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Rice blast, caused by the fungus Magnaporthe oryzae, is the most devastating

disease affecting rice production. Identification of protein–protein interactions (PPIs) is

a critical step toward understanding the molecular mechanisms underlying resistance

to blast fungus in rice. In this study, we presented a computational framework for

predicting plant–pathogen PPIs based on structural information. Compared with the

sequence-based methods, the structure-based approach showed to be more powerful

in discovering new PPIs between plants and pathogens. Using the structure-based

method, we generated a global PPI network consisted of 2,018 interacting protein

pairs involving 1,344 rice proteins and 418 blast fungus proteins. The network analysis

showed that blast resistance genes were enriched in the PPI network. The network-

based prediction enabled systematic discovery of new blast resistance genes in rice. The

network provided a global map to help accelerate the identification of blast resistance

genes and advance our understanding of plant–pathogen interactions.

Keywords: protein-protein interactions, rice, blast fungus (Magnaporthe oryzae), protein structure, machine

learning

INTRODUCTION

Rice blast, caused by the fungus Magnaporthe oryzae, is the most devastating disease affecting rice
production. Due to the availability of both genome sequences and the accessibility of molecular
genetic tools, the pathosystem between rice and blast fungus has become a model system for
studying plant–pathogen interactions (Dean et al., 2005; International Rice Genome Sequencing
Project., 2005). Although the molecular mechanisms of the plant immune system have been
extensively investigated over the past decade, many aspects of the overall resistance picture remain
poorly understood (Meng et al., 2019).

Protein–protein interactions (PPIs) play a critical role in molecular recognition between
plants and pathogens. Identification of these PPIs is important for understanding the underlying
molecular mechanisms against pathogen infection in plants. Experimental methods have been used
to identify plant–pathogen PPIs (Mukhtar et al., 2011; Weßling et al., 2014; Cao et al., 2019), but
the available interaction data are still far from depicting global maps of plant–pathogen interactions
(Ammari et al., 2016). Only a few experimentally verified PPIs between rice and blast fungus have
been reported in the individual studies, which is insufficient to elucidate the molecular mechanisms
leading to disease resistance in rice (Kanzaki et al., 2012; Cesari et al., 2013).
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To complement experimental methods for identifying PPIs,
many computational methods have been developed to accelerate
the discovery of PPIs (Tanwar and George Priya Doss,
2018). Most available computational methods such as interolog
mapping (Matthews et al., 2001), domain-based inference
(Deng et al., 2002), gene fusion (Marcotte et al., 1999),
phylogenetic similarity (Pellegrini et al., 1999), and gene
co-expression [28] are primarily focused on determining
PPIs within a single organism. Some of these methods,
such as interolog and domain-based inference, have also
been applied to the interspecies PPI field and lead to the
discovery of important biological insights in plant–pathogen
interactions (Li et al., 2012; Sahu et al., 2014; Yang et al.,
2019).

Recently, computational methods using structural
information to predict PPIs have gained much attention
due to the rapid growth of protein three-dimensional (3D)
structures (Zhang et al., 2012; Burley et al., 2017). Rather
than sequence-based methods, structure-based approaches
could reveal the structural details of protein interactions
(Mariano and Wuchty, 2017). However, the structure-based
methods require the 3D characterization of each protein
and therefore suffer from low coverage of the proteome.
Predicting protein interactions based on homology-modeled
structures might be a solution to this problem, which enabled
the use of protein structural information on a genome-
wide scale (Zhang et al., 2016; Liu et al., 2017; Zhao et al.,
2019).

In this study, we presented a computational framework for
predicting plant–pathogen PPIs based on structural information.
Performance assessment showed that the structure-based
method was powerful in discovering PPIs between plants and
pathogens. Furthermore, we used the structure-based method
to generate a global PPI network between rice and blast fungus
proteins, which provided a valuable reference for systems
understanding of plant and pathogen interactions.

MATERIALS AND METHODS

Data Sources
All experimentally verified host–pathogen interactions were
collected from the Host–Pathogen Interaction Database (https://
hpidb.igbb.msstate.edu/index.html) (Ammari et al., 2016). A
total of 10,148 host–pathogen PPIs with homology models and
experimental structures were used as the positive reference
dataset, while the interacting protein pairs between hosts
and pathogens were randomly shuffled to form the negative
reference dataset.

The genome of M. oryzae strain 70–15 was downloaded from
Ensembl Genomes (http://fungi.ensembl.org/Magnaporthe_
oryzae/Info/Index), and the genome ofOryza sativa ssp. japonica
cv. Nipponbare was downloaded from the MSU Rice Genome
Annotation Project Database (http://rice.plantbiology.msu.
edu/). A total of 38,864 non-transposable element protein
sequences were identified in the rice genome.

Identification of Membrane and Secreted
Proteins in Blast Fungus
The membrane proteins containing one or more transmembrane
helices were predicted by using TMHMM (Möller et al., 2001).
The putatively secreted proteins were identified when the protein
containing a signal peptide was predicted by using SignalP-
5.0 (Almagro Armenteros et al., 2019) and the extracellular
localization of the protein was predicted by using WoLF PSORT
(Horton et al., 2007).

Homology Modeling of Protein Structures
Homology models of proteins were built by using ModPipe
(Pieper et al., 2014). The homology structure with the highest
ModPipe quality score was selected for each protein according
to the previously described criteria (Zhang et al., 2016; Liu et al.,
2017).

Structural Template for the Interaction
Model
A total of 157,771 protein complexes involving 328,671 chains
were collected from the Protein Data Bank (PDB) (Burley et al.,
2017). The chain–chain binary interfaces of protein complexes
were generated by PIBASE with an interatomic distance cutoff of
6.05 Å (Davis and Sali, 2005).

Structure-Based Features
Structural alignment was used to find the closest PDB chains of
homology models using TM-align with the cutoff score of 0.4
(Zhang and Skolnick, 2005). The interaction model of protein
pair was created by superimposing the homology structures
on their corresponding chains in the closest PDB template
complex. Four structural features, including structural similarity
(i.e., TM-score) and structural distance (i.e., root mean square
deviation, RMSD) between protein homology models and their
corresponding chains in the template, as well as the number
and fraction of interacting residue pairs in the template that
were preserved in the interaction model, were calculated for the
prediction of PPIs. The detailed method for structural features
refers to the previous study (Zhang et al., 2016).

Prediction of Interolog and Domain-Based
PPIs
The potential PPIs were predicted using interolog mapping.
Each protein was blasted against the experimentally determined
PPI datasets to identify homologs with an E-value of <10−5, a
sequence identity of >45%, and an aligned sequence coverage
of >50%. The experimentally determined PPIs were derived
from the BioGRID (Oughtred et al., 2021), IntAct (Orchard
et al., 2014), MINT (Calderone et al., 2020), DIP (Salwinski
et al., 2004), and BIND (Alfarano et al., 2005) databases
(Supplementary Table 1).

The domains of each protein were identified by PfamScan
against the Pfam database (Mistry et al., 2021). The interacting
domains were identified based on the host–pathogen PPIs and
collected from the 3 did (three-dimensional interacting domains)
database (Mosca et al., 2014). When an interacting domain pair

Frontiers in Plant Science | www.frontiersin.org 2 July 2021 | Volume 12 | Article 690124

https://hpidb.igbb.msstate.edu/index.html
https://hpidb.igbb.msstate.edu/index.html
http://fungi.ensembl.org/Magnaporthe_oryzae/Info/Index
http://fungi.ensembl.org/Magnaporthe_oryzae/Info/Index
http://rice.plantbiology.msu.edu/
http://rice.plantbiology.msu.edu/
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Zheng et al. Rice-M. oryzae PPI Network

were present in two proteins, the two proteins were expected to
interact with each other.

Performance Evaluation of Predictive
Models
To evaluate model performance across different host–pathogen
systems, we trained on the dataset in the training host–pathogen
systems and evaluated the performance on the test host–
pathogen system. In other words, the entire training dataset was
partitioned into two parts, i.e., test set and training set. Test
set contained dataset from one host and all its pathogens, and
training set included all datasets related to the other remaining
hosts and pathogens. We used the test set from seven hosts
(i.e., Mus musculus, Arabidopsis thaliana, Rattus norvegicus,
Aedes aegypti, Bos taurus, Sus scrofa, and Gallus gallus) and
their pathogens to evaluate the model performance across host–
pathogen systems, respectively. For each test host–pathogen
system, the process was performed 10 times with the different
negative training sets.

The 10-fold cross-validation method was used to evaluate
the performance of different models. The training dataset was
randomly divided into 10 subsets. Nine of them were combined
to train the model, and the remaining one was used to test
the model. The progress was repeated 10 times with the
different negative training sets, and the final result was the
average performance of the 10 replicates. True positive rate
(TPR) = TP/(TP + FN), false positive rate (FPR) = FP/(FP
+ TN), precision = TP/(TP + FP), and F1 score = 2 ×

(precision× recall)/(precision+ recall) were used to evaluate the
prediction performance.

Prediction of PPIs Between Rice and Blast
Fungus
We built the rice–blast fungus PPI classifier using the random
forest from the scikit-learn library in Python. The interaction
probability of each protein pair was computed using the
optimizedmodel. The protein pair with a probability greater than
the threshold of 0.5 was considered to interact with each other.

Identification of Avirulence Genes in Blast
Fungal Genome
Gene sequences of avirulence effectors were extracted from the
GenBank database (Meng et al., 2019). All predicted coding
sequences of the blast fungal genome were then searched against
the local avirulence sequence database to identify matches to the
cloned genes. The parameters used for the sequence similarity
search were ≥95% identity and 80% coverage of the avirulence
effector genes.

Analysis of Functional and Pathway
Enrichment
Functional enrichment of rice genes was analyzed by using
agriGO (Tian et al., 2017) by comparing the reference gene
dataset of the rice genome with their False Discovery Rate
(FDR) values. The pathway enrichment analysis of rice genes was
performed using the Fisher’s exact test implemented in a Perl

script against the Kyoto Encyclopedia of Genes and Genomes
(KEGG) database (Kanehisa et al., 2017).

Network Analysis of Blast Resistance
Genes
The main data on blast disease traits were collected from the
China Rice Data Center (http://www.ricedata.cn/gene/gene_pi.
htm). The blast resistance genes that were identified in the rice
reference genome were used in the network analysis.

Transcriptional Analysis of Rice Genes in
Response to Blast Fungus
The RNA-seq datasets (accession: SRP079683) derived from rice
with M. oryzae infection were downloaded from the NCBI SRA
database (Bidzinski et al., 2016). The sequencing reads were
processed by trimmomatic to remove the adapter sequences and
low-quality reads (Bolger et al., 2014). The cleaned reads were
mapped to the rice genome using hisat2 (Kim et al., 2019), and
the aligned reads were counted with featureCounts (Liao et al.,
2014). The differentially expressed genes were identified using
DESeq2 with p < 0.01 and at least 2-fold changes (Love et al.,
2014).

RESULTS

Inference of Host–Pathogen PPIs From
Structure Information
We developed a computational method for predicting host–
pathogen PPIs based on structural information. The framework
is illustrated in Figure 1. In brief, given a pair of proteins from
host and pathogen, we first predicted protein structures using
homology modeling and then searched for their closest PDB
complex as a structural template. The interaction model for
each protein pair was created by superimposing the homology
structures on their corresponding chains in the template
complex. Structural features, including structural similarity,
structural distance, as well as the number and fraction of the
conserved interacting residue pairs, were calculated from the
interactionmodel. Finally, we combined structural evidences and
sequence information to predict host–pathogen PPIs using the
random forest-based classifiers.

Structure-Based Method Accurately
Discovers Plant–Pathogen PPIs
Due to the limited availability of known PPIs between plants and
pathogens, cross-species performance is important for the model
trained on the dataset in known host–pathogen systems to infer
PPIs in a new host–pathogen system.We selected seven test host–
pathogen systems to systematically evaluate model performance
across host–pathogen systems. For each test, all datasets except
from one selected host and all its pathogens were used to train
the model, and the dataset from the selected host–pathogen
system was used to evaluate the predictive model. As shown
in Figure 2, the TPR of the method is higher than 68.6% for
all test host–pathogen systems. The results indicated its robust
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FIGURE 1 | A computational framework for predicting protein–protein interactions (PPIs) between host and pathogen. Given a pair of potentially interacting proteins

(A,B) from host and pathogen, three-dimensional structures for each protein pair were built by homology modeling and then searched for their closest PDB complex

as a template by structural alignment. Four structure-based scores associated with the protein pair were calculated by superimposing the homology structures on

their corresponding chains in the template complex. Finally, combining the structural evidences with the clues of homologous mapping and interacting domains to

predict the interaction between proteins A and B using random forest-based classifiers.

FIGURE 2 | Performance evaluation of predicting PPIs across host–pathogen

systems. The entire training dataset was partitioned into a test set and a

training set. The test set contained the dataset from one selected host and all

its pathogens, and the training set included all datasets related to the other

remaining hosts and pathogens. For each test host–pathogen system, the

process was performed 10 times with different negative training sets.

cross-species prediction performance in discovering PPIs in new
host–pathogen systems.

The interolog and domain-based methods are two widely
used computational approaches for predicting host–pathogen
PPIs. We thus evaluated the performance of our method with
respect to these twomethods on the test dataset of experimentally
determined PPIs between Arabidopsis and all its pathogens.

TABLE 1 | The performance of different approaches in detecting protein–protein

interactions (PPIs) between Arabidopsis and pathogen.

Method Accuracy

(ACC)

True positive

rate (TPR)

F1-score

Structure-based

method

224/256 = 87.5% 101/128 = 78.9% 0.86

domain-based

method

148/256 = 57.8% 20/128 = 15.6% 0.27

interolog-based

method

151/256 = 59.0% 23/128 = 18.0% 0.30

The test dataset including 128 experimentally determined PPIs and 128 randomly shuffled

protein pairs between Arabidopsis and pathogens.

Among the 128 Arabidopsis–pathogen PPIs with homology-
modeled structures, 101 (78.9%) protein interactions could be
successfully predicted by the structure-based method. However,
only 23 and 20 Arabidopsis–pathogen PPIs were inferred
by the homologous mapping and interacting domain pairs,
respectively (Table 1). For the interaction between Arabidopsis
and Ralstonia solanacearum, 20 of PPIs were detected by the
structural similarity, while only 4 of them were supported with
the interacting domains (Supplementary Table 2). These results
indicated that the structure-based method outperformed the
interolog and domain-based methods for identifying plant–
pathogen PPIs.

Proteome-Wide Prediction of PPIs
Between Rice and Blast Fungus
We first trained the prediction model on a dataset consisting
of positive and negative examples of equal size. Although the
model worked relatively well with an accuracy of 94.13%, the
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TABLE 2 | Performance comparison of models trained with different ratios of

positive and negative samples.

Positive:negative ratio Accuracy

(ACC) (%)

True positive

rate (TPR) (%)

False positive

rate (FPR) (%)

1:1 (10148: 10148) 94.13 93.63 5.37

1:5 (10148: 50740) 93.09 84.14 5.12

1:10 (10148: 101480) 94.17 66.30 3.04

1:20 (10148: 202960) 96.16 42.79 1.17

1:30 (10148: 304440) 97.30 32.60 0.54

1:50 (10148: 507400) 98.32 23.84 0.19

1:60 (10148: 608880) 98.58 21.75 0.14

1:70 (10148: 710360) 98.78 20.77 0.10

1:80 (10148: 811840) 98.93 19.66 0.08

1:90 (10148: 913320) 99.04 18.90 0.07

1:100 (10148: 1014800) 99.13 18.30 0.06

The bold values mean the optimized positive to negative ratio of training set with a relatively

high TPR and a low level of FPR.

FPR of 5.37% would result in a large number of false positive
interactions in the proteome-wide prediction of PPIs between
rice and blast fungus. Thus, we reduced the FPR by expanding
the size of the negative examples in the training dataset. When
the ratio of positive to negative samples was adjusted to 1:70 in
the training dataset, the FPR was decreased to the expected level
of 0.10%, while the TPR remained at the relatively high level of
20.77% (Table 2).

To fill the gap between the number of protein sequences
and 3D structures, protein structures for rice and blast fungus
proteomes were predicted by using homology modeling. These
predicted structures contained 32,170 and 2,910models, covering
82.8 and 83.3% of rice and blast fungus secreted/transmembrane
proteomes, respectively. Interaction models for 21,021,571 rice–
blast fungus protein pairs were then created by superimposing
the homology structures on their corresponding PDB templates.

The optimized host–pathogen prediction model was used
to scan all rice–blast fungus protein pairs with the interaction
models, resulting in a total of 2,018 PPIs between 1,344
rice proteins and 418 blast fungus proteins (Figure 3A,
Supplementary Table 3). Of the predicted PPIs, only 29.9%
(604) of interactions were supported with the evidences of
sequence similarity and interacting domain pairs. Moreover,
we found that 17 predicted PPIs could be identified by the
previous study with the sequence-based method (Ma et al., 2019).
These results indicated that the structure-based method could
efficiently discover new rice–blast fungus PPIs beyond those
interactions inferred from sequence similarity.

As expected, the rice–blast fungus PPI network exhibited
scale-free properties similar to those of other biological networks
(Supplementary Figure 1). It was interesting that the blast
fungus proteins had more connections than rice proteins in
the PPI network. One blast fungus protein averagely had
five interacting partners from rice, while one rice protein
interacted with around two blast fungus proteins (Figure 3B).
Approximately, 12% (50) of blast fungus proteins had at least 10
rice interactors, and the pathogen protein with the highest degree
was predicted to interact with 143 rice partners in the network.

The result meant that the potential pathogen-associated proteins
had a higher degree than the resistance-associated proteins in the
rice–blast fungus PPI network.

Network Captures Key Components in
Rice–Blast Fungus Pathosystem
Themajor components involved in rice–blast fungus interactions
include resistance genes from rice and avirulence effectors
from M. oryzae. Thus, we examined whether the PPI network
could predict these key components in rice–blast fungus
pathosystem. Currently, about two dozens of blast resistance
genes have been cloned and characterized in rice. Among the
cloned resistance genes, 12 genes were distributed in the rice
reference genome of O. sativa spp. japonica cv. Nipponbare
(Supplementary Table 4). Two resistance genes, namely, pi-
d2 (LOC_Os06g29810) and pi-ta (LOC_Os12g18360), were
successfully predicted in the PPI network, ∼7-fold enrichment
in comparison with that of the whole genome. In addition, a
total of 13 avirulence effector genes have been cloned from
M. oryzae, six of which have the corresponding matches in
the reference genome sequence (Supplementary Table 5). One
avirulence effector, AVR-Pik (MGG_15972), was detected in the
PPI network. The AVR-Pik effector was predicted to interact
with four resistance-associated proteins (i.e., LOC_Os02g37290,
LOC_Os02g37300, LOC_Os02g37320, and LOC_Os04g39380)
containing a heavy metal-associated domain, which have been
validated by experimental measurements (De la Concepcion
et al., 2018, 2019). These results indicated the powerful
performance of the PPI network in capturing major components
in rice–blast fungus interactions.

Functional Analysis of Rice Protein
Involved in the Interaction
To determine the function of rice proteins interacted with
pathogen proteins, the GO analysis of these proteins in the
network was carried out. These resistance-associated proteins
were preferentially involved in specific biological processes such
as transcriptional regulation, phosphorylation, transmembrane
transport, signal transduction, and nucleotide metabolic process
(Figure 4A). Furthermore, the pathway analysis showed that
these rice proteins are significantly enriched in the pathways
of spliceosome, ATP-binding cassette (ABC) transporters, plant
hormone signal transduction, RNA transport, and oxidative
phosphorylation (Figure 4A). It was worth to notice that seven
rice proteins acted as core components in the pathway of plant–
pathogen interactions, including LOC_Os04g52780, known as
FLS2, an immune receptor, which could activate plant immune
response by recognizing flagellin proteins of bacterial pathogens
(Figure 4B).

Network-Based Prediction of Blast
Resistance Gene
The rice blast resistance gene LOC_Os06g29810 was predicted
to interact with pathogen protein MGG_00990 based on
the structural interaction model created by superimposing
the homology structures on the template of the AvrPto–Pto
complex (Figure 5A). The homology model of MGG_00990
was structurally similar to the pathogen effector AvrPto
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FIGURE 3 | Rice–blast fungus PPI network. (A) Global view of the rice–blast fungus PPI network. Proteins from rice and blast fungus are represented by blue circles

and red triangles, respectively. (B) Comparison between the degree distribution of rice and blast fungus proteins in the network. The blue bar represents the degree

distribution of rice proteins interacting with blast fungus proteins, and the red bar represents the degree distribution of blast fungus proteins interacting with rice

proteins.

FIGURE 4 | Functional and pathway analysis of rice genes in the PPI network. (A) Enriched function terms and pathways of rice genes. Y-axis represents the GO

terms and KEGG pathways, and X-axis represents the negative log10(FDR) of enriched terms and pathways. The enriched GO terms and KEGG pathways are

represented by blue and red bars, respectively. (B) Rice genes in the KEGG pathway of plant–pathogen interaction. The rectangle represents a gene product and the

rectangle marked with green color indicates the corresponding rice gene as identified in the rice–blast fungus network.

in the template complex, while the homology model of
LOC_Os06g29810 was structurally close to the plant resistance
protein Pto (Xing et al., 2007). The another rice blast resistance
gene LOC_Os12g18360 could interact with the pathogen gene
MGG_08973, which was inferred from the structural similarity
of the homology models to the chains in the structural template
of thioredoxin in barley (Figure 5B) (Maeda et al., 2008).

The availability of the PPI network allowed the systematic
discovery of novel blast resistance genes using the guilt-by-
association method. In addition to the two blast resistance
genes, 47 rice genes were found to interact with the two

pathogen-associated genes,MGG_00990 andMGG_08973, in the
PPI network. The functional analysis revealed that these blast
resistance candidates mostly encoded receptor-like cytoplasmic
kinases involved in the biological processes of phosphorylation
and signaling in rice (Figure 6A). Furthermore, the analysis of
gene expression showed that these candidates were preferentially
responsive to the infection of blast fungus (Figure 6B). Among
the interacting partners ofMGG_00990, 18 resistance-associated
genes were differentially expressed after blast fungus infection
(Figure 6C), while 10 genes were significantly induced by the
infection blast fungus after drought stress (Figure 6D). These
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FIGURE 5 | Structural model of protein interaction. (A) The structural interaction model for LOC_Os06g29810 and MGG_00990 created by superimposing the

homology structures on the chains B and A in the template (PDB ID 2qkw). (B) The structural interaction model for LOC_Os12g18360 and MGG_08973 created by

superimposing the homology structures on the chains A and C in the template (PDB ID 2vm1). The homology models of rice and blast fungus proteins are shown in

blue and red, respectively. The PDB template complexes are shown in gray.

FIGURE 6 | Functional significance and expression of rice genes in the subnet. (A) Enriched GO terms of rice genes in the blast resistance subnet. (B) Comparison of

differentially expressed genes in rice after blast fungus infection. Rice genes in response to infection by (C) blast fungus and (D) blast fungus after drought stress in the

subnet. The red nodes represent upregulated genes, and the green nodes represent downregulated genes.
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results indicated the good performance of the PPI network in
discovering rice genes associated with blast resistance.

DISCUSSION

Determining PPIs is an essential step toward understanding
the underlying biological mechanism against pathogen infection
in plants (Muthamilarasan and Prasad, 2013). In this study,
we presented a computational method for predicting plant–
pathogen PPIs based on structural information. Using seven
host–pathogen systems, we demonstrated that the structure-
based method was powerful in discovering protein interactions
across different host–pathogen systems. This advantage was
of vital importance for machine learning-based method for
predicting PPIs in new plant–pathogen systems based on prior
knowledge obtained from known interacting proteins in other
host–pathogen systems.

Although many experimentally validated host–pathogen PPIs
have been deposited in the database, most of these PPIs
(42,972 out of 45,200) focus on the protein interactions between
humans and pathogens (Ammari et al., 2016). Due to the
limited availability of plant–pathogen PPIs, many plant-specific
pathogen effector proteins usually failed to identify any homolog
in the known inter-species interactions using homologous
sequence mapping (Yang et al., 2019). In addition, the intra-
species PPIs from model organisms have been usually used to
infer plant–pathogen PPIs (Li et al., 2012; Sahu et al., 2014).
However, evolutionary differences between inter-species and
intra-species PPI interfaces would limit the performance of
plant–pathogen PPIs by transferring interactions across species
(Franzosa and Xia, 2011). These weaknesses could be partially
overcome by utilizing structural information. The developed
method uses the structural similarity between proteins as a bridge
to identify new interactions across plant–pathogen systems.
Compared with the sequence-based methods, this structure-
based approach enabled us to discover new interactions between
plant and pathogen proteins that lacked significant sequence
similarity with a known interaction template.

Magnaporthe oryzae is a notorious plant pathogen that causes
the most destructive diseases of rice in the world. The prediction
and analysis of PPIs are valuable in deciphering the molecular
mechanisms of rice–blast fungus interactions. In this study, we
generated a global rice–blast fungus PPI network that consisted
of 2,018 interacting protein pairs involving 1,344 rice proteins
and 418 blast fungus proteins. Over 70% of PPIs between
rice and blast fungus were inferred from structural similarity,
which greatly expanded the landscape of the rice–blast fungus
PPI network. Compared with the previous PPI network, 17 of
PPIs were identified by the structure-based method (Ma et al.,
2019). Although the number of common PPIs was relatively
small, the results were significantly overlapped between the
two independent studies (i.e., Fisher’s exact test p < 5.6e-
39). Moreover, we noted that blast fungus proteins had more
interacting partners than rice proteins in the network. Our
findings were coherent with the sequence-based studies in which

a few pathogen-associated proteins were involved in the plant–
pathogen interactions (Li et al., 2012; Sahu et al., 2014; Ma et al.,
2019). This is likely to be the result of the coevolutionary arms
races, in which pathogens mutate genes extensively to infect their
hosts, while plants defend against pathogen attacks by expanding
gene families (Stahl and Bishop, 2000; Dangl and McDowell,
2006).

Despite the advances made in molecular mechanisms of rice
resistance to blast fungus, many aspects of the rice immunity
system remain obscure (Li et al., 2019). The rice–blast fungus
PPI network showed that the AVR-Pik effector was successfully
predicted to interact with four rice proteins, which have been
validated by experimental approaches (De la Concepcion et al.,
2018, 2019). In addition to the avirulence effector, two rice blast
resistance genes were also identified in the network. Using the
guilt-by-association method, we identified 47 candidate blast
resistance genes in the PPI network. The majority of these genes
that encoded receptor-like cytoplasmic kinases were involved
in the response to the infection of blast fungus (Bidzinski
et al., 2016). The PPI network provided a global map to help
accelerate the identification of blast resistance genes and advance
our understanding of the molecular mechanisms of plant–
pathogen interactions.
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