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Small peptides (sPeptides), <100 amino acids (aa) long, are encoded by small open

reading frames (sORFs) often found in the 5′ and 3′ untranslated regions (or other

parts) of mRNAs, in long non-coding RNAs, or transcripts from introns and intergenic

regions; various sPeptides play important roles in multiple biological processes. In this

study, we conducted a comprehensive study of maize (Zea mays) sPeptides using

mRNA sequencing, ribosome profiling (Ribo-seq), and mass spectrometry (MS) on six

tissues (each with at least two replicates). To identify maize sORFs and sPeptides from

these data, we set up a robust bioinformatics pipeline and performed a genome-wide

scan. This scan uncovered 9,388 sORFs encoding peptides of 2–100 aa. These sORFs

showed distinct genomic features, such as different Kozak region sequences, higher

specificity of translation, and high translational efficiency, compared with the canonical

protein-coding genes. Furthermore, the MS data verified 2,695 sPeptides. These

sPeptides perfectly discriminated all the tissues and were highly associated with their

parental genes. Interestingly, the parental genes of sPeptides were significantly enriched

in multiple functional gene ontology terms related to abiotic stress and development,

suggesting the potential roles of sPeptides in the regulation of their parental genes.

Overall, this study lays out the guidelines for genome-wide scans of sORFs and sPeptides

in plants by integrating Ribo-seq and MS data and provides a more comprehensive

resource of functional sPeptides in maize and gives a new perspective on the complex

biological systems of plants.
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INTRODUCTION

Small peptides (sPeptides), which are defined as those peptides shorter than 100 amino acids (aa),
represent a class of small molecules with important roles in various biological processes and are
translated from small open reading frames (sORFs) shorter than 300 nucleotides (Wang S. et al.,
2020). sORFs are widely distributed in the genome and are likely to be located at 5′ and 3′ ends in
the untranslated regions of mRNAs [upstream ORFs (uORFs) and downstream ORFs (dORFs)],
in the internal regions of annotated ORFs of mRNAs (mORFs) but in a different reading frame, in
the short isoforms in spliced mRNAs, and in RNAs produced by transcribed loci in the introns or
intergenic regions (Couso and Patraquim, 2017). Although long non-coding RNAs (lncRNAs) are
not defined as encoding proteins, some lncRNAs contain sORFs that are engaged by the ribosome,
potentially encoding sPeptides (Ruiz-Orera et al., 2018; Ruiz-Orera and Albà, 2019).
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sPeptides play important regulatory roles in multiple
physiological processes, including growth, development,
reproduction, and stress responses (De Coninck and De Smet,
2016). For example, the artificial synthesis and application
of the sPeptide hormone insulin were one of the greatest
achievements of the twentieth century. Small signaling peptides
or peptide hormones in plants, such as cystein-rich peptides,
are 5–75 aa long and function as signaling molecules in
cell-to-cell communication in defense responses, development,
reproduction, and plant–bacteria symbiosis (Marshall et al., 2011;
Wang S. et al., 2020). A conserved sORF,TAS3a, is associated with
the biogenesis of trans-acting small-interfering RNAs (tasiRNAs)
in Arabidopsis thaliana, and a small signaling peptide, IMMUNE
RESPONSE PEPTIDE, regulates the expression of some defense
genes and responds to bacterial or fungal infection in rice
(Oryza sativa) (Bazin et al., 2017; Wang P. et al., 2020). Multiple
sPeptides show high expression in root tissues and a tight
association with root growth and absorption. Overexpression
of the C-TERMINALLY ENCODED PEPTIDE1 gene inhibited
root growth in Arabidopsis (Ohyama et al., 2008). In rice,
overexpression of the sPeptide genes, DROUGHT AND SALT
STRESS RESPONSE1, enhanced drought and stress tolerance,
and the knockdown of the sPeptide gene, OsCADMIUM
TOLERANT 3 resulted in a decreased tolerance to aluminum
(Xia et al., 2013; Cui et al., 2018).

sORFs and sPeptides have been identified through multiple
methods, and their functions have been explored in plants.
However, to date, only a few sPeptides have been studied
through forward genetic screens because the small size of their
encoding sORFs makes them difficult to be targeted by the
common mutagenesis methods. Thus, the limited availability of
verified sPeptides that can be used as training sets limits the
ability of machine learning algorithms to predict sPeptides (Zhou
et al., 2013). Further complicating sPeptide identification, many
algorithms, such as de novo genome annotation, exclude putative
proteins of <100 aa in length (Basrai et al., 1997; Claverie, 1997).
However, 606,285 potential sORFs (25–250 codons) have been
identified in the A. thaliana genome (Lease and Walker, 2006).

The bioinformatics and experimental methods have been
developed to scan sPeptides encoded by sORFs on a genome-
wide level. Bioinformatics approaches based on sequence
conservation, functional domains or motifs, gene family
clustering, and expression support have been used to search
for homologs of known peptides and to predict novel peptides,
such as the ROT-FOUR-LIKE/DEVIL (RTFL/DVL) family in
Arabidopsis (Wen et al., 2004; Guillén et al., 2013; Guo et al.,
2015). The transcriptome analysis can reveal the expression of
transcripts containing candidate sORFs, but it cannot validate
the presence of translational products of these sORFs. The
ribosome profiling [also called ribosome sequencing (Ribo-seq)]
reveals ribosome footprints by extracting and sequencing RNA
that is protected by ribosomes; this can resolve three-nucleotide
periodicity, enabling precise definition of translated regions
within individual transcripts (Wu et al., 2019). However, several
factors introduce contamination in Ribo-seq reads, including
structured RNAs and RNAs embedded in protein complexes
like rRNA and small nucleolar RNAs (snoRNA), as well as
scanning or stalled ribosomes that do not engage in translation

(Guttman et al., 2013; Guydosh and Green, 2014; Brar and
Weissman, 2015; Archer et al., 2016). Additionally, sPeptides
can be directly detected globally using mass spectrometry (MS).
For example, an integrated peptidogenomic pipeline using high-
throughput MS to probe a customized six-frame translation
database was generated and applied to identify non-conventional
peptides in maize (Zea mays) and Arabidopsis (Wang S. et al.,
2020). However, since peptides with a bigger size and higher
abundance have a better chance of being detected by using MS,
the identification of sPeptides solely through MS might miss
some of the peptides.

In this study, we collected a large-scale dataset including
mRNA sequencing (mRNA-seq), Ribo-seq, and MS data from
six tissues (each with two replicates) of maize and performed
a de novo translatome annotation using the RiboCode software
(Xiao et al., 2018). We extracted ORFs of 3–300 nucleotides
from the dataset and identified 9,388 sORFs potentially
encoding sPeptides. These sORFs showed different Kozak region
sequences, higher specificity of translation, and high translational
efficiency compared with the canonical protein-coding genes.
Furthermore, we searched all sORF sequences in the MS data
of the corresponding tissues and verified 2,695 sPeptides. These
verified sPeptides clustered perfectly with tissues/replicates, and
the verified sPeptides showed higher expression and were
longer than the unverified sPeptides. Importantly, the expression
in translatome of some annotated sPeptides was positively
correlated with that of parental genes, which showed the
enrichment of multiple functional gene ontology (GO) terms
related to abiotic stress and development. Taken together, the
results of this study provide a more comprehensive resource for
functional analysis of sPeptides and give helpful information for
functional genomics analysis.

MATERIALS AND METHODS

Plant Materials
The seeds of maize (Z. mays L.) inbred line B73 were planted in a
greenhouse under a temperature and a photoperiod of 30◦C for
16 h of light and 25◦C for 8 h of darkness. The stem, root, leaf,
and whole seedling tissues were collected 14-days after planting,
and the ear and tassel tissues were collected in the V12 stage with
two biological replicates for each tissue.

Analysis of RNA-Seq and Ribo-Seq Raw
Data
The RNA-seq and Ribo-seq data of these plant samples were
collected from our previous study (Zhu et al., 2021). A non-
coding RNA data set including rRNA, tRNA, and snoRNA
sequences were downloaded from the database Rfam (http://
rfam.xfam.org/). After removing the adaptors, the collected data
were mapped to this dataset using bowtie2 v2.4.1 with default
parameters (Langmead and Salzberg, 2012; Kalvari et al., 2018),
and the unmapped reads were kept for downstream analysis.
The unaligned mRNA-seq and Ribo-seq reads were mapped to
the exon sequences and coding sequences (CDSs) of the B73
reference genome (AGPv4), respectively, using STAR v2.7.3 with
default parameters (Schnable et al., 2009; Dobin et al., 2013).
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Identification of sORFs and Calculation of
Transcriptional and Translational
Abundance
By comparing the alignment results in the BAM format with
the B73 reference genome (AGPv4), we identified ORFs in
different tissues using the RiboCode software (https://github.
com/xryanglab/RiboCode) with default parameters (Xiao et al.,
2018). ORFs identified using the RiboCode were classified into
seven types as follows:

1. “annotated”: ORFs, overlapping with annotated CDSs, have
the same start and stop codon with annotated CDSs.

2. “uORF”: ORFs located upstream of annotated CDSs, not
overlapping with annotated CDSs.

3. “dORF”: ORFs located downstream of annotated CDSs, not
overlapping with annotated CDSs.

4. “Overlap_uORF”: ORFs located upstream of annotated CDSs
and overlapping with annotated CDSs.

5. “Overlap_dORF”: ORFs located downstream of annotated
CDSs and overlapping with annotated CDSs.

6. “Internal”: ORFs located internal regions of annotated CDSs,
but in a different reading frame.

7. “novel”: ORFs derived from non-coding genes or non-coding
transcripts of the coding genes.

The ORFs shorter than 300 nucleotides were considered to
be sORFs potentially encoding peptides. Then, the coordinate
information of all these sORFs was extracted and merged
with the B73 reference genome annotation in the GTF format
(https://ftp.ensemblgenomes.org/pub/plants/release-50/gtf/zea_
mays/Zea_mays.B73_RefGen_v4.50.gtf.gz) using in-house shell
scripts and Stringtie v2.1.4 (parameter: –merge -m 0) (Pertea
et al., 2015). The aa sequences of all sORFs were generated by
RiboCode and merged together for further analysis.

Using the merged genome annotation, transcriptional and
translational abundance was calculated by fragments per kilobase
of exon model per million mapped reads (FPKM) using Cufflinks
v2.2.1 with parameters: -p 5 -G (Trapnell et al., 2012). Only the
unique reads of RNA-seq and Ribo-seq mapped to exons and
CDSs were used for the calculation of abundance.

Protein Preparation and MS
The tissue from maize was grounded using liquid nitrogen
and then transferred into a 5-mL centrifuge tube with a
suitable volume of lysis buffer [1% TritonX-100, 10mM
dithiothreitol, 1% Protease Inhibitor Cocktail, 50µM 2,6-
diamino-3,5-dithiocyanopyridin, 3µM trichostatin A, 50mM
N-arachidonyl maleimide, and 2mM ethylenediaminetetraacetic
acid (EDTA)]. The mixture was sonicated three times on ice
using a high-intensity ultrasonic processor (Scientz), and an
equal volume of Tris-saturated phenol (pH 8.0) was added
and further vortexed for 5min. The upper phenol phase was
transferred to a new centrifuge tube after centrifugation. Then,
at least four volumes of ammonium sulfate-saturated methanol
were added to precipitate the proteins at −20◦C for at least 6 h.
After centrifugation, the precipitate with proteins was collected
and washed with ice-cold methanol once, followed by ice-cold

acetone three times. The protein was redissolved in 8M urea,
and the concentration was determined using a BCA kit based
on the instructions of the manufacturer. After digestion with
trypsin, the samples were submitted for the MS detection on the
Thermo Scientific Q Exactive platform using a label-free method.
The resulting MS data were processed with the Maxquant search
engine (v.1.5.2.8). Tandemmass spectra were searched against the
aa sequences of sORFs identified by RiboCode in the translatome
data (Xiao et al., 2018). Themass tolerance for precursor ions was
set as 20 ppm in the first search and 5 ppm in themain search, and
the mass tolerance for fragment ions was set as 0.02 Da. The false
discovery rate (FDR) was adjusted to <1%, and the minimum
score for peptides was set to >40.

The MS data of maize leaves sampled from the 14-day-old
seedlings were collected from our previous study (Zhu et al.,
2021).

Calculation of Shannon Entropy and
Translation Efficiency (TE)
To compare the TE of sORFs and other canonical transcripts
in different tissues, we selected transcripts expressing in both
the transcriptome and translatome (FPKM ≥ 0.5). RPKM for
single-end sequencing is the unit to quantify gene’s expression
level, equivalent to FPKM for pair-end sequencing. The RPKM
is defined as follows:

RPKM =
Exon Mapper Reads ∗ 1,000,000,000

Total Mapped Reads ∗ Exon Length

In the pair-end sequencing two paired reads is a fragment. The
FPKM is defined as follows:

FPKM =
Exon Mapper Fragments ∗ 1,000,000,000

Total Mapped Fragments ∗ Exon Length

For each transcript, we calculated TE by the following equation:

TE =
RPKM of Ribo− seq

FPKM of RNA− seq

We compared the tissue specificity of expression between verified
and non-verified peptides by analyzing the Shannon entropy
of peptides. For each sORF, we defined the Shannon entropy
of expression-level across different tissues as follows: Given
expression levels of a sORF in N tissues, the proportion of
expression in tissue i out of the sum of all expression-levels in
all tissues:

P(i) =
FPKM(Ti)

∑N
i=1 FPKM(Ti)

Shannon entropy:

SE =−

N∑

i=1

P(i)log2 [P(i)]
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Clustering, Gene Ontology Enrichment
Analysis, and Statistical Analysis
The verified and previously annotated 501 peptides were
clustered into three groups using the gplots package in R
with default parameters. For each group of peptides, the GO
enrichment analysis was performed on their parental genes
using the AgriGO v 2.0 webserver (Tian et al., 2017). The
GO terms with an FDR threshold of 0.05 were considered as
significant terms.

All of the statistical analyses in this study were performed
using R version 4.0.4.

RESULTS

The Widespread Existence of sORFs in
Maize
In a previous study by authors, we sampled whole seedlings,
roots, stems, and leaves of 14-day-old maize plants, as well

as ears and tassels at the V12 stage with two replicates each
and used these to perform RNA sequencing (RNA-seq), Ribo-
seq, and MS analysis (MS only for leaf samples) (Figures 1A,B
and Supplementary Table 1) (Zhu et al., 2021). We obtained
a total of 236 million RNA-seq reads to quantify transcript
abundance. We also collected 161.4 million Ribo-seq reads to
map ribosome occupancy on genome-wide transcripts (Brar

and Weissman, 2015). Additionally, MS was performed to

detect and quantify protein abundance for all samples (except
the leaf samples) in this study. Taking these results together,
we collected a comprehensive transcriptome, translatome, and
proteome dataset for the genome-wide identification of sORFs
and sPeptides in maize (Figure 1B).

After filtering low-quality reads and contaminant reads in the

Ribo-seq data (as shown in the “Materials andMethods” section),

we mapped the remaining reads to the maize B73 reference
genome (Schnable et al., 2009). By applying stringent filters using
the RiboCode software, we identified 9,388 sORFs potentially

FIGURE 1 | Flowchart of experimentsfor the genome-wide identification of sORFs and sPeptides in maize. (A) Six tissues each with two replicates were analyzed in

this study. (B) Multi-omics data, including transcriptome, translatome, and proteome, were collected for the detection of sORFs and sPeptides. (C) Bioinformatics

pipeline used in this study to characterize the sORFs and sPeptides.
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encoding putative sPeptides (Xiao et al., 2018). Comparison
of sORF annotation with the latest maize reference annotation
B73 RefGen v4.50 (ensembl) demonstrated 7,589 (80.84%) newly
identified sORFs, which complements the functional annotation
of the maize genome. Finally, we verified the presence of
sPeptides using the MS analysis and identified 2,695 sPeptides,
which are supported by the presence of one or more unique
peptides (UPN ≥ 1) in the MS analysis (Figure 1C). These
results indicate the widespread existence of sORFs and sPeptides
in maize.

Maize sORFs Are a Class of Distinct
Translational Elements
By comparing data from this study to the B73 reference
genome annotation, we uncovered a total of 2,907 (30.97%)
upstream sORFs (uORFs), 485 (5.17%) overlap upstream sORFs
(overlap uORFs), 300 (3.2%) internal sORFs, 301 (4.27%) overlap
downstream sORFs (overlap dORFs), 3,445 (36.7%) downstream
sORFs (dORFs), 1,799 (19.16%) annotated sORFs, and 49
(0.52%) novel sORFs (as shown in the “Materials and methods”
section). Similar to genes, sORFs are more likely to be enriched
toward the telomeres and depleted in the pericentromeric regions
(Figure 2A). All sORFs encoded sPeptides shorter than 100 aa
in length. However, the different types of sORFs showed distinct
length distribution. Annotated sORFs were significantly longer
than other types of sORFs (p < 2.2e-16, Mann–Whitney U test),
while novel and internal sORFs were significantly shorter than
the others (p < 2.445e-09, p < 2.2e-16, respectively, Mann–
Whitney U test) (Figure 2B). Interestingly, the three shortest
uORFs potentially encode peptides with only 5 aa.

The upstream and downstream sequences of start and stop
codon sitesmight be associated with the translational efficiency of
ORFs (Hinnebusch et al., 2016). Thus, we extracted the upstream
and downstream 5 bp sequences of start and stop codons of the
sORFs as well as canonical transcripts and further performed a
motif enrichment using R package ggseqlogo (Wagih, 2017). We
found that the sequences of the start and stop codons of sORFs
were roughly similar to those of conventional genes. However,
the frequency of upstream and downstream sequences of start
and stop codons was significantly different between sORFs and
other canonical transcripts (Figures 2C,D). These results suggest
that sORFs exhibit different features (e.g., the frequency of
translational start sites) compared with conventional genes.

Moreover, we quantified and compared the expression levels
of sORFs and conventional transcripts at the translatome level.
Although the translatome abundance of both conventional
genes and sORFs could discriminate different tissues, the
expression patterns differed dramatically among the different
tissues (Figures 2E,F). Furthermore, we calculated the Shannon
entropy of expression levels across all 12 samples for sORFs
and other protein-coding transcripts and demonstrated that
sORFs are significantly more likely to be tissue-specific than
the canonical transcripts (p < 2.2e-16, Mann–Whitney U test)
(Figure 2G).

Additionally, we checked the difference in translational
efficiency between sORFs and canonical protein-coding genes

across all tissues. Unexpectedly, sORFs exhibited significantly
higher translational efficiency than canonical protein-coding
genes for all 11 samples (the sequencing library of ear1 for RNA
sequencing was constructed unsuccessfully) (Figure 2H), which
is likely associated with the different base frequency upstream
and downstream of the start and stop codons. All these results
indicate that sORFs exhibit distinct genomic and expression
features compared with canonical protein-coding genes.

Genome-Wide Classification and
Characterization of sPeptides in Maize
To evaluate whether sORFs are able to translate stable peptides in
maize, we performed a proteogenomic analysis by searching the
aa sequences of sORFs against the MS data (Walley and Briggs,
2015). Consistent with the definition of sPeptides as <100 aa,
the sPeptides were mainly concentrated in the range of 0–10
kDa in the MS validation, which corresponds to the length of
5–100 aa (Figure 3A and Supplementary Figure 1A). By using
the MS analysis, we verified 2,596 sPeptides of the 9,388 sORFs
identified from Ribo-seq data. Of these sPeptides, ∼85% were
detected in more than five tissues (Supplementary Figure 1B).
Unexpectedly, only about 20% of sPeptides were derived from
annotated transcripts of the reference genome, suggesting that
the number of sPeptides in maize is largely underestimated
(Figure 3B). However, the comparison of the validation ratio of
sPeptides derived from different types of sORFs demonstrated
that sORFs annotated previously in the reference genome are
most likely to be validated, while those from novel sORFs are least
likely to be validated (Figure 3C).

The comparison of Shannon entropy between different kinds
of sPeptides and unverified sORFs indicated that sPeptides with
MS evidence were more uniformly expressed in the 12 samples
(Supplementary Figure 1C). Notably, sPeptides exhibit higher
translatome abundance and longer CDS in corresponding sORFs
than those of the unverified sORFs, which may be due to
the limitation of the detection power of MS (Figures 3D,E).
Then, we clustered the 12 samples based on the expression-
level variation of all detectable sPeptides and found that the
sPeptides can robustly discriminate tissues, and the replicates
of the same tissue were also clustered (Figure 3F). Interestingly,
we found that many sPeptides are derived from putative-defined
lncRNA regions. For example, a long intergenic non-coding RNA
(lincRNA) GRMZM2G117281_T01 annotated in the reference
genome of maize was detected to be translated to a sPeptide
(Figure 3G). A previous study proposed that GRMZM2G117281
could be responsive to drought stress (Zhang et al., 2014),
suggesting a potential functional role of this sPeptide. All these
results demonstrate that sPeptides are abundant in the maize
genome, exhibit distinct genomic features, and may function in
different biological processes.

Annotated sPeptides Are Correlated With
Their Corresponding Parental Genes and
Might Function in Multiple Processes
A fraction of the ORFs located within annotated genes
was shorter than 300 nucleotides. Some of them have been
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FIGURE 2 | Genome-wide characterization of sORFs in maize. (A) Distribution of different kinds of sORFs in the maize genome. (B) Length distribution of different

kinds of sORFs. (C,D) Nucleotide features around start and stop codon sites of conventional genes and sORFs. (E,F) Heatmap of expression levels and unsupervised

tissue hierarchical trees of conventional genes and sORFs, respectively. (G) Shannon entropy distribution of conventional genes (in blue) and sORFs (in red). (H)

Differentiation of translation efficiency (TE) between conventional genes (mentioned in blue color) and sORFs (mentioned in red color). *,** and *** indicate P-values of

less than 0.05, 0.01 and 0.001, respectively (Mann–Whitney U-test).
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FIGURE 3 | Genome-wide classification and characterization of sPeptides in maize. (A) Mass spectrometry (MS) signals discriminate sPeptides and canonical

proteins. (B) The proportion of different types of sPeptides in maize. (C) The validation rate of different kinds of sORFs was detected in this study. (D) Comparison of

expression abundance between sPeptides and unverified sORFs. *, ** and *** indicate P-values of less than 0.05, 0.01 and 0.001, respectively (Mann–Whitney U-test).

(E) Length differentiation between sPeptides and unverified sORFs in maize. *,** and *** indicate P-values of less than 0.05, 0.01 and 0.001, respectively

(Mann–Whitney U-test). (F) Expression pattern of sPeptides in the 12 samples. (G) Structure of a sPeptide derived from a lincRNA.

demonstrated to be capable of encoding sPeptides with biological
functions such as signal peptides (Hsu and Benfey, 2018;
Ruiz-Orera and Albà, 2019). In this study, we compared
the sPeptides with the functional annotation in the maize
B73 RefGen v4 reference genome. A total of 501 out of
2,596 sPeptides identified by Ribo-seq and MS were encoded
by sORFs annotated in the reference genome (Figure 4A).
Based on the expression of the sPeptides quantified by Ribo-
seq, we clustered 501 genes into three groups (Figure 4B).
Furthermore, the translatomic abundance of 501 sPeptides

was positively correlated with that of their host genes
(Supplementary Figure 2D), suggesting that sPeptides might
function by orchestrating parental gene expression.

To explore the potential functions of sPeptides, we performed
the GO enrichment analysis for the three parental gene sets
that correspond to the three different sPeptide groups. Group
I parental genes were significantly enriched in the RNA
splicing process (Supplementary Figure 2A). Zm00001d010461,
Zm00001d042725, and Zm00001d024593, enriched in the GO
term “RNA splicing,” are annotated to encode small nuclear
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FIGURE 4 | Functional annotation of sPeptides in maize. (A) Gene-derived sPeptides were identified by the intersection between annotated genes and sPeptides in

this study. (B) Gene-derived sPeptides classified different tissues and clustered them into three groups based on their expression patterns. (C,D) Translatome

abundance variation of sPeptides Zm00001d010461_T001 (C) and Zm00001d013642_T001 (D) across different tissues shows a high correlation with that of their

parental canonical protein-coding gene. (E) Proteome abundance of sPeptides across different tissues from Group III.

ribonucleoprotein family-like (LSM) proteins. Generally, LSM
proteins are associated with development, response to stress,
and abscisic acid signaling via mRNA splicing and processing
in Arabidopsis (Xiong et al., 2001; Perea-Resa et al., 2012;
Golisz et al., 2013; Cui et al., 2014; Okamoto et al., 2016).
The abundance of the sPeptide, Zm00001d010461_T001 varied
dramatically in different tissues and showed a highly positive
correlation with the expression of Zm00001d010461 (R = 1, p <

1e-04) (Figure 4C). Therefore, we speculated that the sPeptide,
Zm00001d010461_T001 could function in stress tolerance and
development in maize.

For the second group of parental genes, the GO enrichment
showed that these genes are related to organonitrogen
compound biosynthetic and metabolic processing
(Supplementary Figure 2B). Nitrogen is essential for plant
growth and development and is also helpful for tolerance against
biotic and abiotic stresses (Oh et al., 2017; Zipfel and Oldroyd,
2017; Arora et al., 2020). Notably, Zm00001d034602 is annotated
to function in the organonitrogen compound metabolic process,
and its abundance in the translatome was significantly associated
with that of the sPeptide Zm00001d034602_T001 (Figure 4D).
AT2G22425, the ortholog of Zm00001d013642 in Arabidopsis,
was reported to function in signal peptide processing during
Cabbage leaf curl virus infection, indicating that the sPeptide
Zm00001d013642_T001 may be involved in pathogen response

through organonitrogen compound biosynthetic and metabolic
processing (Ascencio-Ibáñez et al., 2008).

The sPeptide parental genes in Group III were uniformly
expressed across different tissues and showed high abundance at
both the translatome and proteome levels (Figures 4B,E). These
genes are mainly enriched in translation and peptide biosynthetic
processes (Supplementary Figure 2C). Nine genes with the most
significant GO enrichment of translation are annotated as
“subunit of ribosome and translation-regulatory factors.” These
peptides are likely to participate in the fundamental biological
pathways and affect multiple agronomic traits.

DISCUSSION

As a new frontier in the study of molecular players in life science,
sORFs and sPeptides have been reported to be involved in several
biological processes in plants. In this study, we collected RNA-
seq, Ribo-seq, andMS data from six tissues of the maize reference
inbred B73 with two replicates and performed a genome-wide
de novo scan of translational elements using the RiboCode
software (Xiao et al., 2018). We extracted ORFs encoding
peptides with length ranging from 2 to 100 aa and identified
9,388 sORFs potentially encoding sPeptides. Then, we confirmed
over 2,000 sPeptides by searching against MS data. Comparison
of sORFs/sPeptides with canonical proteins demonstrated the
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distinct features of these non-canonical molecules. Finally, the
functional GO analyses indicated that these sPeptides are likely
to be involved in the response to abiotic stress and plant
development (Couso and Patraquim, 2017). This study presents a
biological pipeline combining multi-omics data for the genome-
wide scan of sORFs and sPeptides in maize, which paves the way
for further functional study of sPeptides in maize.

A Robust Bioinformatics Pipeline for the
Genome-Wide Scan sORFs and sPeptides
Combining Multi-Omics Data of RNA-Seq,
Ribo-Seq, and MS
lncRNAs have a low probability of encoding proteins and are
more likely to encode sPeptides. lncRNAs have been widely
uncovered by RNA-seq in maize (Li et al., 2014). The sORFs or
sPeptides are detected by the bioinformatics analyses solely based
on RNA-seq data lack representation at the translatome level.
Ribosome profiling (Ribo-seq), an RNA sequencing technique
focused on the translatome, has been developed and used to
monitor translation in real-time during protein biosynthesis
(Ingolia et al., 2009). Since ribosomes directly decipher mRNA
every three nucleotides, the periodic feature of ribosome
footprints can be used to examine unannotated ORFs (Calviello
et al., 2016; Hsu et al., 2016). Therefore, sORFs potentially
encoding peptides that may not be detected by proteomics-
based methods could be uncovered by combining ribosome
profiling and bioinformatics analyses (Couso and Patraquim,
2017; Olexiouk et al., 2018; Ruiz-Orera and Albà, 2019).

Due to the presence of reads from the elongating and
initiating stage in Ribo-seq experiments, non-AUG start site
prediction becomes difficult and false-positive results are
introduced (Olexiouk et al., 2018). Wang et al. generated
an integrated proteomic pipeline using high-throughput MS
to probe a customized six-frame translation database and
applied it to a large-scale detection of non-conventional
peptides in plants (Wang S. et al., 2020). In total, 1,993 and
1,860 non-conventional peptides were identified in maize and
Arabidopsis, respectively. However, limited by the systematic
error of the technology, in which proteins with higher
abundance or larger size have better chances of being
detected by the MS, the approaches used to identify peptides
based on their mass spectra are likely to have high rates
of false negatives (Slavoff et al., 2013; Olexiouk et al.,
2018).

Thus, we generated a pipeline for the genome-wide scan
of sORFs and sPeptides in maize combining sensitive and
real-time Ribo-seq monitoring data as well as less-sensitive
but direct MS data. In this study, the annotated sORFs
had the highest verification ratio (Figure 3C), which may be
associated with the fact that annotated sORFs generally have
longer length than the other types of sORFs (Figure 2B).
The corresponding peptides of annotated sORFs are more
easily identified by the MS because of their larger molecular
mass. We confirmed 2,695 sPeptides by the MS, which
accounted for 28.71% of all identified sORFs (9,388). Therefore,
Ribo-seq provides an unprecedented chance to detect more

potential sPeptides likely with low abundance or smaller relative
molecular mass that are difficult to detect by the proteomics-
based methods.

To further validate the capacity of pipeline of authors to
detect sPeptides, we downloaded and analyzed the MS data from
the previous study which identified non-conventional peptides
in maize-based on a peptidogenomic method (Wang S. et al.,
2020). All sORFs identified from the Ribo-seq data of six
different maize tissues were searched against the downloaded
MS data that were obtained only from maize leaves at the
V3 stage, and 158 sORFs showed peptides evidence. Of these
validated sORFs by Wang’s MS data, 66 sORFs were also verified
in the total MS data (Supplementary Figure 3). Although the
number and types of tissues are different, there is a proportion
of overlapped sPeptides (∼42%) between this study and the
previous study based on the non-digestion MS data, reflecting
a certain degree of reliability in pipeline of authors. Moreover,
the sPeptides, identified in this study, are complementary
to previous studies to extend the knowledge of sPeptides
in maize.

Potential Functional Roles of sPeptides
Numerous studies have reported that small secreted peptides
are involved in different physiological processes including plant
growth, development, reproduction, and stress responses (De
Coninck and De Smet, 2016). Cysteine-rich peptides, a type of
signal peptide, play important roles in developmental patterning
as well as in plant–pathogen responses and symbiosis (Hemu
et al., 2018). Based on a proteomics method, 1,993 unannotated
peptides were identified in maize leaves, which were significantly
enriched in regions identified from genome-wide association
studies of agronomic traits and appear to be under domestication
selection (Wang S. et al., 2020). Thus, the sPeptides identified
in this study are likely to function in multiple pathways
in maize.

Based on the expression patterns between tissues, the
501 gene-locus-encoded sPeptides annotated in the reference
genome and verified by the MS were clustered into three
groups through a hierarchical clustering algorithm (Figure 4B).
Genes in Group I were significantly enriched in the pathway
related to mRNA splicing and processing. A large number of
studies reported that alternative splicing plays vital roles in
growth, development, and responses to stress (de Francisco
Amorim et al., 2018; Szakonyi and Duque, 2018; Li et al.,
2021). In this study, the sPeptide-associated parental genes,
Zm00001d010461, Zm00001d042725, and Zm00001d024593,
which are annotated as LSM protein family genes, belong to
Group I. In Arabidopsis, LSM proteins participate in mRNA
splicing and degradation and thus regulate the development
and tolerance to stress (Perea-Resa et al., 2012; Golisz et al.,
2013; Cui et al., 2014; Okamoto et al., 2016). Moreover, SAD1,
encoding a polypeptide similar to multifunctional LSM proteins,
modulates abscisic acid signal transduction and biosynthesis
in Arabidopsis through mRNA metabolism (Xiong et al.,
2001). The second group (Group II) of sPeptide parental
genes was enriched in organonitrogen compound biosynthetic
and metabolic processes (Supplementary Figure 2B). Signal
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molecules, such as reactive oxygen species, calcium, reactive
nitrogen species, salicylic acid, and ethylene, are important
in plant development and pathogen infection (Oh et al.,
2017; Zipfel and Oldroyd, 2017). The form of nitrogen,
such as nitrate or ammonium, plays a vital role in the
production of these signal molecules (Oh et al., 2017; Arora
et al., 2020). The parental genes of the Group II sPeptide,
Zm00001d013642_T001 and Zm00001d013642, were annotated
in “organonitrogen compound metabolic processing,” and its
ortholog AT2G22425 was differentially expressed in Cabbage leaf
curl virus-infected Arabidopsis leaves (Ascencio-Ibáñez et al.,
2008). These results imply that Zm00001d013642_T001 may be
involved in signal transduction during the pathogen response
through organonitrogen compound biosynthetic and metabolic
processes. The last group (Group III) of genes were uniformly
expressed in different tissues and with relatively high abundance
at the translatome level (Figure 4B). There were nine sPeptide
parental genes annotated as “subunit of translation start and
elongation factors” in Group III. Overall, sPeptides might
participate inmultiple pathways in differentmanners to influence
the plant life cycle.

Precursors of miRNAs May Encode
sPeptides
Some lncRNAs and circular RNAs were detected in vivo with
evidence for the production of peptides in the shotgun MS
data (van Heesch et al., 2019), which implies that non-coding
transcripts are likely to play both coding and non-coding
roles. A previous study reported that microRNAs (miRNAs)
are capable of encoding peptides through the transcripts of
their corresponding precursors (Chen et al., 2020). Primary
miRNAs have been reported to encode regulatory peptides in
Arabidopsis, grapevine (Vitis vinifera), soybean (Glycine max),
and Medicago sp.; these peptides are named miRNA-encoded
peptides (miPEPs) (Ren et al., 2021). For example, miPEP171d1
plays a regulatory role in adventitious root formation and
response to stress in plants (Ma et al., 2014; Gao et al., 2019; Chen
et al., 2020).

In this study, we aligned the aa sequences of identified
sPeptides against the reference sequences of the precursors of
miRNAs using BLAST+ (version 2.7.1). Two sPeptides validated
by the MS are encoded by pre-miRNAs: ENSRNA049997513-T1
and ENSRNA049997089-T1. In a previous study, zma-miR159d,
the mature product of ENSRNA049997513-T1, was predicted
to target genes encoding MYB transcription factors (Samad
et al., 2017). Moreover, zma-miR159d was found to be involved
in the degradation of chlorophyll that induced earlier leaf
senescence between different maize inbred lines (Wu et al., 2016).
Considering the evidence of their translatome and proteome
study, we speculated that zma-miR159d could produce a
sPeptide. The other sPeptide is encoded by ENSRNA049997089-
T1, which is the primary transcript of zma-MIR2275d. zma-
MIR2275, with a maximum expression in the fertile maize

anther, plays an important role in anther development and
thereby influencingmale reproduction inmaize (Zhai et al., 2015;
Huang et al., 2019). Furthermore, zma-miR2275 also affects the
drought tolerance by directly targeting drought-related mRNAs.
The identification of the sPeptide encoded by the pre-miRNA
ENSRNA049997089-T1 provides a perspective on the manner of
zma-MIR2275 function as a regulator of development and stress
tolerance in maize.
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