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In recent years, various mulberry leaf dishes have gradually gained in popularity. The

harvesting period of mulberry leaves and the preparation of dried samples are critical for

the retention of flavonoid content and activity. In this study, changes in flavonoid levels in

mulberry leaves during their growth period (3–6 months), and the effects of four different

drying methods [sun drying (SD), air drying (AD), oven drying (OD), and freeze drying

(FD)] on flavonoid accumulation and antioxidant capacity were determined. The results

showed that mulberry leaves grown for 6 months had higher levels of flavonoids, and

different drying methods could significantly affect the flavonoid levels and antioxidant

capacity of the leaves. Air drying and FD were the best methods in terms of retaining

the antioxidant activity of flavonoids, although AD had lower operating costs than FD

in the production process. Therefore, to obtain a high flavonoid content and maximum

antioxidant activity, AD is recommended for mulberry leaves.

Keywords: mulberry leaves, flavonoids, growth period, drying methods, antioxidant activity

INTRODUCTION

Mulberry (Morus alba L.) is a woody plant of the genusMorus in the family Moraceae (Wang et al.,
2019). Mulberry leaves are rich in nutrients and can be eaten as vegetables. Moreover, the active
ingredients of mulberry leaves can be used to treat various diseases, such as hypertension, diabetes,
hyperlipidemia, Alzheimer’s disease, and immunomodulation (Ma et al., 2018). The popularity
of mulberry may be due to it being a rich source of active substances, such as vitamins, amino
acids, carotene, flavonoids, alkaloids, and polysaccharides (Rodrigues et al., 2019). In particular,
flavonoids show a high therapeutic activity (Li et al., 2009).

Flavonoids are widely found in various plants, fruits, vegetables, and beverages. From a
structural perspective, flavonoids can be divided into flavones, flavonols, flavanols, anthocyanins,
and isoflavones (Winkel-Shirley, 2001), and are mainly present in food as glycosides and polymers
(Heim et al., 2002). Flavonol glycosides, rutin, quercetin 3-(6-malonylglucoside), and isoquercitrin
have been identified as the major antioxidants in ethanol extracts ofM. alba leaves (Katsube et al.,
2006). Many flavonoids exert antioxidant and free radical scavenging activity, the ability to prevent
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coronary heart disease, and hepatoprotective, anti-inflammatory,
and anti-cancer effects (Kumar and Pandey, 2013). Flavonoids
with high antioxidant activity act in a variety of ways, such as
(a) can inhibit reactive oxygen species inhibition (b) leukocyte
immobilization (c) inhibit nitric oxide, and (d) xanthine oxidase
inhibition (Kumar and Pandey, 2013). In addition to their
physiological functions in plants, flavonoids are an important
part of the human diet (Procházková et al., 2011).

It is generally believed that the loss of natural antioxidants
in food is related to preservation methods (Nicoli et al.,
1999). Therefore, processing is required to extend shelf life.
Flavonoids may be affected by various processing methods,
including drying. Traditional drying methods, such as cold
drying, daylight drying, hot air/oven drying, and vacuum drying,
are widely used (Kamiloglu et al., 2015). In recent years,
many alternative drying methods have been developed, which
have the advantage of shortening the drying time, thus saving
electricity and energy, and improving the quality of the final
products; these methods include microwave drying, infrared
drying, vacuum microwave drying, and freeze drying (FD)
(Kamiloglu et al., 2015). Studies have shown that biologically
active substances in natural materials are affected by high
temperatures, microwave/ultraviolet radiation, and oxygen-
enriched air. Therefore, during the process of preparing dry
samples from natural materials, the choice of method plays a
crucial role in maintaining biologically active compounds.

In recent years, targeted metabolomics methods have been
widely used to analyze plant metabolomics (Yang et al., 2020).
There have been a few studies on the metabolism of flavonoids
in mulberry. This study was based on multiple reaction
monitoring (MRM). Flavonoids were subjected to a metabolomic
analysis, and metabolic changes of flavonoids in mulberry leaves
were assessed at different growth stages with the application
of various drying methods. The antioxidant activity of, and
optimal harvesting time and drying method for, mulberry leaves
were assessed.

MATERIALS AND METHODS

Plant Materials
Mulberry leaves were harvested from an experimental field at
South China Agricultural University (23.24◦N, 113.64◦E). The
first leaf harvest was performed at 3 months (young leaves,
YL), after which plants were allowed to regrow. The second leaf
harvest was performed 6 months after the YL had been harvested
(old leaves, OL). The samples were packed in polyamide bags and
stored under vacuum.

Preparation of Dried Samples
The harvested mulberry leaves were immediately dried to a
constant weight by four different drying methods, as follows.

FD: M. alba samples were frozen completely in a freezer
(Pilot 5-8S; Boyikang, Tianjin, China) at −60◦C for 24 h to
constant weight.

Oven drying (OD): M. alba samples were dried in a hot-air
oven (DHG-9140A; Yiheng, Shanghai, China) at 65◦C for 48 h to
a constant weight.

Sun drying (SD): M. alba samples were dried under the sun
for 72 h to a constant weight at 35± 2◦C.

Air drying (AD): M. alba samples were dried in a
shaded and ventilated place for 1 week to a constant weight
at 25± 2◦C.

Generation of a MicroTom Metabolic
Network Dataset
The samples were sent to Wuhan Metware Biotechnology Co.,
Ltd. (Wuhan, China) (http://www.metware.cn/) and analyzed
using a flavonoid-targeting metabolomics method. In brief,
each sample was crushed for 1.5min at 30 Hz/min using a
mixer mill operating at 30Hz (MM 400; Retsch Technology,
Haan, Germany) with zirconia beads. A 100mg aliquot of the
powder was extracted with 1.0ml of 70% methanol aqueous
solution at 4◦C overnight. Then, the sample was centrifuged
at 10,000×g for 10min, and the extract was absorbed using
the CNWBOND Carbon-GCB SPE column (250mg, 3ml;
ANPEL, Shanghai, China, http://www.anpel.com.cn/cnw) and
filtrated using a microporous membrane (SCAA-104, 0.22-µm
pore size; ANPEL, Shanghai, China, http://www.anpel.com.cn/)
prior to ultraperformance liquid chromatography tandem mass
spectrometry (UPLC-MS/MS) analysis (Chen et al., 2013). A
stepwise multiple ion monitoring–enhanced product ion (MIM-
EPI) strategy was used for qualitative analysis. The MS2T
data were analyzed to more accurately determine precursor
ion (Q1) and product ion (Q3) values, retention time (RT),
and fragmentation patterns compared with those obtained
by injecting standards under the same conditions, which
is dependent on the availability of standards (Chen et al.,
2013).

Determination of the Moisture Content
After drying to a constant weight, the ratio of the mass
of the dried sample to the mass of the original sample
was determined to represent the amount of dry matter,
and expressed as a percentage. After drying, samples were
crushed and dried again to obtain the highest equilibrium
moisture content of each drying method. A 4 g sample was
accurately weighed and dried in a hot-air oven at 105◦C
to a constant weight (±0.02 g). The highest equilibrium
moisture content was given by the ratio of moisture loss
to sample weight, expressed as a percentage (Chuyen et al.,
2017).

Measurement of Antioxidant Capacity
Preparation and subsequent analysis of the extract followed
the method used by He et al. (2020). The sample (0.2 g)
was extracted with 10mL methanol for 24 h in the dark,
and the supernatant was then used to analyze the scavenging
activities of the 2,2’-azinobis-3-ethylbenzothiazoline-6-sulfonic
acid diammonium salt (ABTS) radical cation, 2,2-diphenyl-
1-picrylhydrazyl (DPPH), and the ferric-reducing antioxidant
power (FRAP). The absorbance was read at 517, 734, and
593 nm on microplate readers (Varioskan LUX; Thermo Fisher,
Waltham, MA, United States). Trolox was used to establish a
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standard line, and the scavenging activity and reducing power
were expressed as Trolox equivalent (mg TE/g drying sample).

Statistical Analysis
Each sample was analyzed using three biological replicates,
and the data are expressed as mean (n = 3) ± standard
deviation (SD). Principal component analysis (PCA) and other
multivariate statistical analysis methods were applied. The Kyoto
Encyclopedia of Genes and Genomes (KEGG) pathway database
(http://www.kegg.jp/kegg/pathway.html) was used to annotate
the different metabolites. SPSS software (version 21.0; SPSS Inc.,
Chicago, IL, United States) was used to conduct Duncan’s test,
and P < 0.05 was taken to indicate a significant difference.

RESULTS

Comparison of Flavonoid Metabolites in YL
and OL
Dynamic changes of flavonoid metabolites in YL and
OL in mulberry were detected using UPLC-MS/MS.
Supplementary Figure 1 shows the total ion current (TIC)
and extracted ion current (XIC); the signal was considered stable
when multiple metabolites were detected in the same sample.
The stability of the instrument guaranteed the repeatability and
reliability of the metabolomics data.

Qualitative and Quantitative Analyses of Flavonid

Metabolites
In MRM mode, UPLC-MS/MS was used to evaluate the
compounds in the two samples.

PCA was conducted to confirm the metabolic differences
between the YL and OL samples, and the variance explained
by the first two principal components was determined (89.2
and 6.7%, respectively). The results showed that there were
different metabolites in the YL and OL sample groups, and each
sample formed a separate cluster (Figure 1A). The significant
differences between the samples could inform subsequent
qualitative and quantitative analyses. The qualitative analysis
revealed that a total of 172 flavonoids metabolites (12 chalcones,
16 dihydroflavones, 37 flavones, 51 flavonols, four flavonoid
carbonosides, six flavanols, six tannins, and 40 other flavonoids)
were identified/annotated in OL, while 152 flavonoid metabolites
(11 chalcones, 15 dihydroflavones, 36 flavones, 50 flavonols, two
flavonoid carbonosides, five flavanols, six tannins, and 27 other
flavonoids) were identified/annotated in YL (Figures 1B–D). All
of the flavonoids in YL were also present in OL. In addition,
a hierarchical cluster analysis was performed to assess the
accumulation patterns of the various flavonoid metabolites in OL
and YL (Figures 1E–L).

Identification, Functional Annotation, and KEGG

Enrichment Analysis of Differentially Accumulated

Metabolites
Differentially accumulated metabolites (DAMs) were defined as
those showing a variable importance in projection (VIP) value
≥ 1 and a fold-change of ≥ 2 or ≤ 0.5 between OL and
YL (P < 0.05). A total of 61 DAMs were identified. Volcano

plots were generated to represent the DAMs between OL and
YL (Figure 2A): 60 (three chalcones, three dihydroflavones,
eight flavones, nine flavonols, two flavonoid carbonosides,
two flavanols, one tannin, and 32 other flavonoids) of
61 (two chalcones, three dihydroflavones, 10 flavones, nine
flavonols, two flavonoid carbonosides, two flavanols, and 32 other
flavonoids) compounds were up-regulated (98.36%) and one
(flavone) of 60 was down-regulated (1.64%).

The KEGG database was used to annotate the functions of
the DAMs between OL and YL; the metabolic pathway analysis
results are shown in Figure 2B. Only five (chrysin, afzelechin,
3-O-methylquercetin, quercetin-3-O-(6”-malonyl)glucoside, and
tricetin) of the 61 flavonoids were annotated by KEGG. The
KEGG classification and enrichment results indicated that the
differences in flavonoid metabolites between YL and OL were
related to flavonoid biosynthesis, isoflavonoid biosynthesis, and
flavone and flavonol biosynthesis pathways. All five of these
flavonoids displayed an upward expression trend in the OL
group and were located in the downstream region of each
metabolic pathway.

Effects of Different Drying Methods on the
Flavonoids in Mulberry Leaves
Mulberry leaves are known to contain high levels of flavonoids.
How best to ensure the retention of flavonoids is a hot topic in
food processing research. To preserve the flavonoids in mulberry
leaves, we examined the effects of four different drying methods
on the accumulation of flavonoids in YL and OL.

Moisture Content of Dried Leaves From Different

Drying Methods
The moisture content of dried samples was affected by the drying
temperature, and was related to the growth period of the leaves.
Compared to the instrumental drying methods (OD and FD),
the natural drying methods (AD and SD) were associated with
a higher percentage leaf water loss, that is, the dry matter content
of the leaf was low (Supplementary Table 1).

The highest equilibrium moisture content of the sample after
drying ranged from 2.23 to 6.03% (Supplementary Table 1).
The moisture content in the leaves obtained by all drying
methods was in the safe range for dried fruit and plant material
storage, and allowed subsequent analysis of flavonoids and
antioxidant properties.

Metabolite Profiling Analysis
In MRM mode, UPLC-MS/MS was used to evaluate the
compounds in the four YL and OL samples.

In YL, PCA showed that the metabolites associated with
the four drying methods were separated from each other into
individual clusters. The variance explained by the first two main
components was 30.17 and 24.23%, respectively (Figure 3A).
After quality verification, 149, 143, 140, and 145 flavonoid
metabolites were identified/labeled in the AD, FD, OD, and SD
groups, respectively (Figure 3C). A hierarchical cluster analysis
was also performed (Figure 3D).

In OL, PCA showed that the metabolites associated with
the four drying methods were separated from each other into
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FIGURE 1 | Qualitative and quantitative analyses of flavonoids metabolites in young leaves (YL) and old leaves (OL). (A) Principal component analysis of flavonoids

metabolomics data of YL and OL. (B) The amount of each kind of flavonoids in YL and OL. (C) The ratio of each type of flavonoids in YL. (D) The ratio of each type of

flavonoids in OL. (E–L) Heatmap of flavonoids metabolomics data of YL and OL. (E) Chalcones, (F) Dihydroflavone, (G) Flavone, (H) Flavonols, (I) Flavonoid

carbonoside, (J) Flavanols, (K) Tannin, and (L) Other flavonoids. The heat map showed the relative content of metabolites, where each line represents a metabolite.

The red and green segments represent a relatively high and low abundance of metabolites, respectively. ND, Not Found.

individual clusters, and the variance explained by the first two
main components was 47.2 and 31.0%, respectively (Figure 3B).
A total of 172 flavonoid metabolites were identified/annotated in
each group (Figure 3C). A hierarchical cluster analysis was also
performed (Figure 3E).

Identification of DAMs
Differentially accumulated metabolites were defined as those
showing a VIP value ≥ 1 and a fold-change of ≥ 2 or ≤ 0.5
between YL and OL (OD vs. FD, AD vs. FD, SD vs. FD, OD vs.

SD, OD vs. AD, and AD vs. SD) (P < 0.05). A total of 61 DAMs

were identified. Volcano plots were generated to represent the
DAMs and show the significant differences. A hierarchical cluster

analysis was performed to assess the DAM accumulation patterns
(Figure 4).

In YL (Figures 4A–F), for AD vs. SD, nine of 33 flavonoids

were up-regulated (27.3%) and 24 of 33 were down-regulated

(72.7%); for AD vs. FD, 38 of 39 were up-regulated (97.4%) and
1 of 39 was down-regulated (2.6%); for SD vs. FD, 31 of 38 were

up-regulated (81.6%) and 7 of 38 were down-regulated (18.4%);
for OD vs. AD, 30 of 43 were up-regulated (69.8%) and 13 of
43 were down-regulated (30.2%); for OD vs. FD, 13 of 36 were
up-regulated (36.1%) and 23 of 36 were down-regulated (63.9%);
and for OD vs. SD, 21 of 35 were up-regulated (60.0%) and 14
of 35 were down-regulated (40.0%). A total of 64 DAMs were
identified. Compared to the other three groups, the SD group had
13 types of significantly up-regulated flavonoids, while the OD
group had 17, the AD group had 28, and the FD group had 6. The
experimental results showed that the accumulation of flavonoids
followed the order of AD > OD > SD > FD in YL.

In OL (Figures 4G–L), for AD vs. SD, 13 of 13 flavonoids were
up-regulated (100.0%) and none were down-regulated (0.0%); for
AD vs. FD, 29 of 33 were up-regulated (87.9%) and four of 33
were down-regulated (12.1%); for SD vs. FD, 42 of 45 were up-
regulated (93.3%) and three of 45 were down-regulated (6.7%);
for OD vs. AD, 10 of 18 were up-regulated (55.6%) and eight of
18 were down-regulated (44.4%); for OD vs. FD, nine of 37 were
up-regulated (24.3%) and 28 of 37 were down-regulated (75.7%);
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FIGURE 2 | Differentially accumulated metabolites between YL and OL. (A) The volcano plot shows the flavonoids metabolites accumulate levels between YL and OL.

(B) Schematic representation of flavonoid biosynthesis. The dashed arrows represent multiple enzymatic steps. A darker color represents an increase in metabolites.

and for OD vs. SD, 17 of 22 were up-regulated (77.3%) and 5
of 22 were down-regulated (22.7%). A total of 61 DAMs were
identified. Compared to the other three groups, the SD group had
23 types of significantly up-regulated flavonoids, while the OD
group had 18, the AD group had 13, and the FD group had 8. The
experimental results showed that the accumulation of flavonoids
followed the order of SD > OD > AD > FD in OL.

Functional Annotation and KEGG Enrichment

Analysis of DAMs
The DAMs associated with the four drying methods were
functionally annotated using the KEGGdatabase. The annotation
results regarding the differentially expressed metabolites in the
metabolic pathways between the four drying methods are shown
in Figure 5. In total, 15 of the 64 flavonoids in YL and 15
of the 61 in OL were annotated by KEGG. The results of the
KEGG enrichment analysis showed that DAMswere annotated in
the flavonoid biosynthesis, isoflavonoid biosynthesis, and flavone
and flavonol biosynthesis pathways. All 15 flavonoids in OL were
located in the midstream of each metabolic pathway.

Effect of Drying Methods on Antioxidant
Capacity
The antioxidant activity of flavonoids, which is mainly due to
free radical scavenging, is important for health care applications
(Yu et al., 2020). In this study, three measurement methods were
used to evaluate the effect of the different drying methods on the
overall antioxidant capacity of mulberry leaves. The FRAP assays
were conducted to measure the trivalent iron reduction ability of
the antioxidants. The DPPH radical scavenging ability (DRSC)
and ABTS radical scavenging ability (ARSC) analyses were based
on the ability of antioxidants to transfer single electrons to
ABTS/DPPH radicals forming electron pairs.

Ferric-Reducing Antioxidant Power
The results of the FRAP assays of the mulberry extracts obtained
using four drying methods are shown in Table 1. The levels of
phytochemical compounds were highest in YL-AD and YL-FD,
with a FRAP of 36.39 and 36.54mg TE/g dry sample, respectively,
followed by YL-SD and YL-OD (32.83 and 31.58mg TE/g dry
sample, respectively); OL-SD, OL-AD, and OL-FD had a lower
FRAP (14.58, 17.33, and 23.43mg TE/g dry sample, respectively),
while the lowest value was observed for OL-OD (12.98mg TE/g
dry sample).

ABTS Radical Scavenging Ability
The ARSCs of mulberry leaves after applying the four drying
methods are shown in Table 1. The YL-AD, YL-FD, and OL-FD
had the highest ARSCs (63.92, 62.58, and 62.24mg TE/g dried
sample, respectively), followed by YL-SD and YL-OD (59.24
and 57.03mg TE/g dried sample, respectively), and OL-SD and
OL-AD (45.85 and 47.52mg TE/g dried sample, respectively);
the lowest value was observed for OL-OD (38.20mg TE/g
dried sample).

DPPH Radical Scavenging Ability
The DRSCs of the mulberry extracts after applying the four
drying methods are shown in Table 1. As with the levels of
phytochemical compounds, YL-AD and YL-FD had the highest
DRSCs (21.76 and 21.40mg TE/g dried sample, respectively),
followed by YL-SD, YL-OD, and OL-FD (20.89, 19.95, and
17.19mg TE/g dried sample, respectively). The lowest value was
observed for OL-OD (9.33mg TE/g dried sample), followed
by OL-SD and OL-AD (11.78 and 12.85mg TE/g dried
sample, respectively).

The above results show that, after applying the same drying
method, the antioxidant capacity of YL was higher than that of
the OL (Table 1). Among the different drying methods used in
this study, AD at 25◦C and FD at −60◦C resulted in the highest
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FIGURE 3 | The effect of drying methods on flavonoid metabolites of YL and OL. (A) Principal component analysis (PCA) on the effect of drying methods on

flavonoids metabolites of YL. (B) PCA on the effect of drying methods on flavonoids metabolites of OL. (C) Stacked graphs of the amounts of various flavonoids in

different drying methods of YL and OL. (D) Heatmap of flavonoids in different drying methods of YL. (E) Heatmap of flavonoids in different drying methods of OL.
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FIGURE 4 | The volcano plot shows the accumulate levels of flavonoid metabolites in different drying methods in YL or OL. (A–F) in YL. (A) Air dried (AD) vs. sun dried

(SD), (B) freeze dried (FD) vs. AD, (C) FD vs. SD, (D) oven dried (OD) vs. AD, (E) OD vs. FD, (F) OD vs. SD. (G–L) in YL. (G) AD vs. SD, (H) FD vs. AD, (I) FD vs. SD,

(J) OD vs. AD, (K) OD vs. FD, and (L) OD vs. SD.

flavonoid content (YL-AD ≈ YL-FD > YL-SD ≈ YL-OD >

OL-FD > OL-AD≈ OL-SD > OL-OD) (Table 1).

DISCUSSION

Many edible mulberry leaf products have been developed in
various regions, including mulberry leaf tea, mulberry leaf
powder, and mulberry leaf juice (Yu et al., 2018). Through
ongoing research, mulberry leaf edible products are now
marketed as a functional health food. The levels of effective
functional components in mulberry leaves vary by mulberry
variety, harvesting time, and processing technology. Using an
appropriate processing technology improves the preservation
of functional components in mulberry leaves, and efficient
absorption thereof by the human body.

Previous studies have focused on the isolation, identification,
and accumulation of flavonoid components in various
mulberry species (Ju et al., 2018). Very few studies have

considered mulberry metabolomics. Our MicroTom
Metabolic Network (MMN) dataset supplements existing
mulberry flavonoid metabolomics data. Our results show
that flavonoid accumulation differs throughout the mulberry
growth period.

Through comprehensive analysis of the MMN dataset, we
constructed a map of the changes in flavonoid metabolites
during the growth of mulberry leaves (Figure 2B). In total,
172 metabolites were identified, including 22 novel flavonoids
(Figure 1), and 38 types of flavonoids were significantly up-
regulated (Figure 2A). Among the 61 kinds of flavonoids, five
were shown by KEGG analysis to function downstream of the
flavonoid biosynthesis, isoflavonoid biosynthesis, and flavone
and flavonol biosynthesis pathways.

The reasons for the increase in accumulation and types of
flavonoids in OL might be as follows. First, there were ripening-
dependent changes in total flavonoid content (Bhandari et al.,
2013). Through PCA, as well as DAM and KEGG analyses,
significant variations in the accumulates of flavonoids during
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TABLE 1 | Antioxidant capacity of mulberry leaves dried by four different methods in YL and OL.

Drying method ARSC (mg TE/g) DRSC (mg TE/g) FRAP (mg TE/g)

YL-OD 57.03 ± 1.33b* 19.59 ± 0.71b 31.58 ± 1.18b

YL-FD 62.58 ± 1.53a 21.40 ± 0.55a 36.54 ± 1.16a

YL-AD 63.92 ± 0.95a 21.76 ± 0.60a 36.39 ± 0.50a

YL-SD 59.24 ± 1.09b 20.89 ± 0.44ab 32.83 ± 0.40b

OL-OD 38.20 ± 2.44d 9.33 ± 0.40e 12.98 ± 0.23e

OL-FD 62.24 ± 2.32a 17.19 ± 0.58c 23.43 ± 0.44c

OL-AD 47.52 ± 1.98c 12.85 ± 0.87d 17.33 ± 1.40d

OL-SD 45.85 ± 0.64c 11.78 ± 0.54d 14.58 ± 0.66e

n = 3. TE, Trolox equivalents.

*Different letters within the same column denote significant differences between groups (P < 0.05).

FIGURE 5 | Effects of different drying methods on the accumulate of flavonoids. The dashed arrows represent multiple enzymatic steps. A darker color represents an

increase in metabolites.

the growing months were identified, where two flavones (chrysin
and tricetin), two flavonols (3-O-methylquercetin and quercetin-
3-O-(6”-malonyl)glucoside), and one flavanol (afzelechin) were
used as growth markers. The experimental results of Sun
et al. (2019) were similar to ours. The flavonoid Zanthoxylum
bungeanum (Fugu) likely accumulates during the growth period.
Ganzon et al. (2018) found that flavonoids accumulate in
apical leaves at significantly higher levels than in lower leaves.
Therefore, the difference in flavonoid content that we observed
between OL and YL might be related to the harvesting location.

Secondary metabolites can exert a protective action by
reducing plant damage caused by biological stresses (Liu
et al., 2015). The biosynthesis of flavonoids is regulated
by multiple factors, among which temperature is the
primary factor (Gouot et al., 2019). When subjected to
heat stress, plants protect themselves by producing natural
antioxidants, such as flavonoids and phenols (Ghasemzadeh
et al., 2010).

In addition to regulating the growth and development
of plants, phytohormones also participate in plant secondary
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metabolism (Zhao et al., 2005). The synthesis of flavonoids is
affected by plant growth regulators, such as auxins, cytokinins,
gibberellins, and abscisic acid (Guo et al., 2020).

Preservation methods, including drying, can deplete natural
antioxidants in foods (Nicoli et al., 1999). Food processing also
has an impact on food composition, which must be considered
for accurate evaluation of human health research data (Nicoli
et al., 1999). Drying is one of the methods.

Differences in moisture content among the four different
drying methods could be due to differences in temperature,
air relative humidity, and airflow/speed (Nguyen et al.,
2015). The results of a metabolomic analysis showed that
the accumulation of flavonoids in OL were higher than
that in YL. However, in vitro experiments showed that YL
had better antioxidant properties than OL. Moreover, after
experiencing stress, the levels of flavonoids in plants first
increase and then decrease (Dalian and Yuxin, 2013). In this
study, the levels of flavonoids in OL displayed a downward
trend during the experiment, and were relatively low overall.
During plant growth, nutrients and energy in the OL may be
transferred to developing leaves, enabling growth, reproduction,
and defense despite limited nutrient availability (Chen et al.,
2019).

Studies have shown that the levels of flavonoids follow an
upward trend during the drying of mulberry leaves (Zhang,
2015). Sung et al. (2019) found that flavonoid levels, especially
of the potent aglycones, increase in peel after heat treatment.
Our experimental results showed that the levels of flavonoids
followed the order of AD > OD > SD > FD in YL, SD >

OD > AD > FD in OL. Chuyen et al. (2017) obtained similar
results; a high carotenoid content was obtained by drying at
70◦C, while the carotenoid content was lower in Gac peel after
low-temperature drying and FD. After the leaves had been
removed, mesophyll cells survived and were under stress for a
certain period of time. The AD process at room temperature
resulted in gradual loss of moisture. Mesophyll cells survived
and could still carry out complex metabolic activities, which
might include converting certain intermediate products into
flavonoids and thus increasing the accumulate of flavonoids.
However, the temperature of the FD process was low, so the
metabolism of mesophyll cells was inhibited, and substance
changes were not obvious. Therefore, the levels of flavonoids
in mulberry leaves did not change significantly (Zhao et al.,
2020). However, due to the influence of high temperature, the
activity of flavonoids could be inhibited. And drying at low
temperature, such as room temperature, could better preserve
the biological activity of flavonoids. Freeze drying can effectively
preserve antioxidants. Pérez-Gregorio et al. (2011) found that
the antioxidant activity of onions after FD was not significantly
different from that of fresh samples. However, Chiang et al.
(2008) found that the antioxidant activity of water chestnut after
FD was higher than that of fresh samples. As shown in Table 1,
the antioxidant activity of mulberry leaves after the application
of different drying methods was affected by temperature: the
higher the temperature, the lower the antioxidant activity. The
decrease in antioxidant properties in mulberry leaves was related
to thermal degradation and the content of polyphenol oxidase.

The common drying methods will adversely affect the stability
of antioxidant substances in mulberry leaves through thermal
degradation or the release of polyphenol oxidase. The decrease in
antioxidant activity of mulberry leaves after drying at 65◦C can
be attributed to the thermal degradation of phenolic compounds.
The peroxidase may still retain some activity during the drying
process (Tan et al., 2015). Ma et al. (2018) showed that as
the temperature increased, the yield of polysaccharides from
mulberry leaves decreased. Polysaccharides have a synergistic
effect with glycolysis on the biosynthesis of flavonoids (Luo et al.,
2020).

Flavonoids, as secondary plant metabolites, scavenge or
prevent the formation of ROS by chelating transition metal ions
(such as iron and copper), and therefore show high levels of
antioxidant activity (Zhang et al., 2016). Almost every group of
flavonoids has antioxidant activity (Panche et al., 2016), with
complementary and overlapping mechanisms of action (Ren
et al., 2003).

The antioxidant activity of flavonoids, and their metabolites,
in vitro depends on the arrangement of functional groups around
the nuclear structure (Heim et al., 2002). Quercetin glycosides
play a major role in the antioxidant activity of mulberry leaves
(Katsube et al., 2009). Chrysin, luteolin, and apigenin may show
antioxidant activity at low concentrations (Singh et al., 2014).
Epicatechin and rutin are strong free radical scavengers and lipid
peroxidation inhibitors in vitro (Kerry and Abbey, 1997). Overall,
as shown in Figure 5 and Table 1, the highest levels of quercetin-
3-O-(6”-malonyl)glucoside, 3-O-methylquercetin, epicatechin,
luteolin, and chrysin were found in YL-AD, while epicatechin
and 3-O-methylquercetin levels were highest in the YL-SD group
(indicating a higher antioxidant activity than the other groups).
In addition, although the levels of luteolin and quercetin in
the OD group were significantly up-regulated compared with
the other groups, the higher drying temperature might have
a greater impact on their biological activity (Kamiloglu et al.,
2015). Antioxidant activity was not only related to the relative
levels of individual flavonoids, but also to the types thereof.
Other studies showed that the effects of drying methods on
flavonoid levels also vary among plant varieties. AD and FD
not only better preserved the antioxidant activity of flavonoids,
but also increased the accumulation thereof. In addition to
flavonoids, carotenoids (Nguyen et al., 2015), ascorbic acid,
phenolic acids (Orsavová et al., 2019), and polysaccharides (Ma
et al., 2018) also display strong antioxidant activity. The higher
antioxidant activity of YL-AD and YL-FD may be due to better
preservation of other substances with antioxidant activity, as well
of flavonoid activity.

CONCLUSIONS

The levels and antioxidant activity of flavonoids in mulberry
leaves were affected by growth time and drying method.
The optimal accumulation was observed in mulberry leaves
that had a relatively long growth period or were in the
early stage of environmental stress exposure. Among the four
drying methods investigated, the level of flavonoids was higher
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in the AD and SD groups, but the AD and FD groups
could better retain the antioxidant activity of flavonoids. With
consideration of costs, it is recommended that AD be utilized
at room temperature to maximize the antioxidant capacity of
mulberry leaves.
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