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The phenylpropanoid pathway serves as a rich source of metabolites in plants and
provides precursors for lignin biosynthesis. Lignin first appeared in tracheophytes and
has been hypothesized to have played pivotal roles in land plant colonization. In this
review, we summarize recent progress in defining the lignin biosynthetic pathway in
lycophytes, monilophytes, gymnosperms, and angiosperms. In particular, we review
the key structural genes involved in p-hydroxyphenyl-, guaiacyl-, and syringyl-lignin
biosynthesis across plant taxa and consider and integrate new insights on major
transcription factors, such as NACs and MYBs. We also review insight regarding
a new transcriptional regulator, 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase,
canonically identified as a key enzyme in the shikimate pathway. We use several
case studies, including EPSP synthase, to illustrate the evolution processes of gene
duplication and neo-functionalization in lignin biosynthesis. This review provides new
insights into the genetic engineering of the lignin biosynthetic pathway to overcome
biomass recalcitrance in bioenergy crops.

Keywords: lignin biosynthesis, tracheophytes, transcription factor, EPSP synthase, phylogenetic occurrence,
lignin utilization

INTRODUCTION

It is hypothesized that the first land plants possessed adaptive metabolic, physiologic, and
morphologic changes as a means of coping with abiotic stresses, such as UV-B irradiation
and desiccation (Niklas et al., 2017). In this scenario the phenylpropanoid pathway played a
pivotal role in land colonization of early plants by yielding protective secondary metabolites
including flavonoids and lignin. Many flavonoids bestowed land plants with the ability to absorb
UV-B, while lignin, as the cell wall component, provided mechanical support and facilitated
water transport for the vascular plants (Rensing, 2018). Recently several comparative genomics,
phylogenetics, and evolutionary genetics approaches have been employed to illustrate the evolution
of phenylpropanoid biosynthetic pathway (Ma and Constabel, 2019; Davies et al., 2020). In this
review, we unite these current outcomes and provide a comprehensive overview of the phylogenetic
occurrence of phenylpropanoid biosynthetic and lignin biosynthetic pathways and showcase the
role of gene duplication and neo-functionalization contributing to land plant evolution.
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To aid our understanding of the phylogenetic occurrence of
the phenylpropanoid pathway and lignin biosynthesis in plants,
we offer a primer on lignin biosynthesis. Lignin is derived from
three major hydroxycinnamyl alcohols, including p-coumaryl
alcohol, coniferyl alcohol, and sinapyl alcohol by radical coupling
(Weng and Chapple, 2010). As such, p-hydroxyphenyl (H),
guaiacyl (G), and syringyl (S) monolignols are the main units for
lignin polymerization. In addition, two additional non-canonical
monolignols, caffeyl alcohol (C), and 5-hydroxyconiferyl (5HG)
alcohol, have been found naturally in some species or can be
introduced via genetic engineering (Dixon and Barros, 2019;
Wang X. et al., 2020).

The lignin biosynthetic pathway has been refined and re-
envisioned by several research groups over the past two
decades. Based on recent studies in the model herbaceous
plant Arabidopsis and the model woody plant Populus, eleven
core structural enzymes of the lignin biosynthetic pathway
have been identified (Boerjan et al., 2003; Vanholme et al.,
2013; Zhang et al., 2020). L-phenylalanine ammonia-lyase
(PAL), 4-hydroxycinnamate CoA ligase (4CL), and cinnamate
4-hydroxylase (C4H) are the three enzymes that belong to the
general phenylpropanoid pathway shared by the biosynthesis
of lignin and flavonoids. Generally, the initial substrate of
the phenylpropanoid pathway, phenylalanine, is converted into
cinnamate by PAL, C4H coverts cinnamate into p-coumarate, and
p-coumarate is then activated by 4CL to form p-coumaroyl CoA.

The other eight enzymes belong to lignin-specific pathway
(Figure 1), including cinnamoyl CoA reductase (CCR),
cinnamyl alcohol dehydrogenase (CAD), coumarate 3-
hydroxylase (C3H), coumaroyl shikimate 3′-hydroxylase
(C3′H), ferulate/coniferaldehyde 5-hydroxylase (F5H),
caffeate/5-hydroxy-coniferaldehyde 3/5-O-methyltransferase
(COMT), caffeoyl CoA 3-O-methyltransferase (CCoAOMT),
hydroxycinnamoyl CoA: shikimate hydroxycinnamoyl
transferase (HCT), and caffeoyl shikimate esterase (CSE).
p-coumaroyl CoA is converted into the simplest H-lignin
monomer by a reductase CCR and a dehydrogenase CAD. In
addition to CAD and CCR, G-lignin biosynthesis starting
from p-coumarate requires C3H, COMT, and 4CL; or
4CL, HCT, C3′H, CSE, and CCoAOMT. F5H and COMT
are crucial for S-lignin biosynthesis. Noticeably, aldehyde
dehydrogenase (ALDH) catalyzes the opposite direction of
reactions in lignin biosynthesis, which is required for ferulate and
sinapate biosynthesis from coniferaldehyde and sinapaldehyde,
respectively (Nair et al., 2004).

LIGNIN BIOSYNTHETIC PATHWAY IN
TRACHEOPHYTES

The Origin of Lignin Biosynthetic
Pathway
Although lignin has not been discovered in bryophytes,
nine structural gene families that are responsible for the
biosynthesis of H- and G-lignin monomers occur in moss
genomes (Xu et al., 2009; Table 1). Studies using the model

plant Physcomitrella patens shed light on the biosynthetic
pathway of phenylpropanoids and lignin. Knock-out of the
CYP98 gene in P. patens, which encodes a P450 oxygenase,
blocks the biosynthesis of the moss cuticle, thus affecting
gametophore formation and organ fusion. C3′H is a homolog
of CYP98 in higher plants. However, CYP98 in moss uses the
p-coumaroyl-threonate as substrate, whereas C3′H in higher
plants uses p-coumaroyl-shikimate as substrate (Schoch et al.,
2001), leading to the distinct biosynthetic pathway for cuticle
(Renault et al., 2017). Interestingly, no phenylpropanoid genes
have been found in red algae genomes, but trace amounts
of lignin have been reported in red algae, and as such,
indicating that the lignin biochemical machinery preexisted
the evolution of land plants (Martone et al., 2009; Brawley
et al., 2017). The extant presence of lignin in red algae
may also represent convergent evolution independent of lignin
biosynthesis in bryophytes.

H-Lignin Biosynthesis in Seedless
Vascular Plants
During land plant evolution, lignin appeared first in lycophytes
(Renault et al., 2019) in the form of H-lignin. Interestingly,
there are only low levels of H-lignin in gymnosperms and
traces of H-lignin in angiosperms. In contrast, H-lignin is highly
abundant in seedless vascular plants, including lycophytes and
pteridophytes. Lignin is found between the cellulose matrix and
forms a rigid cell wall in these plants (Espiñeira et al., 2011; Ralph
et al., 2019). In gymnosperms and angiosperms, H-lignin can
be enriched by down-regulation of C3′H, HCT, and CSE genes
(Franke et al., 2002a; Wagner et al., 2007; Coleman et al., 2008;
Li et al., 2010; Vanholme et al., 2013, Fornalé et al., 2015), though
in many cases growth was negatively impacted. Interestingly, the
Arabidopsis C3′H mutant ref8 showed severe growth defect that
was rescued by disruption of the mediator complex units MED5a
and MED5b (Bonawitz et al., 2014). These results indicate that
H-lignin may represent one of the earliest forms of lignin.

G- and S-Lignin Biosynthesis in
Pteridophytes
G-lignin biosynthesis in pteridophytes is evolutionarily
conserved. The Df4CL2 gene is a 4-coumarate:coenzyme A
ligase coding gene identified from the fern species Dryopteris
fragrans. Heterologous expression of this gene in tobacco
increased the synthesis of lignin, demonstrating the conserved
function of 4CL in D. fragrans and tobacco (Nicotiana tabacum)
(Li et al., 2020). Similarly, two CCoAOMTs have been cloned
from the fern species Polypodiodes amoena, and their functions
in lignin biosynthesis have been confirmed via heterologous
expression in Arabidopsis (Zhang X.-S. et al., 2019).

S-lignin has been identified in lycophytes such as Selaginella
moellendorffii; however, its biosynthetic pathway is different from
that in angiosperms (Renault et al., 2019). In angiosperm, both
C3H and F5H are involved in S-lignin biosynthesis. In contrast,
in lycophytes, SmF5H has dual functions that enables S-lignin to
be synthesized directly from p-coumaraldehyde and p-coumaryl
alcohol. Here, SmF5H and SmCOMT form a gene cluster and
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FIGURE 1 | Schematic representation of pathways to produce H, G, and S-monolignols across different plant species. Pathways leading to monolignol biosynthesis
include general phenylpropanoid pathway and lignin-specific pathway, which are separated by the dash line. S-lignin biosynthesis in lycophytes occurs in an
independent pathway mediated by SmF5H and SmCOMT (highlighted in purple). Some pathways are shared by conifers and angiosperms (highlighted in green)
while the others are angiosperm-specific (highlighted in blue). There is also monocot-specific pathway mediated by TAL (highlighted in yellow).

FIGURE 2 | Transcriptional network of lignin biosynthesis in plants. Black box indicates transcriptional activator, and red box indicates transcriptional repressor.
Green arrows indicate transcriptional activation, and red blunt arrows indicate transcriptional repression. AC element, recognized by MYBs, were found in most of
lignin biosynthetic genes.

are responsible for S-lignin biosynthesis. Phylogenetic analyses
suggest that these two genes were independently evolved from
their counterparts in angiosperm (Weng et al., 2008b, 2011).

Besides the well-known S-lignin biosynthesis in Selaginella,
several ferns, such as Dennstaedtia bipinnata, also contain a
large amount of S-lignin in the sclerotic sheaths. However,
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TABLE 1 | Copy number variation of lignin biosynthetic genes in selected model species.

Gene family C. reinhardtii (green algae) P. patens (moss) A. thaliana P. trichocarpa O. sativa

PAL 0 26 4 7 9

4CL 0 4 4 7 5

C4H 0 6 1 4 4

CCR 0 1 4 13 14

CAD 1 4 9 26 12

C3H 0 3 3 3 3

F5H 0 0 1 4 3

COMT 0 4 1 13 9

CCoAOMT 0 5 2 2 5

HCT 0 12 1 9 22

CSE 0 1 1 2 1

ALDH 4 37 14 30 21

the biosynthetic pathway has not been elucidated (Logan and
Thomas, 1985; Weng and Chapple, 2010). Further studies of
the lignin biosynthesis-related genes in these fern species and
comparation with what we have known in other species in the
lineage is needed to provide insights on the evolution of the
S-lignin biosynthetic pathway.

G-Lignin Biosynthesis in Gymnosperms
Gymnosperms diverged from angiosperms 300 million years
ago (De La Torre et al., 2020). In general, gymnosperms
lack the F5H gene, and therefore, gymnosperm lignin mainly
contains G-monolignol and contains no or little S-monolignol
(Li et al., 2001; Weng and Chapple, 2010). When Cf4CL
and CfCCoAOMT were cloned from Cryptomeria fortunei,
a gymnosperm, and heterologously expressed in tobacco, an
angiosperm, G-lignin biosynthesis was increased, indicating
that these two lignin genes can function equally well in both
gymnosperms and angiosperms (Guo et al., 2019). Similarly,
a CSE, LkCSE, from Larix kaempferi, can convert caffeoyl
shikimate to caffeate and shikimate, supporting the conserved
function of CSE between gymnosperms and angiosperms (Wang
et al., 2019). Gymnosperms also produce a compression layer
within xylem that enriched in H-lignin in tracheid. A recent
study showed that spatial patterning of H- and G-lignin
during wood formation is related to different localizations and
enzyme activities of lignin polymerization enzymes, laccases
(Hiraide et al., 2021). Interestingly, some gymnosperm species,
such as Gentales, can also synthesize S-lignin (Renault et al.,
2019). Gnetum genmon contains angiosperm-like vessels as
well as tracheids and fiber tracheids (Tomlinson, 2001), and it
shares the chemical compositions of lignin with angiosperms
(Nawawi et al., 2016). These results suggest that the biosynthetic
pathway for G-lignin is shared between gymnosperms and
angiosperms. On the basis of these results we are left with
two alternate hypotheses; ancient gymnosperms were able
to produce S-lignin which was subsequently lost in modern
gymnosperms or the occurrence of S-lignin in Gentales
is a recent convergent evolutionary event. As an ancient
gymnosperm, further systematic studies of lignin biosynthesis

in Gentales are needed to definitively describe the evolution
trajectory in gymnosperms.

G- and S-Lignin Biosynthesis in
Angiosperms
Angiosperms contain the lignin composed of G-, S-, and H-lignin
monomers in various ratios (Mansfield et al., 2012). The lignin
biosynthetic pathways of angiosperms have been characterized
using the model plants, Arabidopsis, Populus, and Brachypodium,
among others. Xu et al. (2009) analyzed 10 of 11 lignin
biosynthetic gene families (without CSE) across 14 plant species
and 1 symbiotic fungal species using comparative genomics. The
analysis revealed that the rapid expansion of these gene families
occurred after the divergence between dicots and monocots 140–
150 million years ago (Xu et al., 2009; Rao and Dixon, 2018).

Although the lignin biosynthetic pathways are generally
conserved among angiosperms, alternative pathways have
evolved in monocots. In dicots, the first enzyme in the
phenylpropanoid pathway, PAL, converts phenylalanine (Phe)
to cinnamate. Cinnamate is then converted to p-coumarate by
the second enzyme, C4H. However, a bypass route has been
discovered in monocots. PTAL was identified as a bifunctional
enzyme that recognizes tyrosine (Tyr) as the substrate and
converts it to p-coumarate directly in Brachypodium distachyon
(Barros et al., 2016). 13C isotope feeding with BdPTAL1-
RNAi transgenic plants revealed that BdPTAL1-mediated lignin
biosynthesis contributed to half of the total lignin content
in B. distachyon (Barros et al., 2016). Another grass-specific
enzyme is p-coumaroyl-CoA:monolignol transferase (PMT) that
catalyzes the incorporation of p-coumarate into the lignin
polymer backbone typically found in the Poaceae family
(Withers et al., 2012; Petrik et al., 2014). These findings
suggest that lineage-specific lignin biosynthetic pathways have
evolved independently in dicots and monocots and highlight
the need to study species-specific branches in the lignin
biosynthetic pathway.

The C4H gene progenitor appears to have duplicated in early
seed plants, yielding two clades that are preserved in Taxaceae
and most angiosperms. A second duplication event happened
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after the divergence of dicots and monocots. By analyzing the
protein structure and function of Brachypodium C4H, it was
found that each of Brachypodium C4H paralog genes can rescue
the growth defect of the Arabidopsis c4h mutant, indicating
that the C4Hs in monocots preserved the canonical function in
lignin biosynthesis. However, the protein structures of C4Hs in
B. distachyon differ from that in Arabidopsis. This newly derived
C4H type in monocots has an elongated N-terminus, which
alters the subcellular localization and allows the orientation of
C4H to the lumen of endoplasmic reticulum (ER) through a
double-spanning hairpin structure. Therefore, it is possible that
an alternate C4H exists within the ER (Renault et al., 2017).

Coumarate 3-hydroxylase and C3′H catalyze the conversion
of p-coumarate and p-coumaroyl shikimate into caffeate (via a
bifunctional cytosolic ascorbate peroxidase, Barros et al., 2019)
and caffeoyl shikimate (via a cytochrome P450 monooxygenase,
Schoch et al., 2001), respectively. These enzymes play important
roles in G-lignin and S-lignin biosynthesis. There is only one
member of the C3′H family in Arabidopsis thaliana and two
members of the cytosolic C3H family in A. thaliana and
B. distachyon (Franke et al., 2002b; Barros et al., 2019). PtrC3′H3
was recognized as the homolog of Arabidopsis C3′H. However,
it was proposed that PtrC3′H3 requires PtrC4H1 or PtrC4H2
to form a complex to enhance its enzymatic activity in Populus
trichocarpa (Chen et al., 2011; Figure 1). Recent study showed
that triple knocking-down PtrC4H1/PtrC4H2/PtrC3′H3 causes
monolignol benzoate (ML-BL) conjugation and significantly
reduces lignin biosynthesis while increasing H-lignin for
about 70-fold (Kim et al., 2020). These findings suggest that
simultaneous modification of C4H and C3H could be used for
reducing biomass recalcitrance in bioenergy crops.

Phylogenetic analysis of 192 4CLs across land plants suggested
that a duplication of the 4CL gene family occurred prior to
the split of gymnosperms and angiosperms (Li et al., 2015).
Functional divergence of the 4CL gene family, post duplication,
has been broadly found in angiosperms. In fact, four members of
the 4CL gene family have been reported in P. patens, but only
three of them were expressed under tested conditions (Silber
et al., 2008). There are four 4CL genes in Arabidopsis, five in rice,
and seven in Populus. Functional analysis of these gene families
revealed that only one subgroup of this gene families is involved
in lignin biosynthesis, while other subgroups are involved in the
biosynthesis of flavonoids or phenolics via neofunctionalization
(Ehlting et al., 1999; Gui et al., 2011; Li et al., 2015; Rao et al., 2015;
Table 1). Loss-of-function mutation of 4CL genes in herbaceous
species causes reductions in G-lignin and increase of S/G ratios.
However, knock-out 4CL1 gene in Populus led to reduction
of S-lignin and decrease of S/G ratio, and the homeostasis of
G-lignin was maintained by 4CL5 in 4cl1 mutant. These findings
point toward a functional divergence of 4CLs between herbaceous
and woody species (Xiong et al., 2019; Tsai et al., 2020).

Hydroxycinnamoyl transferase catalyzes the conversion of
caffeoyl shikimate to caffeoyl-CoA. Down-regulation of AtHCT
caused the reduction of S-lignin content in Arabidopsis
(Hoffmann et al., 2004). The orthologs of HCTs are present
among all the land plants, which suggests that this enzyme
evolved before the occurrence of lignin. A recent study showed

that P. patens HCT and Marchantia polymorpha HCT can
complement the deficiency of Arabidopsis hct mutant in terms of
morphology and metabolite levels, suggesting that the function
of HCT is likely conserved in all embryophytes (Kriegshauser
et al., 2021). It appears that gene duplication of HCT occurred
in dicots that produced the HQT gene. Despite the sequence
similarity between HCT and HQT, the latter is required for
biosynthesizing chlorogenic acid rather than lignin in Cynara
cardunculus (Sonnante et al., 2010). Knock-down of HCT
led to increase of G-lignin and decrease of S-lignin and
S/G ratio in Populus (Zhou et al., 2020). However, knock-
down of both HCT1 and HCT2 did not drastically change
lignin content or composition in B. distachyon. Meanwhile, the
saccharification efficiency was greatly enhanced in the double
knock-down line (Serrani-Yarce et al., 2021). These findings
suggest HCT genes play different roles in some monocots
compared to that of dicots.

Caffeoyl shikimate esterase is a newly discovered enzyme
involved in monolignol biosynthesis. Together with 4CL, these
two enzymes form a bypass pathway of monolignol biosynthesis
in Arabidopsis (Vanholme et al., 2013). CSE genes cloned from
Medicago truncatula and Populus deltoides have been shown to
be functionally conserved with their Arabidopsis homolog (Ha
et al., 2016; Saleme et al., 2017). However, the homolog of
CSE gene has not been identified in most monocots, including
maize and Brachypodium. Recently, the generation of cse1, cse2
single mutant and cse1/cse2 double mutant in Populus further
confirmed their partial redundant roles in lignin biosynthesis.
In addition to causing a 35% reduction in lignin content,
the cse1/cse2 double mutant significantly improved cellulose-
to-glucose transformation efficiency. As such, CSEs in Populus
could be promising target genes in biorefinery although their
growth penalty should be managed to avoid (de Vries et al.,
2021). Noticeably, CSE has also been shown to be functional
in gymnosperms, such as Larix kaempferi (Wang et al., 2019).
These findings suggest that CSE may be evolved prior to the
divergence of gymnosperms and angiosperms, but was lost
in many monocots (Wang et al., 2019; Serrani-Yarce et al.,
2021).

Caffeate/5-hydroxy-coniferaldehyde 3/5-O-methyltransferase
and F5H are two key enzymes required for catalyzing the
intermediates in G-lignin biosynthesis into S-lignin biosynthesis.
It has been reported that simultaneously manipulating COMT
and F5H resulted in a dramatic change of S-lignin biosynthesis
(Wu et al., 2019). COMT and F5H in S. moellendorffii
appears to have an independent origin compared to that
of angiosperms. There are two F5H genes in Arabidopsis
(AtF5H1/CYP84A1 and AtF5H2/CYP84A2), and only AtF5H1
has been confirmed to be involved in lignin biosynthesis
(Meyer et al., 1998). Similarly, there is one functional COMT
gene identified among 13 homologous genes in Arabidopsis
(Raes et al., 2003). In Populus, five F5H genes have been
cloned, and two of them, PtrF5H1 and PtrF5H2, were reported
to be involved in lignin biosynthesis. Thirteen members of
COMT gene family were identified in P. trichocarpa, but only
PtrCOMT2 is highly expressed in xylem (Shi et al., 2009;
Table 1). The function of F5H was shown to be conserved

Frontiers in Plant Science | www.frontiersin.org 5 August 2021 | Volume 12 | Article 704697

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-704697 August 16, 2021 Time: 11:22 # 6

Yao et al. Phylogenetic Occurrence of Lignin Biosynthesis

in monocots, such as Oryza sativa. One of three F5H genes,
OsCAld5H1, was reported to greatly affect the S/G-lignin
composition via over-expression or knock-out (Takeda et al.,
2017, 2019). OsCAldOMT1 has been proven to be a functional
COMT in rice (Lam et al., 2019). Noticeably, it not only
regulates S-lignin biosynthesis, but also controls tricin-lignin
biosynthesis. The dual functions of OsCAldOMT1 seems to
be specific in grass species (Lam et al., 2019). CCoAOMT,
another O-methyltransferase, converts feruloyl CoA to sinapoyl
CoA and is required for the conversion of G-lignin into
S-lignin. Genetic engineering of this enzyme led to change in
G-lignin biosynthesis in Populus, alfalfa, Pinus radiata, maize,
and tobacco (Zhong et al., 2000; Guo et al., 2001; Wagner
et al., 2011; Li et al., 2013; Xiao et al., 2020). These studies
suggest the function of CCoAOMT is likely to be conserved
among all angiosperms and occurred with the advent of
the angiosperms.

Cinnamoyl CoA reductase recognizes four types of
cinnamoyl-CoAs, including p-coumaroyl CoA, caffeoyl CoA,
feruloyl CoA, and sinapoyl CoA, and converts them into
cinnamaldehydes. Phylogenetic analysis of 146 CCR genes of
various land plants revealed that CCR family contains three
classes: CCR, CCR-like, and DFR, and that only the CCR class
contains bona fide lignin biosynthetic genes. All these three
classes are distributed across land plants, including P. patens,
which contains a single functional CCR gene. These results
suggested that the progenitor CCR gene evolved after the
advent of lycophytes (Barakat et al., 2011). Still, functional
divergence within the CCR family has arisen in several species.
For example, in Arabidopsis, AtCCR1 is involved in lignin
biosynthesis, whereas AtCCR2 is involved in pathogen response
(Lauvergeat et al., 2001; Ruel et al., 2009). Downregulation of
a CCR gene, CCR2, reduces lignin biosynthesis and increases
saccharification efficiency in Populus. However, it also causes
severe biomass penalty (Van Acker et al., 2014). Recently, a
ccr2 mutant was generated by the CRISPR/Cas9 approach
that contain a null and haplo-insufficient allele in Populus.
This mutant line does not have growth penalty, but still has
low lignin content and improved saccharification efficiency
(De Meester et al., 2020). Therefore, CCR2 gene could be a
useful target that can be deployed in genetic engineering of
bioenergy woody crops.

Cinnamyl alcohol dehydrogenase catalyzes the final step of
monolignol biosynthesis leading to compositional differences in
lignin forms. Guo et al. (2010) performed phylogenetic analysis
of the CAD gene family from 52 species and classified them
into three classes. Class I comprises bona fide CADs which are
only present in vascular plants, suggestive of their co-occurrence
with the advent of lignin. The functional characterizations of
Class II and Class III CADs remain unclear (Guo et al., 2010).
Within the large gene families, CADC and CADD, PtrCAD1
and OsCAD2 have been reported to be functional CAD genes
involved in lignin biosynthesis in Arabidopsis, rice, and Populus.
Knock-down or knock-out of these genes resulted in reduced
lignin content as well as altered lignin structures (Anderson
et al., 2015; Van Acker et al., 2017; Martin et al., 2019).
Finally, it was reported that CAD and CCR form an enzyme

complex that regulates monolignol biosynthesis in P. trichocarpa
(Yan et al., 2019).

In summary, as an important branch of the phenylpropanoid
pathway, structural genes of the lignin biosynthetic pathway are
conserved in most embryophytes. F5H and COMT contribute
to S-lignin biosynthesis and have been hypothesized to have
independent origins in S. moellendorffii and angiosperms. Gene
duplications and gene family expansion of lignin biosynthetic
genes in angiosperms have given rise to sub-functionalization
and neo-functionalization of the various members, which is
consistent with their morphological and functional changes
compared with lower plants.

TRANSCRIPTIONAL REGULATION OF
LIGNIN BIOSYNTHETIC PATHWAY

The lignin biosynthetic pathway includes both structural genes
and regulatory proteins. Transcriptional regulation, controlling
the gene expression of structural genes, plays important roles
in lignin biosynthesis. Such genes reflect the phylogenetic
occurrence of the phenylpropanoid pathway and evolutionary
trajectory of lignin biosynthesis in plants. MYBs and NACs are
two major transcription factor families, comprising three layers of
the hierarchical transcriptional regulatory network (Ohtani and
Demura, 2019; Figure 2). Therefore, we focus on analyzing these
two families of transcription factors to illustrate the evolutionary
divergence of transcriptional regulation in lignin biosynthesis.

MYB46-Mediated Transcriptional
Regulation of Lignin Biosynthesis
Transcription factor MYB46 is a central regulator in secondary
cell wall formation (Zhong et al., 2007). MYB46 and MYB83
are two functionally redundant A. thaliana MYB transcription
factors that act as master switches of lignin biosynthesis
regulating nine out of 11 monolignol biosynthetic genes (PAL,
C4H, 4CL, HCT, C3′H, CCoAOMT, F5H, CCR, and CAD) (Kim
et al., 2014). Besides lignin, the biosynthesis of other secondary
cell wall components, including xylan and cellulose, are also
regulated by MYB46/MYB83 (McCarthy et al., 2009; Zhong
and Ye, 2012; Kim et al., 2013). Several MYB46 orthologs
from other plant species have also been shown to function as
key regulators for secondary cell wall biosynthesis, including
PtMYB4 from pine, EgMYB2 from Eucalyptus, OsMYB46
from rice, PtrMYB2, PtrMYB3, PtrMYB20, and PtrMYB21
from Populus, and ZmMYB46 from maize (Patzlaff et al.,
2003; Goicoechea et al., 2005; Zhong et al., 2011, 2013). The
functions of MYB46 and MYB83 in lignin biosynthesis are well-
conserved in angiosperms.

The phylogenetic history of lignin related MYBs appears to
coincide with the advent of the lignin biosynthetic genes, which
first emerged in early land plants (Xu et al., 2014; Bowman et al.,
2017). Homologs of MYB46 and MYB83 have been found in
P. patens and S. moellendorffii (Zhong et al., 2010). Functional
conservation of their homologs via transgenic validation has also
been demonstrated in vascular plants, including gymnosperms
and angiosperms (Zhao and Bartley, 2014). We hypothesis that
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MYB46 and MYB83 might be required for phenylpropanoid
biosynthesis outside of the lignin biosynthetic pathway in non-
vascular plants while playing core roles in lignin biosynthesis in
all vascular plants.

Upstream Regulators of MYB46/MYB83
Major transcription factors regulating MYB46/MYB83 are the
NAC TF family proteins (Figure 2). NAC TF family proteins
share a conserved NAC domain located at the N-terminal region
and a highly divergent C-terminal activation domain (Olsen
et al., 2005). These TFs are specific to plants and play diverse
roles in plant defense, growth, and development (Olsen et al.,
2005). NAC SECONDARY WALL THICKENING PROMOTING
FACTOR1 (NST1) and NST2 are redundantly responsible for
secondary wall thickening in anther endothecium (Mitsuda
et al., 2005). A MYB family protein, MYB26, localized in the
nucleus, was found to be an upstream positive regulator of NST1
and NST2. Overexpression of MYB26 was found to increase
lignin deposition and the expression of NST1 and NST2 (Yang
et al., 2007). Recent study shows that Xylem NAC Domain 1
(XND1) interacts with NST1 and inhibits the transcriptional
activity of NST1, thus repressing secondary cell formation (Zhang
Q. et al., 2019). In addition, VASCULAR-RELATED NAC-
DOMAIN 6 (VND6) and VND7 directly regulate MYB46 and
MYB83 expression (Zhong et al., 2008; McCarthy et al., 2009;
Ohashi-Ito et al., 2010; Yamaguchi et al., 2011). Overexpression
of VND6 and VND7 can induce the ectopic differentiation of
metaxylem-like vessels and protoxylem-like vessels, respectively
(Kubo et al., 2005). Functional suppression of VND6 and
VND7 caused defects in the formation of vessel elements (Kubo
et al., 2005; Yamaguchi et al., 2008). In Arabidopsis, there are
seven VND genes (VND1-VND7). Similar to VND6 and VND7,
overexpression of VND1 to VND5 also induces ectopic secondary
cell wall deposition, suggesting that all VND members contribute
to lignin biosynthesis during xylem vessel development (Endo
et al., 2014; Zhou et al., 2014).

A third class of TFs involved in lignin biosynthesis include
the WRKY gene family. Mutation of the Arabidopsis WRKY12
gene caused secondary cell wall thickening in pith cells that
is associated with ectopic deposition of lignin, xylan, and
cellulose. WRKY12 mutation upregulated the transcription of
downstream genes encoding the NAC domain TF NST2 and
the zinc finger TF C3H14, which activate secondary wall
synthesis (Wang et al., 2010). Direct binding of WRKY12
to the NST2 gene promoter led to repression of NST2 and
C3H14, as defined by in vitro assays and in planta transgenic
experiments (Wang et al., 2010). Interestingly, WRKY12 gene is
expressed in both pith and cortex that do not have secondary
wall thickening, suggesting that WRKY12 may control the
parenchymatous nature of pith cells by acting as a negative
regulator of secondary cell wall NACs (Wang et al., 2010).
WRKY15 was reported to repress the expression of VND7
and suppress tracheary elements (TEs) differentiation through
indirect regulation (Ge et al., 2020). Based on our current
understanding, WRKY TFs act upstream of NACs to regulate
secondary cell wall biosynthesis.

Two members of the ASYMMETRIC LEAVES2-LIKE/
LATERAL ORGAN BOUNDARIES DOMAIN (ASL/LBD)
family ASL19/LBD30, ASL20/LBD18 were identified to be
involved in a positive feedback loop for VND7 expression
that regulates TEs differentiation-related genes (Soyano et al.,
2008). Overexpression of ASL19 and ASL20 induced trans-
differentiation of cells from non-vascular tissues into TE-like
cells, similar to those induced by VND6 or VND7 overexpression.
Expression of both ASL19/LBD30 and ASL20/LBD18 are
dependent on VND6 and VND7 (Soyano et al., 2008). XND1
has been reported to inactivate VND6 by physically interacting
with VND6 and directing VND6 from the nucleus to the
cytoplasm (Zhong et al., 2020). Another NAC transcriptional
factor, VND-INTERACTING2 (VNI2), can bind to VND
proteins and has been shown to function as a transcriptional
repressor of VND7-mediated gene transcription (Yamaguchi
et al., 2010). Recent studies show that E2Fc is a key upstream
regulator of VND6 and VND7, directly targeting the genomic
loci of VND6 and VND7. E2Fc is a transcriptional repressor,
and transcript abundance of VND6 and VND7 were significantly
increased in E2Fc knockdown Arabidopsis lines (Taylor-Teeples
et al., 2015). Taken together, VND6 and VND7 represent key
regulators in lignin biosynthesis whose functions are tightly
regulated by various TFs (Ko et al., 2012; Schuetz et al., 2013).
Phylogenetic analysis discovered close homologs of VND6 and
VND7 in all vascular plants, whose functions were demonstrated
to be conserved in P. trichocarpa, Zea mays, Oryza sativa,
and B. distachyon (Zhong et al., 2010, 2011; Valdivia et al.,
2013).

SND1/NST3 and NST1 are required for secondary wall
thickening in stem fibers (Mitsuda et al., 2007). When these genes
were expressed constitutively in Arabidopsis, ectopic secondary
wall thickening in various tissues was induced (Mitsuda et al.,
2005, 2007). Putative orthologs of NST1, NST2, and SND1/NST3
are present in the genome of Populus and are expressed in
developing xylem (Mitsuda et al., 2007), implicating a role
in lignin biosynthesis. The function of NST homologs in
lignin biosynthesis has been confirmed in Medicago truncatula
and cotton (Zhao et al., 2010; Fang et al., 2020). However,
the homologs of NST proteins have not been identified in
gymnosperms or earlier species, implying that these proteins
may not have evolved until the appearance of angiosperms
(Nakano et al., 2015).

Downstream Targets of MYB46/MYB83
Three MYB family proteins, MYB58, MYB63, and MYB85, whose
coding genes are direct targets of MYB46, have been shown to
function as direct transcriptional activators of lignin biosynthesis
during secondary wall formation in Arabidopsis (Zhong et al.,
2008; Ko et al., 2009; Demura and Ye, 2010; Zhou et al.,
2020; Figure 2). All three MYBs cause ectopic lignin deposition
when overexpressed.

The coding genes of three other MYB family proteins,
MYB32, MYB4, and MYB7, are also directly activated by MYB46
(Ko et al., 2009). These three MYBs, sharing high sequence
similarity with a conserved EAR motif, have been shown to be
transcriptional repressors (Dubos et al., 2010). Trans-activation

Frontiers in Plant Science | www.frontiersin.org 7 August 2021 | Volume 12 | Article 704697

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-704697 August 16, 2021 Time: 11:22 # 8

Yao et al. Phylogenetic Occurrence of Lignin Biosynthesis

assays showed that these MYB transcription factors directly
repress the expression of SND1, forming a feedback regulatory
loop to maintain the abundance of SND1 (Wang et al., 2011).

KNOTTED ARABIDOPSIS THALIANA7 (KNAT7)
and BEL1-LIKE HOMEODOMAIN6 (BLH6) belong to
knotted-like homeobox proteins and bel1-like homeodomain
proteins, respectively. KNAT7 and BLH6 were reported
to be direct targets of MYB46 and MYB83 (Zhong and
Ye, 2012). KNAT7 and BLH6 interact with each other
and negatively regulate lignin biosynthesis while KNAT3
was reported to form heterodimer with KNAT7 to
synergistically regulate lignin content and composition
(Liu et al., 2014; Qin et al., 2020; Wang S. et al.,
2020).

Although the first and second layers of master switches of
lignin biosynthesis were shown to be conserved in vascular
plants even in early land plants, the targets of MYB46/83 have
not been shown to be functionally conserved in lower plants.
For example, the close homologs of MYB58 and MYB63 failed
to be identified in lower tracheophytes (Zhong et al., 2010).
In addition, their homologs in switchgrass were found to be
mainly involved in flavonoids biosynthesis rather than lignin
biosynthesis. A plausible explanation is that wide expansion,
promiscuous functionality, and functional diversification of the
MYB family across different species have made it difficult to
identify the genuine orthologs responsible for lignin biosynthesis
regulation (Zhao and Bartley, 2014; Nakano et al., 2015).
Furthermore, lineage-specific MYBs may contribute to lignin
biosynthesis in different tracheophytes. For instance, MYB75
was found to repress secondary cell wall biosynthesis and
activate anthocyanin biosynthesis in dicots but not in monocots
(Zhao and Bartley, 2014).

EPSP as a Transcriptional Repressor
5-enolpyruvylshikimate-3-phosphate (EPSP) synthase is
a key enzyme in shikimate pathway, which is present
in both plants and many prokaryotes. EPSP synthase
has been a well-known herbicide target, which has been
widely used in agriculture (Sammons and Gaines, 2014).
Noticeably, there is only one copy of an EPSP synthase
coding gene in green algae, lycophytes, and bryophytes,
but duplicated genes were found in angiosperms, such as
Arabidopsis and Populus (Tohge et al., 2013; Yang et al.,
2017; Xie et al., 2018; Figure 3). The gene duplication in
angiosperms may have given rise to neo-functionalization for the
additional gene copy.

A recent study in P. trichocarpa discovered the transcriptional
regulatory function of one EPSP synthase gene (PtrEPSP-
TF) (Xie et al., 2018). Overexpression of PtrEPSP-TF led to
ectopic deposition of lignin, accumulation of phenylpropanoid
metabolites and differential expression of secondary cell
wall biosynthetic genes. It was shown that PtrEPSP-TF
accumulates in the nucleus and acts as a transcriptional
repressor by directly binding to the promoter element of a
hAT transposase family gene (PtrhAT). PtrhAT is also located
in the nucleus and serves as a transcriptional repressor. The
direct target of PtrhAT is PtrMYB021, which is a homolog

of MYB46 in Arabidopsis that acts as a master switch for
secondary cell wall biosynthesis, as described above. By
repressing the expression of PtrhAT, PtrEPSP-TF activates the
expression of PtrMYB021 and the phenylpropanoid pathway
(Xie et al., 2018). In conclusion, PtrEPSP-TF/PtrhAT/PtrMYB021
form an additional regulatory loop in lignin biosynthesis in
Populus.

PtrEPSP-TF distinguishes itself from ancestral EPSP
synthases by carrying an additional helix-turn-helix (HTH)
motif in the N-terminus (Xie et al., 2018). HTH motifs are
commonly found in transcription factors as nucleic acid
binding domains (Aravind et al., 2005). With the addition
of the N-terminal HTH DNA binding motif, PtrEPSP-
TF exhibited nuclear accumulation and functioned as a
transcriptional repressor. By comparing 57 EPSP synthase
isoforms from 42 plant genomes, the HTH motif was found
to be almost entirely missing in EPSP synthases in non-
vascular, algal, and monocots, but was found in many dicots
(Xie et al., 2018). The presence of secondary cell wall is
a key distinguishing feature separating dicots from algae
and mosses. It is intriguing that this shikimate pathway
derived-EPSP synthase isoform appears to have obtained a
regulatory function modulating the expression of processes
that are ubiquitous in dicots relative to other plants. With
this in mind, we hypothesized that domain co-option may
have occurred during the course of evolution when early
dicotyledonous plants attained complex cell wall structure
(Weng et al., 2008a; Tohge et al., 2013). The discovery of the
additional regulatory loop of MYB46 in Populus also supports
the existence of woody plant-specific regulatory mechanisms in
lignin biosynthesis.

PERSPECTIVES ON THE ORIGIN AND
EVOLUTION OF LIGNIN BIOSYNTHESIS
IN PLANTS

The phenylpropanoid pathway produced thousands of
metabolites which are essential for plant terrestrialization
and subsequent radiation. Lignins appeared as specialized
metabolites with the evolution of tracheophytes. The
identification of progenitors of lignin biosynthetic genes in
bryophytes provides new insights into the origin of lignin
biosynthesis (Kriegshauser et al., 2021). The recent progress on
genome sequencing of Charophyte algae, bryophytes, lycophytes,
and ferns have also provided unprecedented opportunities
to study the origin of phenylpropanoid biosynthetic pathway
(Szövényi et al., 2021).

On the basis of current knowledge of lignin biosynthetic
pathways across tracheophytes, we conclude that most
lignin biosynthetic genes experienced expansions and
neofunctionalization. As a result, lignin biosynthetic pathway has
become increasingly complex evidenced by the existence of many
alternate pathways and regulatory hierarchies. In support of this
hypothesis many of the alternative pathways have been shown
to be lineage specific. Lignin biosynthesis in monocots served
an example of diversification. For example, PTAL-mediated
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FIGURE 3 | Molecular dating of EPSPs. A total of 91 EPSPs, identified by searching against PtrEPSP-TF in phytozome, were used for molecular dating analysis. We
first used MUSCLE (Edgar, 2004) to perform multiple alignments of EPSP proteins, an in-house python script was then used to convert the amino acid alignment to
nucleotide alignment, and finally TrimAL (Capella-Gutiérrez et al., 2009) was used to trim the alignment using parameters “-gt 0.8 -st 0.001,” which indicate the
tolerating gaps of no more than 20% and similarity score less than 0.001. Mrbayes (Huelsenbeck and Ronquist, 2001) was used to conduct molecular dating with
parameters “lset nst = 6 rates = invgamma” using the “GTR + I + 0” model. A total of 10,000,000 mcmc generations were run after the standard deviation of split
frequencies falls under 0.05. FigTree (Rambaut, 2012) was used to visualize the phylogenetic tree. Number of each node indicates the posterior probabilities. Pink,
yellow, blue, and green colors separate monocot, Chlorophyte, Eudicot, and Citrus, respectively.

by-pass route in lignin biosynthesis and PMT-mediated lignin
modification are specific to monocots (Petrik et al., 2014; Barros
et al., 2016). Equally, S-lignin biosynthesis in S. moellendorffii
suggested that S-lignin biosynthetic pathway may be evolved
multiple times or lost in gymnosperms and other pteridophytes
(Weng and Chapple, 2010).

Transcriptional regulatory modules have been shown to be
generally conserved for phenylpropanoid and lignin biosynthesis;

however, a third layer of MYB TFs are not evolutionarily
conserved and have witnessed a wide expansion of family
members. Finally, newly identified TFs, such as EPSP-TF, have
been shown to regulate lignin biosynthesis specifically in woody
plants (Xie et al., 2018). The studies on transcriptional regulation
of lignin biosynthesis represents an emerging opportunity to
understand the phylogenetic occurrence of the phenylpropanoid
pathway and lignin biosynthesis in plants.
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CONCLUDING REMARKS AND FUTURE
DIRECTIONS

In this review, we summarized the phylogenetic occurrence of
lignin biosynthetic genes and related transcriptional regulation
across different plant species. Comprehensively, the core
enzymes in lignin biosynthesis and basal transcriptional
regulatory module are conserved among embryophytes, although
bryophytes do not produce lignin. With evolutionary time, lignin
composition diversity has increased and has been associated
with gene duplication, functional gene co-option, and neo- and
sub-functionalization, which involved many structural genes
and transcriptional regulators. In addition, concomitant with
the increase of lignin biosynthetic complexity, is the increase
in functional diversity, e.g., water conductivity and defense.
As most of the current knowledge of lignin biosynthesis is
based on the study of a few angiosperms, identification and
functional characterization of the lignin biosynthetic pathways
and their regulation in lower plants will provide a comprehensive

view of their evolutionary history and lead to new insights in
lignin biosynthesis.
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