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Root shape in carrot (Daucus carota subsp. sativus), which ranges from long and
tapered to short and blunt, has been used for at least several centuries to classify carrot
cultivars. The subjectivity involved in determining market class hinders the establishment
of metric-based standards and is ill-suited to dissecting the genetic basis of such
quantitative phenotypes. Advances in digital image acquisition and analysis has enabled
new methods for quantifying sizes of plant structures and shapes, but in order to dissect
the genetic control of the shape features that define market class in carrot, a tool is
required that quantifies the specific shape features used by humans in distinguishing
between classes. This study reports the construction and demonstration of the first
such platform, which facilitates rapid phenotyping of traits that are measurable by hand,
such as length and width, as well as principal component analysis (PCA) of the root
contour and its curvature. This latter approach is of particular interest, as it enabled
the detection of a novel and significant quantitative trait, defined here as root fill, which
accounts for 85% of the variation in root shape. Curvature analysis was demonstrated to
be an effective method for precise measurement of the broadness of the carrot shoulder,
and degree of tip fill; the first principal component of the respective curvature profiles
captured 87% and 84% of the total variance. This platform’s performance was validated
in two experimental panels. First, a diverse, global collection of germplasm was used
to assess its capacity to identify market classes through clustering analysis. Second,
a diallel mating design between inbred breeding lines of differing market classes was
used to estimate the heritability of the key phenotypes that define market class, which
revealed significant variation in the narrow-sense heritability of size and shape traits,
ranging from 0.14 for total root size, to 0.84 for aspect ratio. These results demonstrate
the value of high-throughput digital phenotyping in characterizing the genetic control of
complex quantitative phenotypes.

Keywords: Daucus carota, market class, high-throughput phenotyping, image analysis, diallel analysis, trait
heritability
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INTRODUCTION

Carrot (Daucus carota subsp. sativus) is an economically and
nutritionally important vegetable crop. Over 40 million metric
tons of carrots are grown annually across the globe (FAO, 2020),
and it is a significant source of pro-vitamin A in the human diet
(Simon, 2000). Carrot root shape, which ranges from long and
tapered to short and blunt, has been used for at least several
centuries to classify carrot cultivars (Banga, 1957; Simon et al.,
2008). Culinary practices and horticultural traditions have led to
the establishment of the modern market classes based primarily
on variation in root dimensions and shape differences, giving
these component traits increasing economic importance. For
example, cultivars that produce large and bulky roots grown
for a full season—such as Danvers, Chantenay, and Berlicum—
are typically used in canning, juicing, and other processing
operations, while slimmer types such as Imperator, Kuroda, and
Nantes are sold to fresh markets.

The shape differences that determine a root’s market
classification range from obvious to very subtle. The distinctions
between market classes frequently depend on subjective
assessment of the curvature of the shoulder at the crown
of the root, the variable degrees of tip fill, and specific
combinations of these shape parameters and root dimensions.
Furthermore, while the names of market classes would imply
an assignment of cultivars to well-defined, discrete categories,
all of the traits which define market class are quantitative,
and intermediate cultivars may possess characteristics of
more than one class. As a result, the subjectivity involved in
assessing market class at present hinders the establishment
of metric-based standards and are ill-suited to dissecting
the genetic basis of such quantitative phenotypes. While
advances in genetic resources in carrot have improved
researchers ability to investigate the genetic architecture
of key traits (Iorizzo et al., 2016; Que et al., 2019), this
phenotyping bottleneck remains a key limitation in the study of
root morphology.

Recent advances in measuring plant phenotypes through
contour analysis of digital images have led to the development
of methods for quantifying sizes and shapes of plant structures
(Howarth et al., 1992; Horgan et al., 2001; Hameed et al.,
2018), including those that are not captured by simple angles,
lengths, widths, and their ratios (Iwata et al., 1998; Miller et al.,
2017; Turner et al., 2018). Here we report the construction and
demonstration of a platform which is capable of quantifying
the shape features particular to carrot market class, and
validate its performance in two experimental populations. First,
a global collection of carrot accessions obtained from the
USDA National Plant Germplasm System (NPGS) was used
to test the performance of the phenotyping algorithms in a
highly diverse context. In addition, a diallel mating design
was constructed from pairwise matings between a defined set
of inbred parental lines in order to estimate genetic variance
components of key market class traits. Significantly, these
analyses have provided the first quantitative description of a
novel root trait in carrot—defined here as root fill—which
accounts the majority of the shape variation across carrot

genotypes. In addition, this study represents the first genetic
characterization of shoulder and tip curvature, key aspects of
market class in carrot. As a whole, this platform demonstrates
the utility of digital contour analysis in the study of root
morphology, and represents a robust, high-throughput workflow
for future research.

MATERIALS AND METHODS

The digital image-based phenotyping methodology developed in
this study followed a three-stage workflow: image acquisition,
image pre-processing, and image analysis.

Image Acquisition
Images were acquired using a DSLR camera with a 24 mm fixed-
length lens, mounted above a template containing two 22.5 cm
× 75 cm black-bordered rectangles. This facilitated imaging
two roots simultaneously. Six fluorescent Interfit (Atlanta,
GA) F5 lights provided overhead illumination in order to
maximize contrast between roots and background, and eliminate
shadow. Each rectangle was divided into an upper and lower
portion by blue, 1.25 cm Gaffer’s tape. The upper portion
contained a 100 mm scale bar, and a QR matrix barcode
which encoded identifying information pertaining to the specific
carrot root being photographed. The lower portion contained
the corresponding root, placed on either a black felt or white
vinyl background depending on the exterior pigmentation of the
carrot. The top of the root was aligned to be parallel with the blue
tape in order to precisely divide root and shoot growth.

The DSLR camera was connected via a USB cable to a
computer running SmartShooter (Tether Tools, Phoenix, AZ) a
tethered shooting application which allowed for high-resolution
live previewing of the camera’s view-frame. This facilitated
accurate positioning of carrots relative to the Gaffer tape. Upon
image acquisition, SmartShooter wrote a raw and a lossless JPG
image to disc at a user-specified “source” location.

A custom Python application then handled initial image
processing and file management. This application runs inside of a
Python v3.7.7 virtual environment in order to easily utilize a suite
of open-source image-processing libraries. First, the watchdog
library was used to detect each new JPG as it was created,
and the lensfunpy wrapper for the C++ library lensfun was
used to remove distortion due to the curvature of the lens
(Figure 1A). Next, each black-bordered box within the image
was identified using the Python bindings for the OpenCV library,
and the QR code within the upper portion of each box was
scanned using the bindings for the zbar library (Figure 1B). As
a preliminary form of quality control, the click package was used
to display the attribute-value pairs encoded by the QR code;
when the user accepted these as accurate, the corresponding
image was subsequently displayed within a browser window
using Node.js, with a transparent overlay of the region detected as
corresponding to the carrot root. This overlay was also generated
using the OpenCV library: in brief, RGB images were converted
to grayscale, a bilateral filter was applied to smooth the image
while preserving edges, and a binary threshold was applied to
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FIGURE 1 | Workflow outlining the pre-processing of digital images of carrot roots. (A) Each black-bordered box within the overall image are identified; (B) QR codes
within the upper portion of each box are scanned and the encoded text is displayed as a form of quality control; (C) carrot pixels are distinguished from background
pixels to generate binary masks; (D) the midline of the carrot root is estimated by tracing a path from the carrot tip to the center of the shoulder, following the
maximum of the smoothed Euclidean distance transform; (E) width measurements are made by sampling the binary mask normal to vectors tangent to the midline;
(F,G) A random forest classifier is used to detect the point at which to “de-tip” any residual, unexpanded tap root.

generate the so-called “binary mask”—i.e., a black and white
image in which white pixels designate the presence of carrot,
and black pixels designate background (Figure 1C). If binary
masks were visually judged as correctly identifying the root, they
were then saved as high-resolution PNG files to a pre-specified
“destination” directory path defined according to information
encoded in each QR code (e.g., “Location/Year/Genotype”). All
identifying information specific to each root was included in
the PNG filename, in addition to a spatial resolution scaling

parameter corresponding to the detected pixel length of the
100 mm scale bar.

Image Pre-processing
Following image acquisition, pre-processing steps were
performed to the standardized images, specifically by removing
curvature and residual, unexpanded root tips. The straightening
procedure was performed in MATLAB R2021a (MATLAB,
2021), and consisted of two stages. First, the midline of the
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carrot root was estimated, and second, widths were determined
by sampling the binary mask along vectors normal to the
tangent of this midline. To estimate the midline, the minimum
distance between all points within the carrot root and contour
of the carrot root was determined using the Euclidean distance-
transform described by Maurer et al. (2003). Next, the tip of the
carrot was found via an iterative algorithm that identifies points
of maximum curvature within increasingly narrow segments of
the root contour. Curvature at any particular boundary point is
inversely proportional to the radius of a circle inscribed at this
point. Thus, curvature values can be estimated by fitting a spline
to a segment of the contour surrounding this boundary point. By
parametrizing this spline, curvature (K) can then be calculated
as:

K =

{(
dx
dt

d2y
dt2
−
dy
dt

d2x
dt2

)([
dx
dt

]2
+

[
dy
dt

]2
)}− 3

2

where dx
dt and d2x

dt2 represent the first and second derivative of x

with respect to the parameter t, and dy
dt and d2y

dt2 represent the
first and second derivative of y with respect to the parameter t.
Finally, following the procedure described by Miller et al. (2007),
the midline was traced: starting at the tip, an ordered series of
midline coordinates was sequentially determined by identifying
the local maximum in the smoothed distance-transform, stepping
in the direction of this local maximum, and then repeating the
procedure. This “walk” along the maximum of the smoothed
distance transform surface stably traces the midline, under the
condition that all midlines must end by passing through the
center of the shoulder of the carrot (Figure 1D).

In the second stage, the widths of the carrot along its length
were calculated. Regardless of any degree of local skew or
curvature in the root, the true width of the carrot at any point
follows the vector normal to the tangent of the midline at that
point. Thus, the binary mask was sampled along this vector,
starting at the midline and moving outward in both directions
until an intersection with the contour was reached (Figure 1E).
This method of sampling prevented the inclusion of multiple
segments of the carrot root in a single slice through its width,
in cases where the tip of the carrot may curl back upon itself.
A straightened version of the carrot was then obtained by
arranging these widths into a single array (or “width vector”), all
centered on their midpoints.

After straightening, a secondary pre-processing step was taken
to remove any trailing, unexpanded portion of the taproot which
extends past the tip of the carrot (Figures 1F,G). Any geometric
definition of this cut point (e.g., on the basis of the derivative of
width along the length of the root) is hindered due to extensive
variation in tip fill.

A random forest classifier was therefore trained (using the
sklearn Python library) with a subset of the images that were
photographed both with their residual taproot attached, and with
the taproot removed by hand. This model was subsequently
used to detect the appropriate point at which to “de-tip” the
straightened versions of the binary masks.

Image Analysis
Following these pre-processing steps, images were analyzed for
several different types of phenotypes. First, phenotypes that could
be measured by hand, such as length, maximum width, and the
width at different quantiles along the length of the carrot, were
calculated for each image. These were determined by simply
measuring the length of different slices through the straightened,
de-tipped binary mask, and converting pixels to mm using each
image’s scaling parameter.

Second, traits pertaining to individual roots that cannot be
reliably measured by hand, such as total root size, tip angle,
convex hull area of the shoulder, and curvature values of the
shoulder and tip, were also calculated. Root size was defined as
the total area of the binary mask. Tip angle was defined here
as the interior angle formed by the line segments connecting
the tip of the carrot to contour points located 10% up the
length of the carrot toward its top, while shoulder hull area was
the area encompassed by background pixels in the rectangular
region bounding the top 10% of the carrot. Curvature values
were computed at each point along the root profile in both the
shoulder and tip regions (the first and last 50 contour points of
the root, respectively) as described by Driscoll et al. (2012), using
the equation described above. These vectors of curvature values
in the shoulder and tip region were then summed, to generate
a metric of total curvature, and decomposed using principal
component analysis (PCA), to identify sources of variation in
curvature values across a wide sampling of carrots.

Finally, in order to identify and quantify size-independent
variation in the shape of the entire carrot root, PCA was also
performed using the raw contour data of the entire width profile.
In this case, the relevant covariance matrix was constructed using
straightened, de-tipped masks that were first normalized such
that all roots possessed equal lengths and maximum widths.
Each root was represented by 1,000 standardized widths sampled
evenly along the carrot’s length, and each width along a carrot’s
length was divided by its maximum width, such that each carrot
had a maximum width of 1.

Validation of Accuracy and Reliability
To validate the accuracy of the pre-processing pipeline and
phenotyping algorithms, 100 roots (10 each drawn from 10 carrot
genotypes representing diverse market classes) were measured
by hand prior to being photographed. Length measurements
were made from the top of the shoulder to the point at which
the unexpanded, residual tip of the carrot began using a tape
measure, while maximum width was measured using calipers.
Secondly, to determine the extent of the variance in phenotypes
extracted from different 2D projections of a given root, 100 roots
were photographed three times, with each root being rotated 45◦
following the acquisition of the first and second photograph.

Visualization of the Phenotypic
Correlates of Principal Component
Analysis
In order to evaluate the performance of the principal component
analyses, a diverse collection of carrot germplasm was grown
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at the Desert Research and Extension Center (Holtville, CA,
United States) in 2019. This collection was obtained from
the USDA NPGS, and consisted of a total of 683 cultivated
accessions, comprising breeding lines, open-pollinated cultivars,
and land races. These accessions represent a substantial amount
of the global diversity in cultivated carrot, and thus provided
an excellent basis for visualizing the variation captured by the
first principal component of the normalized width profile, as
well as the curvature in the tip and shoulder regions. Two
replications of this collection were grown in 1 m plots, with 5–
15 roots sampled randomly from each plot at harvest; in total,
8,687 roots were imaged in this analysis. The PC1 scores for
each genotype were then estimated using a linear mixed effects
modeled in which genotype and replicate were modeled as fixed
effects, while subsampling within replicates was modeled as a
random interaction term to account for unequal subsampling
across genotypes; the resulting model is similar to an RCBD
design with subsampling:

Yijl = µ + Gi + Rj + GRij + εijl

where Gi represents the ith genotype effect, Rj the jth environment
effect, GRij the ijth genotype × replicate interaction [with
GRij ∼ N(0, σ2

GR)] and εijl the residual variance [i.e., variance
among subsamples, with εijl ∼ N(0, σ2

ε )]. This model was fit
using the lme4 package in R (R Core Team, 2020).

PCA-Based Clustering Analysis of
Market Classes
To test the discriminatory power of the phenotypes quantified by
this pipeline, a clustering analysis was performed using length,
maximum width, root fill, curvatures of the tip and shoulder,
and aspect ratio (i.e., length divided by maximum width). Thirty
five roots were drawn from each of five economically important
and phenotypically diverse market classes: Chantenay, a short,
bulky processing type; Imperator, a long and slender type used
in baby carrot production; Danvers, a medium length, pointed
type typical for fresh-market sale; Nantes, a medium length blunt
type often used as a storage root; and Parisienne, a very short,
rounded type often sold to specialty markets. Clustering was
assessed visually by performing PCA on all of these six traits,
and plotting scores along the first two PCs against each other
to illustrate both the degree of clustering within classes, and the
phenotypic “distance” between market classes.

Experimental Design of the Half-Diallel
To demonstrate the utility of the phenotyping methodologies
described here in the genetic analysis of root morphology, a
half-diallel mating design was used to determine the heritability
of digitally phenotyped traits. Seven inbred carrot lines and
one open-pollinated variety were used as parents in this
diallel. Two inbred lines (B2566 and L1408) were developed
by the USDA-ARS Vegetable Crops Research Unit, which
breeds primarily for the fresh market carrot industries (Simon
et al., 1987); five inbreds (W279, W289, W287, W278, and
W280) were produced by the University of Wisconsin-Madison
carrot breeding program, which breeds primarily for processing

(canning and juicing) industries (Goldman, 1996); the open-
pollinated variety OSSI-Ball is a Parisienne-type grown for
specialty markets (Luby and Goldman, 2016). Together, these
eight accessions represent the most prevalent market classes
in the United States, and consequently much of the diversity
in root shapes that appear in public sector carrot breeding
in the United States (Supplementary Figure 1). An additional
benefit of using these inbred lines is that both sterile and fertile
versions, relying on a cytoplasmic-genic male sterility system
(Eisa and Wallace, 1969; Peterson and Simon, 1986), were
available, facilitating the efficient production of hybrids. In the
case of OSSI-Ball, only fertile roots were available, and thus this
genotype was used as a male parent in each cross. A representative
cross between an inbred line used in the breeding of fresh
market types (L1408) and a specialty market type (OSSI-Ball)
illustrates the typical manner in which root dimensions and shape
phenotypes combined in crosses between divergent market class
types (Supplementary Figure 2).

L1408 and B2566 were grown at Miller Farms in Hancock, WI
(44◦08′N, 89◦32′W), and all other genotypes at Jack’s Pride Farm
in Randolph, WI (43◦37′N, 89◦00′W) in the summers of 2017
and 2018. Harvested roots were vernalized at 4◦C for 12 weeks
with shoot growth removed before being planted in pots (15.2 cm
tall × 13.8 cm diameter, filled with a blend of one-third Pro-Mix
High Porosity (Premier Tech, Quakertown, PA) and two-thirds
field soil). These vernalized roots were grown at 20◦C with a 16 h
photoperiod at the Walnut Street Greenhouses in Madison, WI.
Following flowering, pairs of roots—one sterile, one fertile—were
selected for crossing: immediately following the appearance of
anthers, the umbels of each pair were enclosed in a cloth bag,
to which blue bottle fly pupae were added at weekly intervals
to ensure high rates of pollination. This process was carried out
during both the winter of 2017–2018 and 2018–2019 in order to
obtain progeny from each of the 28 pairwise crosses.

Following seed-set, umbels were separated, and seed was
harvested by hand from the sterile parent. F1 seed from each
cross was grown in two replicated 3 m plots at Jack’s Pride Farm
in the summer of 2019. Roots were thinned to a density of 1
seedling per 5 cm 21 days after planting (DAP), and roots from
each plot were harvested from the middle of each row 107 DAP.
Fifteen to twenty roots were sampled from each replicate of each
F1 progeny family in order to minimize bias as much as possible
in the estimation of variances.

Estimation of Heritabilities
For each of the two replicates of every F1 family, 15–20 roots
were randomly selected for digital phenotyping. Because neither
reciprocal crosses nor parental lines were included along with the
F1 progeny, the Method IV, Model I diallel analysis was utilized,
as described by Griffing (1956):

yijk = µ + gi + gj + sij + εijk

where µ is the population mean, gi is general combining ability
(GCA) effect of the ith parent, gj is the GCA of the jth parent, sij is
the specific combining ability (SCA) effect of the ijth cross (where
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sij = sji), and εijk is the residual error of the ijkth root. All terms,
excluding the residual error, were modeled as fixed effects.

Variance components for GCA, SCA, and error terms were
calculated on the basis of expected mean squares:

EMSGCA = Ve + VSCA +
(
p− 2

)
VGCA

EMSSCA = Ve + VSCA

EMS (ε) = Ve

where p is the number of parental lines (in this study, 8), and Ve
is equal to the error variance calculated on an entry-mean basis
( σ2

ε

r ), with r, the number of replicates, equal to 2. Additive (VA)
and dominance (VD) components were subsequently estimated
as described by Pederson (1971):

VA =
4

1 + F
VGCA

VD =
4

(1 + F)2 VSCA

Broad- (H2) and narrow-sense (h2) heritabilities were finally
calculated as:

H2
=

VG

VG +
Vε

r

h2
=

VA

VG +
Vε

r

Where r = 2 replications; following Falconer (1996), total
genotypic variance, VG, was defined as VA + VD. Baker’s ratio
was calculated as:

2MSGCA
2MSGCA + MSSCA

As such, this metric ranges from 0 (in the case of all variance
being attributed to SCA) to 1 (in the case of all variance being
attributed to GCA) (Baker, 1978).

Software Availability
Python code for the image acquisition platform and
scripts for producing binary masks are available at:
https://github.com/shbrainard/carrot-phenotyping. MATLAB
algorithms for straightening binary masks and performing
PCA on contours or curvature values are available at:
https://github.com/jbustamante35/carrotsweeper.

RESULTS

Accuracy of Image-Derived Phenotypes
Prior to a rigorous evaluation of any experimental populations,
it is critical to confirm that a newly developed phenotyping
platform produces accurate and reliable phenotypes. Scatter plots

of the root phenotypes obtained from digital images vs. hand
measurements confirms that the two methods provide highly
consistent results (Figure 2). For both length and maximum
width, both methods generated extremely similar measurements
across the range of phenotypes measured. Root mean squared
error (RMSE; the square root of the squared residuals) of the
linear model y = x was 8.30 mm for length and 2.00 mm
for maximum width.

In addition to this parity between human- and computer-
based phenotypes, the variance associated with the arbitrary
rotational aspect of a given carrot root beneath the camera
was also evaluated. Some variance due to orientation should
be expected, particularly in the estimation of maximum width,
because this method analyzes a two-dimensional projection of a
three-dimensional root, and carrots are not perfectly symmetric
around their longitudinal axis. Pairwise comparisons were made
between phenotypes extracted from three photos of individual,
diverse roots that were variably rotated along this long axis. These
comparisons demonstrated that deviation from symmetry about
the long axis of the carrot was responsible for minimal variance
in maximum width measurements and affected length even less
so (Supplementary Figure 3). The variation between pairs of
images was very similar to the variation between human and
digital image-measurements presented in Figure 2. These results
indicate that a single two-dimensional projection of a three-
dimensional root is sufficient to obtain reliable estimates of key
morphological phenotypes.

The diverse USDA-NPGS carrot collection was also evaluated
in order to compare variation due to digital phenotyping
error with variation between genotypes, which is typically the
most relevant criteria from both a genetic and plant breeding
perspective. Least significant differences (LSDs) between
accessions were calculated for both length and maximum width,
with MSError estimated by ANOVA (utilizing a linear model in
which accession was included as a fixed effect). LSDs of 35.8
and 7.5 mm were calculated for length and maximum width,
respectively (with α = 0.05). The measurement error associated
with this digital phenotyping platform is thus many times smaller
than the statistical threshold for distinguishing distinct carrot
genotypes from each other.

Principal Component Analysis of
Contours
An automated tool for simply measuring root length and
maximum width would advance research into the genetic
control of root development, but understanding the genetic
variation that underlies variation between market classes requires
additional information regarding shape in particular. A method
was therefore developed to produce, for each root image, a set
of contour points derived from width measurements made at
1,000 evenly spaced points along the long axis. Normalizing
each contour dataset with respect to the maximum in both the
x and y (width and length) dimensions, as described above,
makes the shape information they contain comparable across
the diverse sizes of cultivated accessions drawn from the USDA-
NPGS carrot collection. A total of 8,687 images representing
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FIGURE 2 | Hand- (x-axis) vs. digital image-based (y-axis) measurements of length (A) and maximum width (B) of 100 carrot roots. Each point represents a unique
carrot; colors indicate 1 of 10 carrot accessions representing a variety of market classes. RMSE of the linear model y = x was 8.30 mm for length and 2.00 mm for
maximum width.

683 accessions were collected and analyzed in this manner to
produce a contour dataset for each root. Applying PCA to this
set of contours showed that the first principal component (PC1)
explained 84.9% of the total variance in the contours, with
PC2 and PC3 explaining only 9.6 and 2.5% of the variance,
respectively. The eigenvectors of this PCA were used to generate
simulated root profiles based on specified PC scores. Figure 3
shows that decreasing the score along PC1 while holding all
other PC scores equal to their mean reduces the rate of taper
toward the tip, i.e., the roots with lower PC1 scores maintain
their maximum width further along their lengths compared to
roots with a higher PC1 score. To the best of our knowledge, this
study represents the first quantitative assessment of this aspect
of carrot root morphology; despite its importance in accounting
for the vast majority of size-independent variation in carrot root
shape, this trait—which is referred to as “root fill” in subsequent
analyses—has not been previously described. This is likely a
function of its convolution with carrot size, and as such, this
analysis demonstrates the power of digital image phenotyping in
allowing for the quantification of traits that cannot be evaluated
by hand or by eye.

Principal Component Analysis of
Shoulder and Tip Curvatures
The PCA of whole-root contours presented above did not
require pre-determining what aspect of shape contributes most
significantly to variation across this carrot population. This can
be contrasted with deliberately measuring shapes of interest,
such as the distribution of curvature in the shoulder and tip
regions that humans subjectively consider when distinguishing
cultivars from differing market classes. Algorithms to perform
such phenotyping were included in the platform described here,
and as such, this study represents the first to rigorously evaluate
variation in curvature in the shoulder and tips of carrot roots in
a quantitative manner. The curvature quantified in this case is
the instantaneous rate of change of angle of the vector normal

to the contour as this vector moves along the contour. Put
another way, curvature at each contour point is proportional
to the reciprocal of the radius of the circle that is tangent to
the contour at that point. After fitting smoothed splines to the
top 50 (for measuring the root shoulder) and bottom 50 (for
measuring the root tip) contour points, curvature at each point
was calculated to construct the respective covariance matrices
needed to apply PCA. PC1 of the shoulder curvature values
explained 87.3% of the total variation in this region, while
PC1 of the tip curvature values explained 84.2% of their total
variation. Representative examples of roots with PC1 values in
the 1st and 99th percentiles of shoulder curvatures are shown
in Figures 4B,C. The Imperator type (Figure 4B) has almost
no curvature in the shoulder, while the broadly shouldered
Parisienne type (Figure 4C) exhibits much more substantial
curvature. Representative examples of roots with PC1 values
in the 1st and 99th percentiles of tip curvatures are shown
in Figures 4E,F. The extremely blunt-tipped Nantes type in
Figure 4E can be contrasted with the highly acuminate Danvers
type in Figure 4F.

Figures 4A,D show correlograms of these curvature-derived
metrics, with alternative methods of measuring shoulder and
tip shape: PC scores derived from curvature values (“Curvature
PCA”), PC scores derive from normalized contours (“Contour
PCA”), the sum of curvature values, and either shoulder hull
area or tip angle. As would be expected, PC scores derived
from curvature values are strongly correlated with the sum of
curvatures in the shoulders (r = 0.931) and tips (r = 0.954).
Less expected was the poor correlation between curvature PC
scores and contour PC scores derived from the same region
(r = –0.351 for the shoulder region and r = 0.537 for the tip
region). This suggests that the process of fitting smoothed splines
to the contours gives rise to a meaningful difference between
the phenotypes that are measured by quantifying “variation in
the curvature” and “variation in the contour” of the shoulder
and tip regions.
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FIGURE 3 | Quantification of size-independent variation in carrot root shape using PCA of length- and width- normalized contours. All carrots were standardized to a
maximum width of 1 and a length of 1,000, and contours were decomposed into five principal components. Rows correspond to four representative roots sampled
from each quartile of the range of scores along the first principal component, and illustrate the nature of the phenotypic variance captured by this first component.
From left to right: raw color photos of roots taken during image acquisition; straightened binary masks of the corresponding root; simulated root profiles generated
by taking the product of the first PC score pertaining to this root (far right) and the mean of all other PC scores with the transpose of the eigenvectors generated
during eigendecomposition. These simulated profiles demonstrate that variation along the first principal component reflects the degree of root fill, or extent to which
a carrot preserves its maximum width down its length.

In general, it is also clear that for any particular pair
of phenotypes, the correlations are larger in the tip region,
compared to the shoulders. In particular, while tip angle appears
to be a moderately accurate surrogate measure for variation in
tip curvature, hull area has a relatively weak correlation with
shoulder curvature. This is logical, since broadly shouldered
carrots and carrots completely lacking shoulder curvature both
exhibit large hull areas, whereas tip angle varies monotonically
with the curvature of the tip.

Cluster Analysis of Representative
Carrot Market Class Types
The results of the clustering analysis using five diverse market
classes are shown in Figure 5B. Clear clustering is observed
for all five market classes, indicating that this phenotyping
pipeline effectively characterizes the key phenotypic components
of market classes. This can be compared to a clustering
analysis which uses only those two traits most readily measured
by hand: length and maximum width (Figure 5A). While
the most phenotypically divergent market classes are still
distinguishable (e.g., Imperator and Parisienne), the exclusion of
shape descriptors markedly increases the overlap between market
classes that are similar in their overall dimensions (e.g., Nantes
and Danvers, which differ primarily only in tip fill). This confirms
that the phenotyping platform measures shape parameters that
parallel the morphological differences between market classes.

Diallel Mating Design
All pairwise crosses were made between eight parental lines
to construct a half-diallel population. Seven hundred sixty F1
roots drawn from this set of progenies were phenotyped using

the pipeline described above. Mean length was 18.12 cm, with
a standard deviation of 4.46 cm; mean maximum width was
4.72 cm with a standard deviation of 0.80 cm; and mean L/W ratio
was 4.01 with a standard deviation of 1.34. For all traits, MSGCA
was larger than MSSCA, although the degree to which this was
the case varied substantially from phenotype to phenotype, from
over 15× greater in the case of L/W ratio, to only 1.43× greater
in the case of total root size (Table 1). This finding is captured
well in Baker’s ratio: in general, values were found to be close to
unity, suggesting meaningful degrees of additive gene action for
all traits considered.

Broad-sense heritability values were ≥0.94 for all traits
except total root size and tip curvature. This somewhat
surprising finding indicates a high degree of genetic influence
over phenotypes that are exposed to a great degree of
environmental variability, due to roots’ direct contact with
the inherently heterogeneous soil profile. In this regard, two
factors should be kept in mind: first, the soils in which
this trial was grown is a Houghton muck, a deep saprist
histosol with more than 50% organic matter. Given the
aggressive tillage prior to seed bed preparation, this leads to a
highly uniform soil profile with minimal compaction. Together
with conventional weed control and fertilizer application, this
produces one of the most uniform environments for growing
root crops in Wisconsin. Thus, it is somewhat unsurprising
that environmental variation was minimized, and heritability
maximized, in such a production system. Secondly, the fact
that seven of the eight parents in this diallel were inbred
lines likely contributed to phenotypic uniformity within full-sib
families due to the genetic uniformity within each particular
hybrid combination.
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FIGURE 4 | Correlograms comparing several measures of shoulder shape (A) and tip shape (D): PC1 scores derived from curvature values (“Curvature PCA”), PC1
scores derive from normalized contours (“Contour PCA”), the sum of curvature values, and either shoulder hull area (A) or tip angle (D). For Pearson correlation
coefficients (r) shown above the diagonal, ***p < 0.001; *p < 0.1. Images on right illustrate representative roots drawn from the extremes of the first principal
component scores corresponding to shoulder curvature values (B,C) and tip curvature values (E,F).

Narrow sense heritabilities displayed a wide range of
values, from 0.14 for total root size, to 0.84 for L/W ratio.
Length, maximum width, and shoulder curvature all exhibited
intermediate values (0.66, 0.72, and 0.76, respectively). In general,

these values conform to the success of modern breeding, which
has led to the development of highly typified long and slender
carrots for the fresh market, and much shorter, broader, heavily
tapered carrots for the processing industries.
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FIGURE 5 | (A) PCA-based clustering of 175 roots sampled from five major market classes on the basis of only length and maximum width; (B) PCA-based
clustering of these same roots using PCA of curvature values in the tip and shoulder, root length, maximum width, aspect ratio, and root fill.

TABLE 1 | Parameters estimated from ANOVA of the half-diallel using Griffing’s Method IV, Model 1. Variance components and heritabilities are reported for the primary
size and shape traits which define market class.

Length Width L/W Root size Root fill Tip curvature Shoulder curvature

(mm) (mm) Ratio (mm2) (PC score) (PC score) (PC score)

MSGCA
† 5200.03 175.14 5.84 2.79 1.77 1.18e-04 5.16e-05

VA 1445.25 50.36 1.82 0.28 0.37 1.57e-05 1.54e-05

MSSCA
† 864.29 24.05 0.38 1.94 0.67 7.28e-05 5.41e-06

VD 651.05 15.94 0.33 1.43 0.55 1.83e-05 4.30e-06

Vε 213.24 8.11 0.06 0.51 0.12 5.45e-05 1.07e-06

H2 0.95 0.94 0.98 0.87 0.94 0.55 0.97

h2 0.66 0.72 0.84 0.14 0.38 0.26 0.76

BR‡ 0.92 0.94 0.97 0.74 0.84 0.77 0.95

†Mean sum of squares from the ANOVA.
‡Baker’s Ratio.

It is interesting to consider why root size and aspect ratio—
both traits that would intuitively be understood as primarily
functions of the overall dimensions of the root (length and
maximum width)—possess such markedly different narrow-
sense heritabilities. While aspect ratio is primarily the function
of two highly heritable traits (length and width), root size
is additionally a function of root fill, and in this particular
population, the correlation between maximum width and root fill
is weak (0.12). That is, whether a carrot has a wide shoulder or
narrow shoulder is not highly correlated with widths elsewhere
along the carrot.

DISCUSSION

The Quantitative Traits Underlying
Market Class
It is relatively straightforward to enumerate the suite of
parameters that are involved in defining a given root’s market
class. However, it has historically been challenging to quantify
these parameters in a manner independent of each other,

integrate them into a single metric to determine which classes are
most similar to each other, or evaluate how much variation exists
within a given class. The novel phenotyping platform presented
in this study overcomes these challenges.

The starting point for this workflow was the methodology
developed by Turner et al. (2018), which demonstrated that
binary masks of whole-carrot images could be used to extract
phenotypes corresponding to morphological attributes of both
the root and shoot. However, because that study was not
specifically focused on root morphology, several improvements
were made in the development of this novel pipeline. In Turner
et al. (2018), imprecision in the separation of root and shoot
tissue prevented phenotyping of the root shoulder, and a lack
of pre-processing algorithms to straighten and de-tip carrot
roots limited the phenotyping of the carrot tip. Refinements
of the image acquisition process, and implementation of
standardization steps prior to phenotyping in the platform
presented here addressed both of these issues. As shown in the
clustering analysis above, both the shoulder and tip phenotypes
this pipeline is able to measure are critical in quantifying the
components of market class. In addition, by controlling for
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these additional sources of variation, the pipeline reported here
was able to utilize PCA of the entire root profile to identify a
novel trait: the first principal component of the straightened,
length- and width-normalized contours, or what has been
referred to above as “root fill.” This previously undescribed trait
accounts for over 80% of the size-independent variation in carrot
roots, and this phenotyping pipeline now provides breeders and
researchers with a method for visualizing and quantifying a
source of shape variation that would otherwise be confounded
with roots’ dimensions.

Physiologically, carrot roots—like many plant storage roots—
are formed through a swelling of the taproot prior to dormancy,
which is driven by the production of supernumerary cambia,
i.e., secondary growth characterized by the formation and
expansion of additional xylem and phloem tissues (Goldman,
2020). As such, the phenotyping methods described here—and
the quantification of root fill in particular—hold significant
potential not only in the context of plant breeding, but in
understanding plant tissues that have been modified through
domestication. Precisely studying variation across carrot market
classes therefore represents a unique opportunity to deepen
our understanding of the genetic bases of secondary root
development in general. Future studies based on linkage mapping
populations or association panels could utilize this phenotyping
pipeline to identify QTL associated with these underlying
physiological processes.

Furthermore, because this platform is not designed around
a machine learning algorithm for classifying carrots into
predefined—and therefore static—market classes, it can be
adapted to any range of root shapes. This is particularly useful
for a character like market class, which is determined by current
agricultural practices and culinary preferences. While these
classes are therefore malleable, and will certainly change over
time, their component phenotypes will still be quantifiable by
way of the pipeline described here. This is illustrated well by the
PCA-based clustering analysis, which clearly identified clusters
corresponding to five major market classes using only their
component phenotypes.

Trait Heritabilities in a Diallel Mating
Design
To demonstrate this phenotyping platform’s utility in the context
of a genetic analysis that is particularly relevant from a breeding
perspective, a novel diallel experiment was conducted, drawing
parental material from all of the predominant United States
market classes. The results of this analysis are striking: both
the size and shape phenotypes underlying market class were
shown to be largely controlled by additive gene action.
From a practical perspective, the relatively high narrow-sense
heritabilities reported here is a reflection of breeders’ success in
efficiently selecting for these traits. From a genetic perspective,
however, this finding does not necessarily indicate simple control,
in the sense that these traits are necessarily primarily controlled
by only a few, large-effect quantitative trait loci (QTL). Large
additive genetic variance components could also be associated
with highly polygenic traits that simply lack dominance and
epistatic variance (Huang and Mackay, 2016).

It is also important to note that the heritabilities reported
here reflect phenotypes measured in a single—albeit common
and economically important—environment in Wisconsin. Thus
while they are quite high, and wider, multi-environment
evaluation of heritabilities is therefore warranted, the values
reported here likely represent a ceiling for heritabilities calculated
across multiple environments. However, the precise degree to
which multi-environment trials might lead to lower estimates
of heritability is not clear, given the fact that the estimates
reported here accord with values previously estimated for
root length (Prasad and Prasad, 1980; Brar and Sukhija,
1981). Additionally, it is important to stress that heritability
is a parameter of the population under consideration, and
not purely a function of the trait it describes. Estimates of
heritability will vary depending on the particular cultivars
or population studied, as has been found in carrot with
respect to heritabilities for nematode resistance (Huang et al.,
1986; Vieira et al., 2003) as well carotenoid concentrations
(Fernandes Santos and Simon, 2006). Because the parents
used in this diallel represent a diverse set of inbred lines
drawn from United States breeding programs, these results
will immediately aide breeders in selecting specific hybrid
combinations, depending on the precise market class being
targeted. At the same time, however, it is important to recognize
that these inbred lines were intentionally drawn from contrasting
market classes, and thus produced progeny families with extreme
levels of phenotypic variance. The diversity observed in these
inter-market class crosses may therefore exceed what breeders
observe in practical contexts, involving a crosses within a more
narrow subset of germplasm.

Potential of Digital Image-Based
Phenotyping
Beyond its utility in simply describing phenotypic variability, the
automated potential of the phenotyping platform presented here
has substantial promise within plant breeding programs, where
the resources required to screen large populations for a given
set of traits is often a key factor limiting population sizes. From
this perspective, the pre-processing and image analysis stages
of this pipeline are already explicitly automated. Furthermore,
the acquisition algorithms described here are robust to many
horticultural and agronomic plant structures; only the specific
RGB thresholding indexes used to distinguish plant tissue
from background require adjustment to allow for the accurate
production of a binary mask. With regards to the pre-processing
and analysis algorithms, the only requirement to their broader
application is that the phenotyped object be non-branching.
While this excludes, for example, wild carrot (which is typically
highly branched), within horticultural and agronomic crops
this would allow for the phenotyping of a wide array of fruit,
roots and tubers.

A critical determinant of the potential practical utility of the
digital phenotyping platform described here is the rate at which
phenotypes can be obtained; this rate is in turn a function of two
components: the rate at which images of carrot roots are acquired,
and the computational time required to extract and record
phenotypes from these images. In this study, images containing
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two carrots and two QR codes required one person working for
2 min to acquire, or 1 min per carrot. An additional 1 min of
computational time was required to perform pre-processing of
the binary masks produced during acquisition, and phenotyping
of these standardized images using a MacBook Pro with a 3.3 GHz
Intel Dual-Core i7 CPU and 16 GB of 2,133 MHz LPDDR3 RAM.
Importantly, these MATLAB and Python scripts can process
images in bulk without any human intervention, and thus this
computational time does not involve any additional labor time.

As a result, we consider this platform to be immediately
usable for many research applications. From a more applied
perspective, it is unlikely that all stages of population and or
inbred line development within commercial breeding programs
would benefit from the precision provided by this platform, to a
degree that outweighs the additional labor required. Specific use
cases, however, such as the development of genomic prediction
models, which require very precise, quantitative phenotypic
measurements for only a defined subset of germplasm, could
productively utilize these methods.

We hope that the digital phenotyping workflow described
here lead to further improvements in both the acquisition and
phenotyping stages of digital image analysis, enabling further
expansion of the utility of such approaches in both scientific and
applied domains.
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