secondary
compound biosynthesis, and phenylpropanoid derivative
biosynthesis were the most affected. Compounds related
to terpenoid biosynthesis were strongly over-accumulated,
mostly represented by triterpenoids and tetraterpenoids, with
a high abundance of carotenoids: this is particularly relevant
considering the role of carotenoids in photosynthetic organisms.
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FIGURE 3 | Graphs showing differences in transpiration (mmol m−2 s−1) according to model g among all combinations of treatments (irrigation and biostimulant).

Random effects are excluded. The baseline above is represented by untreated plants, below by watered (control) plants. The pointwise 95% CI is shown by a shaded

band. When the shaded confidence band does not overlap with the x-axis (i.e., the value is significantly different from zero), this is indicated by a red line on the x-axis

(and vertical dotted lines). (A) WS, comparison between NB and BT. (B) WW, comparison between NB and BT. (C) BT, comparison between WS and WW. (D) NB,

comparison between WS and WW.

At the same time, compounds responsible for terpenoid
degradation were significantly underaccumulated. Interestingly,
phytoalexins were also found to be over-accumulated. Cell
structure synthase metabolites, among which stearate and
oleate, were strongly over-accumulated. Concerning vitamin
biosynthesis, molecules responsible for thiamine biosynthesis
were sharply over-accumulated. Among fatty acids and lipids,
cutin synthase metabolites were strongly over-accumulated,
together with epoxylated and hydroxylated fatty acids, stearate,
and unsaturated fatty acids. Sphingolipids were also found
to be over-accumulated. Concerning degradation, amino
acids degrading molecules showed a generalized under-
accumulation, for instance regarding glutamate, lysine, and
tryptophan. Lastly, interestingly gibberellin degrading pathways
were under-accumulated in BT plants, but differences could
be detected among water treatments: the control group
showed a sharp under-accumulation of molecules involved
in epoxidation, while the stressed group showed a sharp
decrease in succinate content, involved in the hydroxylation
of gibberellins.

DISCUSSION

One of the primary adverse effects of water deficit stress is the
inhibition of photosynthesis triggered by stomatal closure, which
represents the earliest response to drought (Michaletti et al.,
2018). As a result, CO2 uptake and concentration in leaves are
reduced (Medrano et al., 2002). In view of this, the results from
the GAMM analysis confirmed that BT plants performed better
in terms of Pn, E, and WUE compared to untreated plants under
water stress. The use of generalized additive modeling enabled
the analysis of the full set of dynamic data, without the need to
reduce time resolution (i.e., average overtime or select specific
time points). Moreover, with this analysis, the effect of treatments
(i.e., drought and biostimulant application) on the patterns (i.e.,
wiggliness) of gas exchange data was accurately modeled and
discriminated, also considering data autocorrelation. The use of
GAMM allowed for the extraction of information on the effect
of the biostimulant devoid of temporal correlation and random
errors due to individual replicates, non-linear interactions
between both treatments and the duration of the experiment
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FIGURE 4 | Graphs showing differences in water-use efficiency (WUE) among all combination of treatments (irrigation and biostimulant). Random effects are

excluded. The baseline above is represented by untreated plants, below by watered (control) plants. The pointwise 95% CI is shown by a shaded band. When the

shaded confidence band does not overlap with the x-axis (i.e., the value is significantly different from zero), this is indicated by a red line on the x-axis (and vertical

dotted lines). (A) WS, comparison between NB and BT. (B) WW, comparison between NB and BT. (C) BT, comparison between WS and WW. (D) NB, comparison

between WS and WW.

(expressed in days) and the time of the day (expressed in hours).
At the same time, GAMM analysis allowed to consider different
smooths for a day (duration of the experiment) and hour (time
of the day) for both factors (water and biostimulant). Lastly, the
use of GAMM allowed for the inclusion of non-linear variability
of the individuals over the duration of the experiment. While the
significance of the smooth terms does not provide information
on the statistical significance between patterns, each individual
variable has a statistically significant influence on modeling the
wiggliness of Pn, which in turn confirms the distance of Pn
from a linear function. This resulted in a model explaining
87.8% of the deviance. Further, the use of GAMMs enabled the
comparison between the curves of stressed and well-watered
plants, both with and without biostimulant, thereby providing
both a visual screening tool and a statistical tool to further
confirm or disprove the effect of biostimulant treatment. The
positive effect of the biostimulant treatment observed through
GAMM analysis is in line with literature findings on the potential
of GB to increase photosynthetic performance under water stress
(Yang and Lu, 2005; Hamani et al., 2020; Nawaz and Wang,

2020), especially in tomato (Mäkelä et al., 1999). Differences
in the length of significance windows among Pn, E, and WUE
were detected. While the photosynthetic rate was constantly
higher for treated plants compared to the untreated ones, from
stress imposition (39 DAE) to the end of stress (42 DAE), the
positive effect in the BT water-stressed plants for transpiration
rate, and consequently WUE, was shorter compared to Pn.
Specifically, under water-stressed conditions, the positive effect
of the biostimulant treatment on E was reduced in duration,
indicating that higher transpiration could only be supported until
late, on 40 DAE (second day of water stress) and efficacy onWUE
was further reduced to early on 40 DAE. This indicates that the
increased photosynthetic rate after the first day of water stress
imposition is followed by increased transpiration, resulting in
the reduction of the WUE advantage. WUE is a largely diffused
performance indicator for crop yield and water consumption.
Water-stressed plants typically exhibit a higher WUE due
to a more conservative use of water, resulting in improved
resource utilization efficiency under conditions of water scarcity
(Zhao et al., 2020). Nevertheless, high stomatal conductance over
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FIGURE 5 | (A) Unsupervised hierarchical cluster analysis (HCA, Euclidean

similarity; linkage rule: Ward’s). The analysis was carried out from metabolite

profiles in tomato leaves from the factorial combination of BT and water

treatment as gained from ultra-high performance liquid chromatograph

(UHPLC) coupled to a quadrupole-time-of-flight mass spectrometer

(QTOF-MS) untargeted metabolomics. Compound intensity was used to

produce fold-change-based heat maps, on which clustering was based. (B)

Score plot of Orthogonal Projection to Latent Structures Discriminant Analysis

(OPLS-DA) unsupervised analysis carried out from metabolite profiles in

tomato leaves treated or untreated plants, as gained from UHPLC/QTOF-MS

untargeted metabolomics.

time is essential to high plant production, translating into
maximized soil water-use for transpiration, or effective use of
water (EUW) for transpiration. It is therefore evident that, under
drought conditions, higher stomatal conductance over time will
result in lower WUE (Blum, 2009). Indeed, drought-resistant
plants display the minimization of leaf permeability, for example,
by means of higher epicuticular wax deposition, in order to
maximize soil water capture while diverting water to stomatal
transpiration (Blum, 2009). Besides, Blum indicates the EUW
as the key objective in maximizing biomass production under a
limited water regime.

The increased photosynthetic rate was in line with the
protective role of GB in terms of cellular osmotic adjustment,

detoxification of reactive oxygen species, and protection and
stabilization of membrane integrity (Ashraf and Foolad, 2007)
and is further supported by the sharp separation of the
metabolic profile of the water-stressed BT thesis. At the same
time, the smaller reduction in net photosynthesis in leaves
subjected to water stress can be attributed to an increased
stomatal conductance, as well as the maintenance of chloroplast
ultrastructure (Ma et al., 2006) and Rubisco activity (Yang
et al., 2005). Indeed, the overaccumulation of carotenoids is of
particular interest, given their photoprotective role in preventing
the overexcitation of photosystem II (Uarrota et al., 2018), while
at the same time acting as toxic oxygen species scavengers,
structure stabilizators, and excess energy dissipators (Griffiths
et al., 1955; Frank and Cogdell, 1996; Polívka and Sundström,
2004). GB has indeed been found to have a strong protective effect
on the structure and function of the oxygen-evolving complex
of PSII in vitro against multiple abiotic stresses (Mamedov
et al., 1991, 1993; Papageorgiou et al., 1991; Papageorgiou and
Murata, 1995; Allakhverdiev et al., 2003). Wang et al. (2010)
found that drought stress can interfere with the state of the
lipids in thylakoid membrane, which, if damaged, might cause
PSII to be impaired. Concurrently, cell membrane stability
depends on the absence of lipid peroxidation, caused by reactive
oxygen species (ROS) accumulation. Moreover, they found that
carotenoid concentrations in water stressed, GB-treated plants
were consistently higher compared to untreated plants. They
also demonstrated that the ability of GB to decrease ROS levels
is not direct, but rather indirect. These findings imply that
GB acts as an elicitor to other scavenger molecules, thereby
strongly supporting our findings on carotenoid concentration.
Indeed, Wang et al. (2010) correlated GB accumulation to
xanthophyll cycle-dependent nonradiative energy dissipation,
thereby drawing a strong connection between the protective
action derived from GB overaccumulation and carotenoid
synthesis. In addition, GB-synthetizing transgenic plants have
been found to display higher activity of ROS-detoxifying enzymes
(Yang et al., 2006; Ahmad et al., 2010). Supporting these
arguments, Xu et al. (2018) hypothesized that GBmay act both as
an osmotic stress hardening molecule and as a signaling molecule
in acclimation, rather than only via a direct action. Concerning
energy supply, it is particularly interesting to notice the sharp
accumulation of thiamine precursors, as thiamine plays a pivotal
role in carbon metabolism and is essential for cell energy supply
in all organisms. Moreover, it is essential in carbon fixation
through the Calvin cycle and the non-mevalonate isoprenoid
biosynthesis pathway, from which thousands of metabolites are
derived including chlorophyll, phytols, and carotenoids, and
also several phytohormones (Noordally et al., 2020). Thiamine
has also been linked to plant adaptation responses to persistent
abiotic stress conditions, including drought (Wong et al., 2006),
and oxidative stress (Rapala-Kozik et al., 2008; Tunc-Ozdemir
et al., 2009). In addition, the overaccumulation of specific
secondary metabolites suggests a stress priming activity induced
by the biostimulant treatment: phytoalexins have been associated
with increased drought tolerance in multiple species (Kuc, 1995;
Hatmi et al., 2014; Vaughan et al., 2015); phenylpropanoid
biosynthetic pathway is activated under abiotic stress conditions,
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FIGURE 6 | Bar graphs resulting from the import of volcano analysis data [p < 0.01; field capacity (FC) > 2] on the Omics Dashboard tool from PlantCyc. The

treatments FC difference is calculated based on WW, control treatment (WW–NB). The first bar (in blue) depicts WS–BT results, the second (in red) depicts WW–BT

results, the last (in yellow) depicts WS–BT results. The abbreviated subcategory names on the x-axis correspond to: Nucleo: nucleosides and nucleotides; FA/Lipids:

fatty acids and lipids; Amines: amines and polyamines; Carbohyd: carbohydrates; Cofactors: cofactors, prosthetic groups, electron carriers, and vitamins; Metab reg:

Metabolic Regulators.

resulting in stimulated biosynthesis of phenolic compounds
with strong antioxidative potential (Sharma et al., 2019). Lastly,
the overaccumulation of lipids and specifically cutin synthase
metabolites supports the maximization of stomatal transpiration
(Kerstiens, 1997, 2006). All things considered, the positive
effect of GB on water stress resistance could be attributed
both to the delayed onset of stress, and consequently

the enhanced natural response of tomato plants, and the
elicitation of stress priming through the induction of H2O2-
mediated antioxidant mechanisms, as Park et al. (2004, 2006)
suggested, and molecules with strong antioxidant potential (such
as xanthophylls).

In conclusion, the study demonstrated the potential of the
GAMMmethod to describe and discriminate biostimulant action
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(GB, in this case) to improve photosynthetic performance under
water stress conditions. In this, the GAMMmethod was crucial in
extracting the effect of biostimulant treatment under dynamic gas
exchange acquisition. GAMM analysis effectively improved the
interpretation of time series data, enabling both the description
of the dynamics of water stress onset and the isolation of the
effect related to the biostimulant treatment. Moreover, compared
to the other treatments, water-stressed BT plants displayed a
starkly different and stress tolerance-related metabolic profile,
in agreement with the findings on photosynthetic performance.
The metabolites accumulated suggest a priming effect for
stress tolerance, via detoxification and stabilization of the
photosynthetic machinery. The duration and dynamics of the
positive effect of the biostimulant treatment under water stress
differed for photosynthesis, transpiration, and WUE, the last
two being limited in time. This could depend on an increased
transpiration efficiency, translating into maximized soil water
use for transpiration, or the EUW for transpiration. At the
same time, minimization of leaf permeability through increased
leaf wax content is one of the main strategies that plants
employ to divert water to stomatal transpiration. Indeed, the
metabolic profile findings support the increased EUW through
the overaccumulation of lipids and cutine synthase metabolites.
The present research brought further evidence that GB protective
action on photosystem II is not only direct but also strongly
connected to the production of other scavenger molecules (e.g.,
carotenoids and phytoalexins), making the case that GB acts
both as an osmotic stress hardening molecule and as a signaling
molecule in acclimation. Nonetheless, further research is needed
to deepen the connection between exogenous GB treatment and
metabolic response.
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Supplementary Table 1 | Untargeted metabolomics data set containing the

annotated compounds in both ∗∗∗MS-only and MS/MS following the ultra-high
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spectrometer (UHPLC-QTOF-MS) analysis.

Supplementary Table 2 | Discriminant metabolites identified by the variables

importance in projection (VIP) analysis in leaves following biostimulant application.

Compounds were selected as discriminant by possessing a VIP score >1.3.

Supplementary Table 3 | Differential metabolites as derived from Volcano

analysis [value of p < 0.01; field capacity (FC) > 2] and uploaded to the PlantCyc

pathway Tool software for the subsequent analysis.
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