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Kernel moisture content at the harvest stage (KMC) is an important trait that affects

the mechanical harvesting of maize grain, and the identification of genetic loci for KMC

is beneficial for maize molecular breeding. In this study, we performed a multi-locus

genome-wide association study (ML-GWAS) to identify quantitative trait nucleotides

(QTNs) for KMC using an association mapping panel of 251 maize inbred lines that were

genotypedwith an Affymetrix CGMB56K SNPArray and phenotypically evaluated in three

environments. Ninety-eight QTNs for KMC were detected using six ML-GWAS models

(mrMLM, FASTmrMLM, FASTmrEMMA, PLARmEB, PKWmEB, and ISIS EM-BLASSO).

Eleven of these QTNs were considered to be stable, as they were detected by at least

four ML-GWAS models under a uniformed environment or in at least two environments

and BLUP using the same ML-GWAS model. With qKMC5.6 removed, the remaining

10 stable QTNs explained <10% of the phenotypic variation, suggesting that KMC is

mainly controlled by multiple minor-effect genetic loci. A total of 63 candidate genes were

predicted from the 11 stable QTNs, and 10 candidate genes were highly expressed in

the kernel at different time points after pollination. High prediction accuracy was achieved

when the KMC-associated QTNswere included as fixed effects in genomic selection, and

the best strategy was to integrate all KMC QTNs identified by all six ML-GWAS models.

These results further our understanding of the genetic architecture of KMC and highlight

the potential of genomic selection for KMC in maize breeding.

Keywords: maize (Zea mays L), kernel moisture content, multi-locus genome-wide association study, quantitative

trait nucleotide, candidate gene, genomic selection

INTRODUCTION

Kernel moisture content at the harvest stage (KMC) is one of the important traits that influence
maize mechanical harvesting, especially in high latitude areas (Sala et al., 2012; Li et al., 2017). Since
the 1970s, many developed countries, such as the United States and Germany, have achieved fully
mechanical harvesting of maize. By contrast, other countries, like China, have not yet implemented
mechanical harvesting, primarily due to a lack of suitable maize varieties (Liu et al., 2013). The high
KMC of currently used maize varieties restricts mechanical harvesting and represents the major
barrier to maize development in China (Zhou et al., 2016, 2020; Li et al., 2017). Therefore, the
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genetic improvement of KMC and the breeding of elite varieties
with low KMC is a major goal for maize breeders in China.

The loss of maize kernel moisture occurs in two phases.
The first phase lasts from pollination to kernel physiological
maturity. During this phase, water in the kernel is replaced with
carbohydrates, oils, proteins, etc., and the moisture of the kernel
is highly dependent on its own physiological characteristics;
this is called the physiological dehydration stage. The second
phase lasts from physiological maturity to harvest. During this
phase, the change in kernel moisture is primarily caused by
moisture evaporation into the air and is thus readily influenced
by environmental factors and other agronomic traits; this is
known as the field dehydration stage (Brooking, 1990; Reid et al.,
2010). Rapid rates of kernel filling and field dehydration are
marked features of maize varieties with low KMC (Johnson and
Tanner, 1972; Sala et al., 2006). Fewer husk layers as well as
shorter and lighter husks are associated with greater loss of kernel
moisture after physiological maturity (Reid et al., 2010; Li et al.,
2016; Zhou et al., 2018). In addition, moisture from the kernels
can be transported to other plant parts through the cob and stem
in response to water potential differences (Zhou et al., 2018).

Previous studies have revealed that KMC is controlled by
numerous quantitative trait loci (QTLs), and hundreds of QTLs
for maize KMC have been identified (Beavis et al., 1994;
Melchinger et al., 1998; Austin et al., 2000; Ho et al., 2002;
Mihaljevic et al., 2004, 2005; Blanc et al., 2006; Sala et al., 2006;
Frascaroli et al., 2007; Capelle et al., 2010; Kebede et al., 2016;
Song et al., 2017; Zhou et al., 2018; Liu et al., 2020; Yin et al.,
2020b; Zhang et al., 2020; Li et al., 2021). Using meta-analysis, 44
and 34meta-QTLs for KMCwere identified by Xiang et al. (2012)
and Sala et al. (2012), respectively. Liu et al. (2020) narrowed a
major QTL for KMC (qGwc1.1) to a 2.05-Mb genomic region
on chromosome 1 using a recombinant-derived progeny test.
Li et al. (2021) cloned a gene (gar2-related nucleolar protein,
GAR2) for KMC on maize chromosome 7. Yin et al. (2020b)
identified seven QTLs for KMC using multiple-environment
analysis and revealed that the interactions between QTLs and
the environment were larger than their additive effects. Zhou
et al. (2018) detected five QTLs for KMC through a mixed
linear model (MLM) of single-locus genome-wide association
study (SL-GWAS).

The Bonferroni correction for multiple tests is frequently used
in SL-GWAS to reduce spurious associations, and this results in
the elimination of some positive loci with small effects. Multi-
locus GWAS (ML-GWAS), an alternative GWAS method, was
developed to address this issue; it considers the information
from all markers simultaneously and does not require a
multiple testing correction. ML-GWAS has been shown to have
higher power and accuracy for the detection of quantitative
trait nucleotides (QTNs) in maize. Zhang et al. (2018) used
four ML-GWAS methods (mrMLM, FASTmrEMMA, ISIS EM-
BLASSO, and pLARmEB) to identify QTNs for three stalk
lodging resistance-related traits in maize and reported that the
methods were reliable and complementary. Xu et al. (2018)
compared one SL-GWAS method (GEMMA) and three ML-
GWAS methods (FASTmrEMMA, FarmCPU, and LASSO) for
the genetic detection of maize starch pasting properties, and

more QTNs were detected by individual ML-GWAS methods
than by the SL-GWAS method. An et al. (2020) used one SL-
GWAS method (MLM) and six ML-GWAS methods (mrMLM,
FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS
EMBLASSO) to dissect the genetic architecture of maize kernel
row number. The largest number of QTNs were identified with
the mrMLM method, and the most co-detected QTNs were
identified with ISIS EM-BLASSO.

Given the lack of large-effect QTLs, the use of marker-
assisted selection (MAS) for KMC is not ideal in maize breeding
programs, and it is necessary to incorporate far more markers.
Genomic selection (GS), an upgraded form of MAS, aims to use
genetic effects of genome-wide molecular markers to estimate
the genomic estimated breeding value (GEBV) of individuals
based on optimum statistical models (Meuwissen et al., 2001).
This approach has been considered most promising for the
genetic improvement of complex traits controlled by multiple
genes with minor effects (Wang X. et al., 2018; Xu et al., 2020).
Controlling costs by using fewer markers while still achieving
accurate predictions for complex quantitative traits remains a
challenge (Xu et al., 2020). Recently, several studies reported
that taking association markers for interesting traits detected by
GWAS into account and including them as fixed effects in GS
models resulted in higher accuracy than that achieved with GS
models using genome-wide markers (Spindel et al., 2016; Qin
et al., 2019; Ravelombola et al., 2019; An et al., 2020; Sehgal et al.,
2020).

In this study, we used 251 maize inbred lines that were
genotyped using an Affymetrix CGMB56K SNP Array and
phenotypically evaluated in three field trials to (i) identify
significant QTNs for KMC using ML-GWAS, (ii) predict
candidate genes associated with KMC, and (iii) explore the
potential of GS for KMC in maize.

MATERIALS AND METHODS

Plant Material and Field Experiments
An association mapping panel of 251 diverse maize
inbred lines was used as the plant material in this study
(Supplementary Table 1).

The field experiments were performed in three environments
in 2020: Nantong, Jiangsu Province (NT, 120◦E, 31◦N), which
is in mid-eastern China and has an average temperature of
15.1◦C and an average rainfall of 1,040mm per year; Xinxiang,
Henan Province (XX, 113◦E, 35◦N), which is in the middle of
China and has an average temperature of 15.5◦C and an average
rainfall of 573.4mm per year; and Sanya, Hainan Province (SY,
108◦E, 18◦N), which is in southern China and has an average
temperature of 25.7◦C and an average rainfall of 1,347mm per
year. Each line was grown in single rows, which were 3m
in length and spaced 0.6m apart, thereby giving a planting
density of 65,000 plants/ha. The trial followed a randomized
complete block design with two replicates per environment. The
agronomic management of the field experiments was the same in
the three environments.
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Phenotypic Evaluation and Data Analysis
As described in our previous study (Zhou et al., 2018), before the
experimental treatment, the physiological maturity of each line
was evaluated in the field. According to their growth periods,
the 251 maize inbred lines were sown on three separate dates
to obtain similar physiological maturity in each environment
(Supplementary Table 1). In NT, they were planted on the 22nd,
26th, and 30th of March, and the harvest stage was adjusted to
between the 24th and 26th of July. In XX, they were planted on
the 1st, 5th, and 9th of June, and the harvest stage was adjusted to
between the 26th and 28th of September. In SY, they were planted
on the 14th, 18th, and 22nd of November, and the harvest stage
was adjusted to between the 5th and 7th of the following March.
The ears were bagged before silking, and artificial pollination
was performed at the same time for each line. The KMC for 6–
8 uniformly growing plants in the middle of rows was measured
using a hand-held moisture meter. At 10 days after physiological
maturity, the KMC of each plant was recorded one time at the
middle part of the ear.

The phenotypic data were analyzed using R version 3.6.3
for Windows (https://www.r-project.org/). Analysis of variance
(ANOVA) of KMC was performed using lmer function of the
lme4 package based on the following model: yijk = µ + Gi + Ej

+ GEij + Rjk + eijk, where yijk is the KMC on the ith genotype in

the jth environment and kth replication, µ is the grand mean over
all environments, Gi is the genotypic effect of the ith genotype,
Ej is the environmental effect of the jth environment, GEij is the

genotype × environment interaction effect of the ith genotype
and jth environment, Rjk is the effect of the k

th replication in jth

environment, and eijk is the residual error. The trait heritability

(H2) was estimated following Knapp et al. (1985): the individual
environment H2 (%) = σ

2
g/(σ

2
g +σ

2
e /r)×100%, and the multiple

environmentsH2 (%)= σ
2
g/(σ

2
g+σ

2
ge/n+σ

2
e /nr)×100%, where σ

2
g

is the genotypic variance, σ2ge is the variance for the interaction

of genotype with environment, σ2e is the error variance, n is the
number of environments, and r is the number of replications. To
minimize the effects of the environment, the best linear unbiased
prediction (BLUP) for KMC across the three environments was
estimated using the lmer function of the lme4 package with the
same ANOVA model. The normal distribution test (W-value) of
KMC in each environment was estimated using the Shapiro.test
function of the stats package.

Genotyping, Population Structure, Linkage
Disequilibrium, and Relative Kinship
Genotypes of the 251 maize inbred lines were evaluated using
an Affymetrix CGMB56K SNP Array, which contains 56,000
single nucleotide polymorphisms (SNPs) and is made by China
Golden Marker (Beijing) Biotech Co., Beijing, China. After
quality control, 32,853 SNPs with minor allele frequencies >5%
and missing data <20% were used for subsequent analysis. The
genotypic data can be downloaded from the website https://pan.
baidu.com/s/1_V0fm7hsxNdMbyYzciQsWg.

Population structure was assessed using STRUCTURE 2.3
(Pritchard et al., 2000). The number of subpopulations (K) was

set from 1 to 10 with five independent runs for eachK. Both burn-
in periods and Markov chain Monte Carlo replication number
were set at 100,000 in each run under the admixture model.
The K value was estimated by the log likelihood of the data
[LnP(D)] and an ad hoc statistic 1K, based on the rate of change
of LnP(D) between successiveK values (Evanno et al., 2005). Nei’s
genetic distance (Nei, 1972) was calculated and used to construct
a neighbor-joining tree with MEGA-X software (Kumar et al.,
2018). The linkage disequilibrium (LD) parameter r2 between
pairwise SNPs was calculated with PLINK (Purcell et al., 2007),
which window size was set at 1,000 kb and r2 was set at 0.2.
The relative kinship matrix of the 251 lines was computed using
SPAGeDi 1.3 (Hardy and Vekemans, 2002) with negative values
between two individuals set to zero.

Multi-Locus Genome-Wide Association
Study
ML-GWAS was conducted using the mrMLM package
(https://cran.r-project.org/web/packages/mrMLM/index.
html), including six statistical models: mrMLM (Wang et al.,
2016), FASTmrMLM (Tamba and Zhang, 2018), FASTmrEMMA
(Wen et al., 2018), pLARmEB (Zhang et al., 2017), pKWmEB
(Ren et al., 2018), and ISIS EM-BLASSO (Tamba et al., 2017).
The mrMLM is a multi-locus model including markers selected
from the random-SNP-effect MLM with a less stringent selection
criterion (Wang et al., 2016). The FASTmrMLM is relatively
faster with higher statistical power and accuracy in estimating
QTNs as compared to mrMLM (Tamba and Zhang, 2018).
The FASTmrEMMA combines the MLM and the expectation
maximization empirical Bayesmethod. The pLARmEB integrates
least angle regression with empirical Bayes (Zhang et al., 2017),
while the pKWmEB integrates Kruskal-Wallis test with empirical
Bayes (Ren et al., 2018). The ISIS EMBLASSO can detect
significant associations with highest robustness and accuracy as
compared to mrMLM and FASTmrEMMA (Tamba et al., 2017).
Default values were used for all parameters, and the threshold
of logarithm of odds (LOD) ≥ 3 (or P ≤ 0.0002) was selected
to determine significant QTNs (Zhang et al., 2019). To confirm
the efficiency of ML-GWAS, one widely used SL-GWAS method,
MLM, was conducted using TASSEL 5.0 (Bradbury et al., 2007),
controlling for population structure and kinship. The threshold
was also set at P ≤ 0.0002 [-log10(P) ≥ 3.70].

Two types of QTNs were defined as stable QTNs. One is
model-stable QTN (msQTN), which is identified by at least four
ML-GWAS models under a uniformed environment, another
is environment-stable QTN (esQTN), which is identified by
in at least two environments and BLUP using the same ML-
GWAS model.

Candidate Gene Analysis
Based on the B73 reference genome v4 (https://www.maizegdb.
org/gbrowse), the available genes within regions from 100 kb
upstream to 100 kb downstream (LD of the association mapping
panel) around the stable QTNs were regards as candidates.
Candidate gene annotation was performed at NCBI (https://
www.ncbi.nlm.nih.gov/). Expression data for candidate genes
were collected from qTeller (https://qteller.maizegdb.org/).
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Genomic Selection
GS was performed using the ridge regression best linear unbiased
predictor (rrBLUP) model (Meuwissen et al., 2001) in rrBLUP
package of R software (Endelman, 2011). The rrBLUP model
(model 1) was: yi = µ +

∑p

k=1
xikβk + εi, where yi is the

predicted phenotype of ith individual, µ is the grand mean, xik is
the genotype at the kth marker of the ith individual, p is the total
number of markers (i.e., 32,853 high quality markers from the
Affymetrix array), βk is the estimated random additive marker
effect of the kth marker, and εi is the residual error. To improve
the prediction accuracy, the significant markers identified byML-
GWAS were included as fixed effects in the following model
(model 2): yi = µ+

∑m
j=1 xikαj+

∑p

k=1
xikβk+εi, wherem is the

number of significant markers identified ML-GWAS considered
as fixed effect covariates, αj is the fixed additive effect of the jth

marker, and the remaining terms are the same as those described
in model 1. Twelve sets of markers were included as fixed
effects in model 2: the significant markers identified by mrMLM,
FASTmrMLM, FASTmrEMMA, pLARmEB, pKWmEB, and ISIS
EM-BLASSO; the markers identified by at least two, three, four,
five, or six models; and all significant markers identified by all
six models.

Prediction accuracy was evaluated using 5-fold cross
validation with 100 iterations. In brief, the association panel
was randomly divided into five equal subsets; four subsets were
regarded as the training population, and the remaining set
was considered to be the testing population. The prediction
accuracy was defined as the coefficient of determination between
the predicted and the observed values based on the linear
regression analysis.

RESULTS

Population Structure, Linkage
Disequilibrium, and Relative Kinship
STRUCTURE software was used to calculate the Bayesian
clustering from K = 1 to 10 with five independent runs for each
K. The LnP(D) values increased as K increased from 1 to 10
without an obvious inflection point, and1K reached its peak atK
= 6 (Figure 1A), suggesting that this association mapping panel
could be divided into six subgroups (Figure 1B). A neighbor-
joining tree was constructed based on Nei’s genetic distance, and
it showed six main clusters for this panel (Figure 1C), consistent
with the STRUCTURE results.

The six subpopulations were designated PA, PB,
Tangsipingtou (TSPT), Lancaster (LAN), BSSS, and X
(Supplementary Table 1). Subgroup PA, including 45 inbred
lines, tended to be improved Reid lines, such as Zheng 58 and
Ye478. Subgroup PB, including 45 inbred lines, derived mainly
from hybrid 78599 and included Qi319, ND1145, etc. Subgroup
TSPT, including 74 inbred lines, consisted mainly of inbred lines
such as Huangzaosi and Chang7-2. Subgroup LAN, including
15 inbred lines, contained the representative inbred line Mo17.
Subgroup BSSS derived from the synthetic variety BSSS and
included 44 inbred lines; its representative inbred line was B73.

Subgroup X, including 28 inbred lines, derived mainly from
hybrid Xianyu335 that is widely cultivated in China.

LD decayed differently in the 10 chromosomes; chromosome
7 had the most rapid decay rate, and chromosome 4 had the
slowest. The average LD decay distance across all chromosomes
was ∼100 kb, where the LD parameter (r2) dropped to half of
its maximum value (Figure 2A). The average pairwise relative
kinship value was 0.076. Pairwise relative kinship values of 0
accounted for 64.64% of all kinship values, values from 0 to 0.2
accounted for 88.03%, and values >0.5 accounted for only 4.07%
(Figure 2B). This result revealed that the 251 inbred lines used in
this study were distantly related.

Phenotypic Variation in KMC
Descriptive statistics for KMC are presented in Table 1. KMC
showed abundant variation among the 251 lines in each
environment and was positively correlated among the different
environments (Figure 3). The KMC in each environment
approximately fitted a normal distribution with small skewness
and kurtosis and high W-value (P > 0.05) (Table 1; Figure 3),
suggesting that KMC was controlled by multiple genetic
loci in this association mapping panel. ANOVA showed
that the environment exerted significant influence on KMC
(Supplementary Table 2), and the heritability was high (67.36–
75.86%) (Table 1).

Based on the BLUP values across the three environments, 11
of the 251 lines showed low KMC (below 27% moisture) (ID:
110, 111, 114, 131, 188, 209, 235, 242, 246, 247, and 249), and
these are marked in bold in Supplementary Table 1. Fifty-five
lines showed high KMC (above 40%), and the remaining lines
showed moderate KMC (Supplementary Table 1). There was a
significant difference in KMC among the six subpopulations; the
KMC of subgroup X was the lowest, and that of subgroup PA was
the highest (Figure 4A).

Multi-Locus Genome-Wide Association
Study of KMC
A total of 98 QTNs were detected in NT, XX, SY, and BLUP
across all environments by the six ML-GWAS models, and each
explained 0.67–26.96% of the phenotypic variation in KMC
(Supplementary Table 3). Thirty-eight, 35, 23, 27, 34, and 39
QTNs were detected by mrMLM (Supplementary Figure 1),
FASTmrMLM (Supplementary Figure 2), FASTmrEMMA
(Supplementary Figure 3), PLARmEB, PKWmEB
(Supplementary Figure 4), and ISIS EM-BLASSO, respectively.
However, only 7 QTNs were detected in NT, XX, SY, and
BLUP across all environments by the SL-GWAS model (MLM)
(Supplementary Figure 5; Supplementary Table 3). Expect for
qKMC7.4, the remaining 6 QTNs were overlapped with those
from ML-GWAS models.

Among 98 QTNs, 44, 27, 16, 7, and 4 QTNs were co-detected
by at least two, three, four, five, or six ML-GWAS models,
respectively. 25, 25, 32, and 42 were detected in NT, XX, SY,
and BLUP, respectively. However, no QTN was detected in three
environments and BLUP, and only three QTNs (qKMC2.15,
qKMC6.1, and qKMC8.2) were detected in two environments
and BLUP.
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FIGURE 1 | Population structure analysis of 251 maize inbred lines. (A) Estimated 1K and LnP(D) in the STRUCUTRE analysis. (B) Neighbor-joining tree of 251 maize

inbred lines. (C) The Bayes cluster plot of 251 maize inbred lines when K = 6.

FIGURE 2 | Linkage disequilibrium across the 10 chromosomes (A) and pairwise relative kinship for 251 maize inbred lines (B).

Eleven QTNs were considered to be stable; these
were distributed on chromosomes 1, 2, 3, 5, 6, 7, 8,
and 10 (Table 2). Among the 11 stable QTNs, 11 were
msQTNs, 1 was esQTNs, and 1 (qKMC2.15) was common

between msQTNs and esQTNs. Seven of them overlapped
previously reported genomic regions, and the remaining
four were putatively novel loci. Only one QTN, qKMC5.6,
accounted for more than 10% of the phenotypic variation
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TABLE 1 | Phenotypic performance, variance component and heritability of KMC.

Env. a Mean ± SDb (%) Range (%) Skewness Kurtosis W-value σ
2c
g σ

2d
ge H2(%)e

Nantong 34.74 ± 6.23 18.63–51.13 −0.15 −0.17 0.99 25.60** 67.36

Xinxiang 35.30 ± 8.60 10.63–52.13 −0.29 −0.29 0.99 52.11** 70.42

Sanya 38.33 ± 8.03 18.42–53.83 −0.56 −0.42 0.97 44.63** 69.73

BLUP 36.12 ± 4.79 21.14–47.31 0.19 −0.42 0.99 30.20** 9.63** 75.86

aEnvironment.
bStandard deviation.
cVariance of genotype.
dVariance of genotype × environment.
eHeritability.

**Significant at P < 0.01.

(12.41–23.27%), and it may be a major genetic locus
for KMC.

Candidate Genes for KMC
According to the LD in this association panel (Figure 2A),
63 candidate genes were identified in 100 kb upstream and
downstream of the 11 stable QTNs, and their expression in
the kernel varied widely among 11 time points after pollination
(Supplementary Table 4). Ten of these genes showed high
expression (FPKM ≥ 20), which were marked in bold in
Supplementary Table 4, suggesting that they may take part in
the loss of kernel moisture. Nine of the genes encode proteins
with assigned functions in multiple biological pathways, and the
remaining gene encodes a protein of unknown function.

Favorable Allele Mining
Based on the BLUP values across the three environments,
the favorable alleles of 98 QTNs were mined
(Supplementary Table 5). The inbred line ID. One hundred and
ten harbors the most favorable alleles (69), and the inbred lines
ID. Twenty one harbors the smallest favorable alleles (21). At
group level, we found a significant negative correlation between
the KMC and the number of favorable alleles in each inbred line
(R2 = 0.68, slope = −0.41, intercept = 53.17, P < 0.001) using
the linear regression analysis, indicating that pyramiding of
these favorable alleles could reduce KMC effectively. There was
a significant difference in number of favorable alleles among the
six subpopulations; the number of favorable alleles of subgroup
X was the most (48), and that of subgroup PA was the smallest
(32) (Figure 4B).

Genomic Selection of KMC
The average prediction accuracy was 0.12, 0.11, 0.13, and 0.17
in NT, XX, SY, and BLUP, respectively, when all 32,853 markers
across the entire genome were included in model 1 (Table 3).
To obtain optimal prediction accuracy, 12 different marker sets
were included as fix effects in model 2. A significant increase
in prediction accuracy was obtained when ML-GWAS-derived
markers were used: the prediction accuracies based on markers
detected by individual ML-GWAS model were almost the same
and were approximately 0.34 in NT, 0.53 in XX, 0.29 in SY, and
0.59 in BLUP (Table 3). When all significant markers detected by
all six ML-GWAS models were incorporated into the GS model,

the prediction accuracy was highest: 0.54 in NT, 0.64 in XX, 0.58
in SY, and 0.76 in BLUP (Table 3).

To explore whether using QTNs co-detected in multiple ML-
GWASmodels could improve prediction accuracy, we conducted
GS using QTNs identified in at least two, three, four, five, or
six models. Use of the QTNs identified in at least two, three,
or four models maintain a relatively high prediction level, but
QTNs identified in five or six models provided slight advantage in
predicting KMC (Table 3). Seven QTNs were randomly selected
from the 44 QTNs identified in at least two models (repeated 5
times) to conducted GS, and the mean of prediction accuracy
was relatively low: 0.19 in NT, 0.15 in XX, 0.11 in SY, and
0.19 in BLUP, consistent with the results obtained by GS using
QTNs identified in at least five models. This may be due to the
smaller QTN numbers, which only explained a small fraction of
phenotypic variance.

DISCUSSION

In this study, the 251 maize inbred lines were sown at three dates
according to their growth periods, enabling us to measure KMC
of each line over similar periods in each environment. The hand-
held moisture meter was used to measure KMC, this is a reliable
method and has been reported to be useful for evaluating genetic
materials for QTL mapping (Sala et al., 2006; Kebede et al.,
2016) and GWAS (Zhou et al., 2018; Li et al., 2021). However,
we observed a significant genotype by environment interaction
and relatively low correlation coefficients (0.44–0.58) among
environments. This is typical because temperature, air humidity,
and rainfall are uneven across environments, suggesting that
genotype-by-environment interactions should be considered
during maize breeding. Despite this issue, our aim was to obtain
stable genetic loci that make a stable contribution to KMC. As
described by Zhang et al. (2019), QTNs identified by multiple
models are usually reliable when several ML-GWAS methods are
applied to the same dataset. To reduce false positive signals and
detect a set number of true positive loci, we considered two types
of QTNs to be stable, one is msQTN, which is identified by at
least four ML-GWAS models under an uniformed environment,
and the other is esQTN, which is identified by in at least two
environments and BLUP using the same ML-GWAS model.
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FIGURE 3 | The correlation and frequency distribution of KMC in three environments. The upper panel is correlation coefficients, and the lower panel is scatter plots.

The histogram represents the frequency distribution of the trait. ***the significance level at P < 0.001.

Ninety-eight QTNs were identified by six ML-GWAS
models in three environments and in BLUP across the three
environments; eleven were considered to be stable QTNs. Only
one QTN, qKMC5.6, explained more than 10% of the phenotypic
variation, consistent with previous studies in which KMC was
mainly controlled by numerousminor-effect genetic loci (Kebede
et al., 2016; Song et al., 2017). Of these stable QTNs, 7
were located in genomic regions reported by previous studies,
confirming the accuracy of QTN detection by ML-GWAS.
Five QTNs (qKMC1.4, qKMC1.5, qKMC2.15, qKMC5.6, and

qKMC10.1) were located in the meta-QTL regions estimated by
Xiang et al. (2012) and Sala et al. (2012). In addition, qKMC3.15
was located in the QTL regions reported by Yin et al. (2020b), and
qKMC5.15 overlapped with a QTL region identified by Li et al.
(2021). More importantly, four novel genetic loci for KMC were
identified in this study.

Candidate gene analysis of the stable QTNs is necessary
for further gene cloning and functional verification. To date,
only two genes underlying major QTLs for KMC have been
identified (Li et al., 2021). In this study, 63 candidate genes
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FIGURE 4 | Violin plot of (A) the KMC and (B) the number of favorable alleles for KMC in six subpopulations of this association mapping panel. Different letters

indicate significant difference at P < 0.001 estimated by Student’s t-test.

were identified surrounding the 11 stable QTNs. Among these
genes, 10 were highly expressed in the kernel at different time
points after pollination, suggesting that they may potentially
affect kernel water loss. We cannot accurately determine which
are causal genes associated with KMC based on the present
data. However, four of the candidate genes (Zm00001d028560,
Zm00001d005546, Zm00001d014742, and Zm00001d012439)
caught our attention.

Zm00001d028560, a candidate gene for qKMC1.5, encodes a
leucine-rich repeat protein kinase that has been suggested to
have an important role in signaling during pathogen recognition
(Romeis, 2001; Afzal et al., 2007). Its homologous Arabidopsis
gene, FEI 1, participates in cell wall elongation (Xu et al., 2008;
Basu et al., 2016). Interestingly, this gene was located in the
QTL regions for maize ear rot resistance identified by Butrón
et al. (2019), Martin et al. (2012), and Robertson-Hoyt et al.
(2007a). Previous studies have reported that KMC is negatively
correlated with resistance to maize ear rot (Robertson-Hoyt
et al., 2007b; Kebede et al., 2016). Moreover, Xiang et al. (2012)
reported 14 pleiotropic meta-QTLs associated with both ear
rot resistance and KMC in maize. These results suggest that
Zm00001d028560 may be simultaneously related to both KMC
and ear rot resistance in maize.

Zm00001d005546, a candidate gene for qKMC2.15, encodes
ADP-glucose pyrophosphorylase (AGPase), which provides the
nucleotide sugar ADP-glucose and thus constitutes the first step
in starch biosynthesis (Slattery et al., 2000; Comparot-Moss and
Denyer, 2009). During the maize kernel filling period, AGPase

activity and starch synthesis were significantly improved by
increasing AGPase expression (Ozbun et al., 1973; Li et al.,
2010). In addition, Zm00001d005546 is located in a QTL region
related to the maize kernel filling process identified by Yin
et al. (2020a). Kernel filling had a notable influence on kernel
drying rate before and after physiological maturity in maize (Jia
et al., 2020). Therefore, we hypothesize that high expression of
Zm00001d005546 may have promoted starch synthesis in the
kernel, increasing kernel filling rate, and thereby accelerating
kernel dehydration rate before physiological maturity. This may
have prolonged the field dehydration time of the kernel and
ultimately resulted in low KMC. This explanation also provides
a molecular hypothesis for the maize breeding phenomenon
in which a hybrid or inbred line with high kernel filling rate
generally has low KMC (Johnson and Tanner, 1972; Kang and
Zuber, 1989). More experiments are needed to elucidate the
function and mechanism of Zm00001d005546.

Zm00001d014742 encodes F-box domain protein and is a
candidate gene for the major QTN, qKMC5.6. Its homologous
Arabidopsis gene, AtSKIP31, involves in primary root growth
under nitrogen deficiency and regulates the nitrogen utilization
efficiencies (Hong et al., 2017). Nitrogen utilization efficiencies
are related to grain yield and maturation (Wang W. et al., 2018),
which have positive correlation with the KMC (Zhou et al.,
2018; Li et al., 2021). Zm00001d012439, a candidate gene for
the novel QTN, qKMC8.3, encodes histone H4, which may affect
gene transcription activity through histone modification (Heintz,
1991).
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TABLE 2 | Stable QTNs for KMC co-detected by at least four models under a uniform environment or in at least two environments and BLUP using the same ML-GWAS

model.

QTN Marker Chr. a Position (bp) LOD R2 (%)b Modelc Environmentd References

qKMC1.4 AX-86284737 1 38082648 5.06–9.07 3.14–7.37 1, 2, 3, 4, 5, 6 XX, BLUP Sala et al., 2012;

Xiang et al., 2012

qKMC1.5 AX-86259253 1 39246603 3.50–9.41 3.02–7.66 1, 2, 3, 4, 5, 6 NT, BLUP Sala et al., 2012;

Xiang et al., 2012

qKMC1.18 AX-86266353 1 297863807 4.69–6.06 3.13–7.16 1, 2, 4, 5 XX, BLUP

qKMC2.15 AX-116874459 2 178270600 5.15–7.42 2.19–6.23 1, 3, 4, 5, 6 NT, XX, BLUP Xiang et al., 2012

qKMC3.3 AX-86264182 3 5148837 4.69–7.95 3.46–9.74 1, 2, 4, 5, 6 XX, BLUP

qKMC3.15 AX-116872692 3 229667802 3.97–5.94 2.33–6.89 1, 2, 3, 4, 5, 6 XX, BLUP Yin et al., 2020b

qKMC5.6 AX-86314969 5 61236323 4.21–7.84 12.41–23.27 1, 2, 4, 5, 6 NT Xiang et al., 2012

qKMC5.15 AX-86282179 5 217125252 3.23–10.12 1.12–6.48 1, 2, 4, 6 NT, BLUP Li et al., 2021

qKMC6.7 AX-86294630 6 163230474 3.41–7.67 3.29–7.93 1, 3, 4, 6 SY

qKMC8.3 AX-86297230 8 174417551 3.09–5.97 2.45–3.89 2, 3, 4, 5 SY, BLUP

qKMC10.1 AX-86257470 10 10313586 3.19–9.60 1.86–9.81 1, 2, 3, 4, 5, 6 XX, BLUP Xiang et al., 2012

aChromosome.
bPhenotypic variation explained.
c1: mrMLM, 2: FASTmrMLM, 3: FASTmrEMMA, 4: PLARmEB, 5: PKWmEB, 6: ISIS EM-BLASSO.
dNT, Nantong; XX, Xinxiang; SY, Sanya; BLUP, best linear unbiased prediction.

In this study, 251 maize inbred lines were divided into six
subgroups, that was, PA, PB, TSPT, BASSS, LAN and X. Among
these six subgroups, Subgroup PA had highest KMC and the least
number of favorable alleles for the KMC, however, Subgroup PA
containedmultiple elite inbred lines, such as Ye478 and Zheng58,
and have played an important role in maize breeding in China
over the last 40 years (Li and Wang, 2010). Subgroup X had
lowest KMC and the greatest number of favorable alleles for
the KMC, and has being gradually applied in maize breeding
in China (Zhao et al., 2018). This phenomenon is mainly due
to the changes of maize breeding goals at different periods in
China. Before 2010, maize harvesting mainly relied on manual.
Farmers preferred to plant the varieties with large ear under
low density condition to ensure yield. Chinese maize breeders
increased yields by extending the growth period. Subgroup PA
had the characteristics of large ears and long growth period,
which was in line with the breeding goals at that time (Li and
Wang, 2010). Maize inbred line or hybrid with large ear and
long growth period tended to high KMC (Zhou et al., 2018; Li
et al., 2021). In recent years, with the development of agricultural
modernization, mechanical harvesting of grain is the developing
direction of maize production (Li et al., 2017). Chinese maize
breeders have increasingly concentrated on the KMC. Thus,
a new heterosis group, Subgroup X, was breed. Subgroup X
had short growth period and low KMC, which was suitable for
mechanical harvesting of maize grain (Zhao et al., 2018).

With advances in sequencing technology and reduction of
testing costs, GS has been widely implemented in plant breeding.
Fitting GS models need to face the fact that the number of
markers (p) far exceeds the number of individuals (n) (de los
Campos et al., 2013). Consequently, when a GS model that
considers the additive effect of each marker is fitted to such large
p and small n data, there will be an infinite number of maximum
likelihood estimates of these effects (Gianola, 2013). rrBLUP

incorporates all marker information to predict an individual
genomic estimated value while simultaneously implementing a
penalization function to restrict the values that each marker
predicted additive contributions can equal, which is an effective
model to overcome this issue (Meuwissen et al., 2001). In this
study, the p is 32,853, while the n is only 251. Thus, rrBLUP was
selected to conduct GS. When using 32,853 markers across the
entire genome, we obtained a lower prediction accuracy (0.11–
0.17). However, higher prediction levels were easily attained
when using the ML-GWAS-derived markers included as fix
effects. The prediction accuracy was still high (0.26–0.56) when
only 16 stable markers identified by at least four models were
included. Similar findings were reported for maize kernel row
number (An et al., 2020), resistance to maize southern leaf blight
and gray leaf spot (Bian and Holland, 2017), and maize low-
phosphorus tolerance (Xu et al., 2018). Therefore, using a small
set of markers identified by multiple ML-GWAS methods as
fixed effects in an rrBLUP model is a powerful tool for KMC
prediction in maize molecular breeding and can effectively save
time and costs.

CONCLUSIONS

Ninety-eight QTNs for KMC were identified using six ML-
GWAS models in three environments and BLUP across three
environments. Eleven QTNs were considered to be stable. Seven
stable QTNs corresponded to previously reported QTL regions,
whereas the remaining four were putatively novel loci. Sixty-
three candidate genes were identified within LD blocks of the
11 stable QTNs. Among these candidates, 10 may potentially
affect the loss of water from the maize kernel. High prediction
levels were easily reached when the KMC-associated markers
were included as fixed effects in GS. The best strategy was to
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TABLE 3 | The prediction accuracy of the KMC when using markers in different ML-GWAS models in three environments and BLUP.

Marker seta Nantong Xinxiang Sanya Best linear unbiased prediction

R2b Slope Intercept RMSEc R2 Slope Intercept RMSE R2 Slope Intercept RMSE R2 Slope Intercept RMSE

Genome 0.12 0.83 5.99 5.84 0.13 0.90 3.45 7.97 0.11 0.81 6.07 7.84 0.17 0.85 5.20 4.35

mrMLM 0.34 0.99 0.15 5.02 0.53 0.99 0.32 5.86 0.29 0.97 0.98 6.75 0.59 1.00 0.01 3.05

FASTmrMLM 0.34 0.99 0.37 5.02 0.53 0.99 0.28 5.86 0.29 0.98 0.77 6.75 0.59 1.00 0.12 3.06

FASTmrEMMA 0.34 0.99 0.19 5.01 0.53 1.00 0.19 5.85 0.29 0.98 0.76 6.73 0.59 1.00 0.05 3.06

PLARmEB 0.34 0.99 0.45 5.02 0.53 0.99 0.33 5.86 0.29 0.97 0.96 6.75 0.59 1.00 0.12 3.05

PKWmEB 0.34 0.99 0.23 5.02 0.53 0.99 0.32 5.85 0.29 0.97 1.14 6.76 0.59 1.00 0.08 3.05

ISIS EM-BLASSO 0.34 0.99 0.31 5.01 0.53 0.99 0.26 5.87 0.29 0.97 1.25 6.75 0.59 1.00 0.13 3.06

All models 0.54 1.01 −0.20 4.21 0.64 1.00 −0.06 5.12 0.58 1.02 −0.60 5.16 0.76 1.01 −0.29 2.32

C2 0.46 1.01 −0.31 4.55 0.60 1.00 −0.03 5.42 0.42 0.99 0.43 6.06 0.69 1.00 −0.05 2.64

C3 0.47 1.00 −0.05 4.48 0.54 0.99 0.33 5.81 0.33 0.98 0.33 6.52 0.65 0.99 0.05 2.81

C4 0.42 1.00 0.03 4.72 0.48 1.00 0.09 6.19 0.26 0.98 0.82 6.87 0.56 1.00 0.10 3.17

C5 0.19 0.98 0.86 5.59 0.20 0.99 0.51 7.42 0.14 0.95 1.21 7.81 0.22 0.96 1.10 4.21

C6 0.15 0.92 2.80 6.03 0.16 0.97 0.86 8.06 0.13 0.88 0.86 7.89 0.19 0.96 1.36 4.53

aGenome indicated that 32,853 markers across the entire genome were included in model 1; mrMLM indicated that 38 markers identified by mrMLMmodel were included as fixed effects

in model 2; FASTmrMLM indicated that 35 markers identified by FASTmrMLM model were included as fixed effects in model 2; FASTmrEMMA indicated that 23 markers identified by

FASTmrEMMA model were included as fixed effects in model 2; PLARmEB indicated that 27 markers identified by PLARmEB model were included as fixed effects in model 2; PKWmEB

indicated that 34 markers identified by PKWmEB model were included as fixed effects in model 2; ISIS EM-BLASSO indicated that 39 markers identified by ISIS EM-BLASSO model

were included as fixed effects in model 2; All models indicated that 98 markers identified by all six ML-GWAS models were included as fixed effects in model 2; C2 indicated that 44

markers identified by at least two ML-GWAS models were included as fixed effects in model 2; C3 indicated that 27 markers identified by at least three ML-GWAS models were included

as fixed effects in model 2; C4 indicated that 16 markers identified by at least four ML-GWAS models were included as fixed effects in model 2; C5 indicated that 7 markers identified

by at least five ML-GWAS models were included as fixed effects in model 2; C6 indicated that 4 markers identified by at least six ML-GWAS models were included as fixed effects in

model 2.
bCoefficient of determination.
cSquare root of the mean square error.

integrate all KMC-associated markers identified by all six ML-
GWAS models. These results facilitate our understanding of the
genetic basis of KMC and provide useful information for the
reduction of KMC in maize breeding.
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