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Multi-target recognition and positioning using robots in orchards is a challenging task
in modern precision agriculture owing to the presence of complex noise disturbance,
including wind disturbance, changing illumination, and branch and leaf shading. To
obtain the target information for a bud-cutting robotic operation, we employed a
modified deep learning algorithm for the fast and precise recognition of banana fruits,
inflorescence axes, and flower buds. Thus, the cutting point on the inflorescence
axis was identified using an edge detection algorithm and geometric calculation. We
proposed a modified YOLOv3 model based on clustering optimization and clarified
the influence of front-lighting and backlighting on the model. Image segmentation
and denoising were performed to obtain the edge images of the flower buds and
inflorescence axes. The spatial geometry model was constructed on this basis. The
center of symmetry and centroid were calculated for the edges of the flower buds. The
equation for the position of the inflorescence axis was established, and the cutting point
was determined. Experimental results showed that the modified YOLOv3 model based
on clustering optimization showed excellent performance with good balance between
speed and precision both under front-lighting and backlighting conditions. The total pixel
positioning error between the calculated and manually determined optimal cutting point
in the flower bud was 4 and 5 pixels under the front-lighting and backlighting conditions,
respectively. The percentage of images that met the positioning requirements was 93
and 90%, respectively. The results indicate that the new method can satisfy the real-time
operating requirements for the banana bud-cutting robot.

Keywords: fruit detection, computer vision, recognition and localization, multi-feature classification, edge
detection, vision sensing

INTRODUCTION

Recent years have seen an unprecedented rise in the cost of human labor, with the increase reaching
up to 12–15% in 2019 (Fu et al., 2020). At present, banana buds are generally cut and picked
manually, and the labor cost accounts for approximately 34–40% of the total cost of banana
production. Moreover, labor shortage and an aging labor pool pose barriers to the development
of the banana industry. Considering the above, mechanization and intelligentization of banana
bud cutting and picking represent an inevitable development trend for the banana industry. In
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a banana plant, the buds are connected to the fruits via
the inflorescence axes. At the intermediate middle stage of
development, the buds need to be cut off manually to ensure the
quality of the fruit. Developing vision-based bud-cutting robots
capable of automatic perception and intelligent decision-making
is important for reducing labor costs and building intelligent
banana orchards.

In the fruit industry, visual inspection and image processing
for the recognition and positioning of fruits and flowers are
among the most intensively studied topics (Gongal et al., 2015;
Stein et al., 2016; Tang et al., 2020). Visual features are used to
differentiate between the targets and other objects (Saedi and
Khosravi, 2020). Classical image processing algorithms include
those based on color, threshold segmentation, and edge detection.
These algorithms are generally used for determining fruit type
and yield, positioning, and harvesting (Patricio and Rieder, 2018).
Wu et al. (2019) developed an automatic tomato harvesting
method that integrated multi-feature fusion and double-level
classification. Oppenheim et al. (2017) detected and counted
yellow tomato flowers using an unmanned aerial vehicle (UAV).
The tomato flowers were detected and segmented using self-
adaptive global thresholding, HSV color space segmentation,
and the morphological method (Oppenheim et al., 2017). Wang
et al. (2018) employed the color thresholding technique for
image processing. They used the conventional pixel segmentation
method to separate mango spike pixels from the crown
(Wang et al., 2018).

Target fruit recognition and positioning in a field is
quite challenging (Wang et al., 2017; Chen et al., 2021).
The environment is complex, with constantly varying light
conditions; the fruits, leaves, stems, or other targets may be
shaded (Feng et al., 2019). For this reason, simple color-based or
thresholding methods may not be suitable for target recognition
in a field (Li et al., 2020). Machine learning (ML) emerged along
with big data technology and high-performance computing,
and is defined as a scientific field that allows machines to
learn without rigorous programming. Traditional ML algorithms
include decision trees, clustering, Bayesian classification, SVM,
Adaboost, and so on. In recent decades, ML has been widely
used in various fields of agriculture (Tsaftaris et al., 2016;
Maione and Barbosa, 2019; Chopra et al., 2021; Wan Nurazwin
Syazwani et al., 2021; Yoosefzadeh-Najafabadi et al., 2021). “Deep
learning” is strongly related to the “neural network” in machine
learning. Since detection algorithms based on ML require proper
feature vector design for classification, and then use the feature
vectors to extract pixel or super pixel features for classification
to achieve detection, which strongly relies on personal prior
knowledge and is rather difficult. Therefore, the use of deep
convolutional neural networks for fruit and vegetable detection
has received much attention in recent years. Compared with
conventional color- and threshold-based models and manual
feature extraction, neural networks have been proven successful
in target fruit detection and positioning (Gongal et al., 2015).
For deep learning, the target detection model can be repeatedly
trained using different convolutions to mine deep-level features.
Thus, the model can more properly detect the target fruits and
vegetables in an uncontrollable field environment regardless of
the lighting conditions.

The object detector used for deep learning algorithms is
mainly divided into two types: one is a two-stage detector
based on candidate regions, and the other is a single-stage
detector based on the regression method. The first type of
two-stage detector divides object detection into stages, as in
the case of the R-CNN series. This type of neural network
has been widely applied to deep learning for fruit and flower
detection in orchards. Jia et al. (2020) proposed a modified
Mask R-CNN architecture to detect apples. The accuracy of
feature extraction obtained by combining the ResNet and
DenseNet architectures was 97.31% (Jia et al., 2020). Sa et al.
(2016) detected sweet peppers using the modified faster R-CNN
algorithm, and the F1-score was 0.83 (Sa et al., 2016). Dias
et al. (2018a) applied the CNN architecture to extract features
from the candidate flower regions separated by superpixel
segmentation. Subsequently, a support vector machine (SVM)
was employed to detect apple flowers. Both the recall and the
accuracy exceeded 90% (Dias et al., 2018a,b). They also used
the fully convolutional network (FCN) to detect flowers from
the images of apples, peaches, and pears (Dias et al., 2018b).
Lin and Chen (2018) described a strawberry flower detector.
The results showed that the deep-level faster R-CNN could
effectively monitor strawberry flowers under different camera
views, flower distances, overlaps, complex background lighting,
and blurred lighting (Lin and Chen, 2018). Tian et al. (2020)
proposed a modified Mask-R-CNN for a real case of apple flower
segmentation, with the accuracy reaching 96.43%. Complex
noises in field environments have considerable bearing on the
precision of detection.

To rapidly classify and recognize the objects, researchers
have put forward the second type of one-stage object detection
algorithm. You only look once (YOLO) and single-shot multibox
detector (SSD) series belong to this type (Redmon and Farhadi,
2017; Yin et al., 2020). Compared to two-stage object detectors,
single-stage object detectors are faster. Koirala et al. (2019)
compared the performance of six deep learning frameworks
in mango detection, and the MangoYOLO architecture was
constructed. The F1 score was 0.97, and the mean accuracy
was 0.98. The elapsed time for detecting each image was 70
ms (Koirala et al., 2019). Santos et al. (2020) detected grapes
using three networks, namely, Mask R-CNN, YOLOv2, and
YOLOv3, with the F1-score being 0.91. Zhang et al. (2021)
described a modified SSD detector based on fruit color and
morphological features. The frame rate of the stereo depth
camera for detecting palm fruits, durian fruits, and pineapples
reached 16.71 frames per second (Zhang et al., 2021). Wang
et al. (2021) described a modified YOLOv3-Litchi model for
detecting densely distributed lychee fruits in a large visual
scene, where the mean precision was 87.43%. Wu et al.
(2020) reported a real-time apple flower detector method using
the channel-pruned YOLOv4 deep learning algorithm, which
had an mAP of 97.31%. The detection speed was 72.33 f/s
(Wu et al., 2020).

For edge detection and cutting point determination for
targets in orchards, Luo et al. (2018) recommended using
visual positioning to determine the picking point (for cutting
off the fruit axis) on the fruit axis of grapes. Zou et al. (2012)
and Xiong et al. (2018) studied the positioning and error
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analysis of the picking point in the pedicel of litchi. Many
methods for picking point positioning have been proposed
for different fruit-picking robots. However, picking point
positioning may be influenced by some factors. Given the
variability of fruit type, size, shape, and color, it is almost
impossible to design a universal image segmentation algorithm,
which otherwise affects the determination of the image
centroid of fruits.

In banana orchards, machine vision and deep learning
algorithms have been successfully applied to the classification and
detection of a single target, such as fruits or stems. Neupane
et al. (2019) detected and counted banana plants from RGB
aviation images collected by UAV using fast-RCNN. Banana
fruits and flower buds are objects of multi-target detection in
banana orchards. However, the flower buds and inflorescence
axes do not always point vertically downwards. This image
feature adds to the complexity and computational difficulty. The
purpose of target classification and recognition from images is
to realize behavioral control of the visual robot operation. One
of the important considerations is balancing the accuracy and
speed of multi-target detection (Soviany and Ionescu, 2019).
Our research team detected the fruit axes of bananas using
the Deeplab v3+semantic segmentation network. A multi-view
3D perception of the center of the fruit axis of bananas in
a complex orchard environment was conducted (Chen et al.,
2020). A YOLOv4 neural network was then used to extract
deep-level features from the banana fruits, thus realizing the
accurate detection of bananas of varying sizes (Fu et al., 2020).
Determining the cutting points in the banana flower buds
and inflorescence axes is a necessary prerequisite for decision-
making in bud-cutting robots. Acquiring visual information
regarding the cutting point is a technical difficulty due to
wind disturbance, changing lighting conditions, and branch
and leaf shading.

Addressing complex environmental noises, we modified
the YOLOv3 algorithm for accurate and rapid multi-target
classification and recognition, Some parameters in YOLOv3
are optimized, and on the basis of clustering algorithm, the
cross entropy loss function is introduced into the confidence
and classification error model. An image segmentation and
denoising algorithm was used to obtain the images of
banana buds and inflorescence axes. A spatial geometry
model was thus established. The function for positioning
the inflorescence axis was based on finding the centroid of
the banana bud. The coordinate information of the cutting
point was obtained.

The highlights of the present study mainly include the
following:

(1) Images of banana buds and inflorescence axes were
obtained by image segmentation and denoising. The center
of symmetry and the centroid were calculated for the edges
of the flower buds.

(2) The cutting point was positioned using an edge image
processing algorithm and the geometric method. Thus, the
function for solving the inflorescence axis was established.

MATERIALS AND DATA COLLECTION

Testing Equipment and Software
The testing equipment had both hardware and software
components. The hardware part of the testing equipment
(Figure 1) included a computer for image processing, with
the following configuration: i7-7700K processor, memory 16G,
2,400 MHz; video card GTX1080Ti 11G. A camera and
high-resolution smartphone were used for the sampling. The
resolution was 16 million pixels.

Image and Data Collection
The sampling objects were banana fruits, flower buds, and
inflorescence axes connecting the buds to the fruits (Figure 2).
Each banana tree had only one bud, with the bud and the
inflorescence axis pointing vertically downwards. When the fruits
reach a particular stage of growth, the bud should be cut off
from the inflorescence axis; this is known as bud cutting. Banana
fruits, buds, and inflorescence axes are three types of targets with
different features. The detection of these targets is influenced by
the random shading of leaves or plants, background noises, and
lighting. In this study, multi-target recognition was performed
under different lighting conditions. The sampling strategy was
to sample wherever there was a flower bud. The objective was
the automatic recognition of flower buds and inflorescence axes
to formulate the positioning decision for robotic bud picking.
Besides, the multi-target sampling of bananas lays the basis for
yield estimation and maturity assessment.

The experimental images were obtained in two batches. The
photographs were taken on July 25, 2020, which was a sunny
day, at the Lingnan Fresh Fruit Base of the Guangzhou Fruit
World in Guangdong Province, China. The weather changed
from sunny to cloudy from August 4, 2020 to August 5, 2020. The
location was a banana orchard in Jiangmei, Guangdong Province.
Multiple targets, including fruits, inflorescence axes and buds,
were included in the photographs. Thus, the banana plants had

FIGURE 1 | Computer, software, and camera.
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FIGURE 2 | Samples of bananas, flower buds, and inflorescence axes under front-lighting and backlighting.

multiple features that could be detected as targets in this study.
During the sessions, 5,343 images were collected under different
lighting conditions. Among them, 5,300 images were selected and
subjected to annotation using an image annotation tool. A script
was written for the automatic, random division of the samples
into the training, validation, and testing sample sets. There were
4,800 images in the training set, 364 images in the validation set,
and 685 images in the testing set, accounting for 90.60, 7, and
13%, respectively.

METHOD AND ALGORITHM
DESCRIPTION

Multi-Target Classification of Banana
Fruits, Flower Buds, and Inflorescence
Axes
Samples for the multi-target recognition of bananas are shown in
Figure 2. Class annotation was performed for the original multi-
target images obtained in the experiment. The script was written
for automatic annotation to reduce the manual time. The size of
the sampled images was set to 721 × 960 pixels. An image of
random size was input and scaled until the w or h was 416 pixels.
Then, the image was used as the network input. That is, the input
was a three-channel RGB image with a size of 416× 416 pixels.

Multi-Scale Feature Fusion Method
For multi-target detection of bananas in which different features
were recognized simultaneously, the prediction was done on
multiple scales. The influence of resolution on the prediction is
mainly determined by the resolution information, that is, the
number of pixels (Figure 3). Logistic regression only applies to
binary classification problems. While maintaining the accuracy,

we designed a multi-label logistic classifier by modifying logistic
regression to adapt to multi-classification problems. The new
classifier utilized the Sigmoid function. If the confidence level
for a bounding box was above 0.5 after feature extraction and
after the Sigmoid function was constrained, it meant that the
object surrounded by the bounding box was labeled correctly.
In the YOLOv3 model belonging to the second type of method,
the upsampling (like FPN) and data fusion algorithm were used
to fuse banana images on three scales (13 × 13, 26 × 26, and
52× 52). Then, target detection was performed separately on the
multi-scale feature fusion map to improve the performance. The
multi-scale fusion information about banana fruits, buds, and
inflorescence axes is shown in Figure 3.

YOLOv3 Network Architecture for
Multi-Feature Targets
YOLOv3 utilized the feature extraction network part Darknet-
53, which was composed of five residual blocks. This model
borrowed from the residual neural network. The number of
anchor boxes used in the algorithm changed from 5 in the
original YOLOv2 model to 9. The size of the anchor boxes
was calculated by applying k-means clustering to optimize the
width and length of the actual target frame of the bananas
(Redmon and Farhadi, 2017).

The separate detection of each feature of the banana plants
(inflorescence axes and buds) was performed using multi-
scale feature fusion maps. This method could enhance the
detection performance for targets of varying sizes and also the
shaded ones. Besides, connections were introduced between the
layers to strengthen the convergence performance. The multi-
target detection of bananas was conducted in a complex field
environment where noise interference abounded. The parameters
of the existing YOLOv3 architecture still needed to be modified.
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FIGURE 3 | Multi-scale feature map of the bananas. (A) 416 × 416 image. (B) 13 × 13 grid. (C) 26 × 26 grid. (D) 52 × 52 grid.

FIGURE 4 | YOLOv3 network architecture for the multi-feature targets of banana plants.

Here, the loss function was modified and improved. The network
architecture is shown in Figure 4.

Loss Function
The loss function of YOLOv3 can affect the model convergence. It
also serves as the basis for penalizing incorrect detection. The

Sigmoid function was designed and used for the activation of the
final output. Subsequently, SSE was used to calculate the final loss.
However, the Sigmoid function has a saturation problem. Once
the input falls within the saturation region, it approaches zero. As
a result, the gradient nearly vanishes. If the error value calculated
by using the squared error is very small, the network parameters
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can hardly be trained effectively (Lyu et al., 2019). One way to
solve this problem is to introduce a cross-entropy loss function
when the true value is either 0 or 1, as given by

Loss = −
1
n

∑
x

(
y ∗ ln (a)+

(
1− y

)
∗ ln (1− a)

)
(1)

where a is the output value of the error model after the
introduction of a Sigmoid function. The YOLOv3 loss function
consists of three parts, namely, location error (set to l1box),
classification error (l2obj), and error of the confidence level
(l3cls). The squared error is considered as a function to reduce
the cumulative error of the loss function and to mitigate
the gradient vanishing when calculating the coordinate errors
(location errors). If this error increases, the parameter gradient
will increase. But when the error is very large, the parameter
gradient decreases, leading to an uncertainty problem. Therefore,
when calculating the confidence interval and the classification
error, we introduced a cross-entropy loss function (Yin et al.,
2020; Cao et al., 2021). Based on the initial YOLO loss function,
the loss function was built using (6). Thus, the modified loss
function has the following form:

Loss = l1box+ l2obj+ l3cls = λcobox

s2∑
i=1

B∑
i=0

Iobj
i,j
(
2−

(
wi − hi

))

Awh + λcobox

s2∑
i=1

B∑
i=0

Iobj
i,j Axy + λnoobj

s2∑
i=1

B∑
i=0

Iobj
i,j Axy

+λnoobj

s2∑
i=1

B∑
i=0

Inoobj
i,j Cii + λobj

s2∑
i=1

B∑
i=0

Iobj
i,j Cii

+λclass

s2∑
i=1

B∑
i=0

Iobj
i,jc∈class[pi (c) log

(
p̌i (c)

)
+ Dp] (2)

which indicates whether the Iobj
I,j bounding box of the grid I

and grid J network is responsible for detecting the banana
targets. cobox is used to improve the stability of the loss function
and enhance the coordinate loss prediction of the bounding
box. is the weight coefficient of the coordinate error model. obj
,noobj are for the trade-off between the positive and negative
samples, representing the weight coefficients for the error of
the confidence level with the target included and excluded,
respectively. λclass is the weight coefficient for the classification
error. wihi are the width and height of the real target frame
of bananas, respectively; Ci is the confidence level of the real
banana target; pi is the class probability prediction. In the

squared error term, let Awh = (wi − ŵi)
2
+

(
hi − ĥi

)2
;Axy =(

xi − ŷi
)2
;Cii = Ĉilog (Ci)+

(
1− Ĉi

)
log (1− Ci);Dp =(

1− p̂i (c)
)

log(1− pi (c).
Multi-target detection of bananas covered the fruits,

inflorescence axes, and buds. Therefore, unlike usually, softmax
was not chosen for predicting the class labels. Instead, logistic
regression was used to predict the class. The function for realizing

multi-target prediction with multi-scale feature fusion is known
as the logistic function, given by

fx =
1

1+ e−1 (3)

Modification of the YOLOv3 Model
Based on Clustering Optimization and
Model Evaluation
A trade-off was considered between the elapsed time and
prediction. First, some parameters of the YOLOv3 model were
optimized based on environmental features and the biological
features of bananas as the multi-feature target. During model
training, the epoch parameters were 100 iterations and batch_size
32, which increased the elapsed time and memory consumption.
While ensuring precision, the epoch, number of iterations,
and batch_size were set to 50, 39, and 8, respectively. The
experimental results showed that when the number of iterations
was approximately 50, the loss function curve tended to stabilize.
The YOLOv3 model with optimized parameters for multi-
target recognition of bananas was known as the modified
YOLOv3 thereafter.

Based on the above, the dimensionality of the target
candidate frame in the YOLOv3 model was subject to clustering
optimization to optimize the YOLOv3 model and improve the
precision. The YOLOv3 had default values for the number of
target candidate frames and height-to-width ratio and hence,
enjoyed universality to a certain degree. However, the YOLOv3
still needs to be optimized when applied to the multi-target
detection of bananas in a complex field environment and
changing lighting conditions. Here, the YOLOv3 model was
optimized using the fusion clustering algorithm (known as
YOLOv3 based on clustering optimization). Clustering was
performed using the k-means clustering and training dataset.
The number of target candidate frames, height, and width fit for
the prediction were updated. The parameters of the multi-target
candidate frame are shown in Table 1. We conducted a multi-
target recognition experiment using the YOLOv3 model based on
clustering optimization under different lighting conditions.

To assess the generalization ability of the deep learning
network and optimize the model stepwise, we determined the
precision (Pre), recall, F1-score and Matthews Correlation
Coefficient (MCC) as precision measure of the binary
classification model. The calculation formulae are shown in
Eqs. (4)–(6):

Pre =
Tp

Tp + Fp
× 100% (4)

TABLE 1 | Parameters of candidate frames for multiple features of bananas.

Serial No. 1 2 3 4 5 6 7 8 9

Height of the new candidate frame 23 25 28 31 43 51 66 169 172

Width of the new candidate frame 31 53 81 148 67 87 111 233 158

Height of the original candidate frame 10 16 33 30 62 59 116 156 373

Width of the original candidate frame 13 30 23 61 45 119 90 198 326
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Recall =
Tp

Tp + Fn
× 100% (5)

F1 =
2× Pre × Recall

Pre + Recall
× 100% (6)

MCC

=
Tp × Tn − Tp × Fn√

(Tp + Fp)× (Tp + Fn)× (Tn + Fp)× (Tn + Fn)
(7)

where is the true positive Tp is the false positive, and the false Fp
is preserved; Fn is the false negative, and the true is removed.

During the training experiment, the full data set of the multi-
target recognition of bananas was run once (epochs). For each
epoch, one group of precision and recall was obtained. By setting
different thresholds of the modified YOLOv3 model, several
groups of precision and recall were obtained, and a PR curve was
drawn. The area under the curve was the average precision (AP).

CALCULATION METHOD FOR THE
CUTTING POINT

Geometrically, the flower buds are inverted cones with basic
symmetry. The cutting point of the bud is located on the
inflorescence axis. The midpoint of the bounding rectangle of
the inflorescence axis can be easily found when the bud and the
inflorescence axis point vertically downwards. However, some
buds and inflorescence axes do not point vertically downwards
but at an angle δ with respect to the vertical direction. In
this case, finding the midpoint of the bounding rectangle
of the inflorescence axis to position the cutting point may
lead to mistakes.

Without loss of generality, the cutting point should be
calculated by determining the centerline when the bud is at an
angle of δ. First, multi-target classification was done using the
YOLOv3 model based on clustering optimization. The image
edges of the buds and inflorescence axes were determined using
the edge algorithm. The centroid and the center of geometric
symmetry were solved based on the symmetry of the bud. Next,
the cutting point in the inflorescence axis was calculated using
the geometric method. This method first determined the distance
from all the detected straight lines to the centroid. Then, the
straight line with the shortest distance was chosen by imposing
the minimum constraint on the distance from the point to the
line. This is the line along which the inflorescence axis runs.
The midpoint of this line is chosen based on the coordinates
and treated as the cutting point. The spatial coordinates of this
cutting point forms the basis for configuring the parameters of
tool posture in the robot actuator. The schematic of the cutting
point positioning algorithm is shown in Figure 5.

Image Segmentation
Image segmentation for flower buds and inflorescence axes is
the basis of the cutting point positioning algorithm. Multi-
target classification and recognition of banana fruits, flower

buds, and inflorescence axes were first performed for noise
reduction. However, some bud images might contain green or
dry leaves, fruit branches, and lighting noises. The bud color
differs from the color of a few green or dry leaves. Here, the bud
edges were extracted by extracting the color components and by
Otsu’s binarization.

Mathematical morphology is applicable to the denoising of
complex images and image restoration due to its intuitiveness
and suitability for processing geometrical structures. The opening
operation can inhibit positive impulse noise in the bud signals,
while the closing operation can inhibit the negative impulse
noise. To remove the positive and negative noise from the signals
simultaneously, we combined the opening and closing operations
to form a morphology filter. Noise in the binary images of the
buds were mainly composed of the surrounding noise blocks and
the noise holes inside. The opening operation was adopted to
remove the noise surrounding the buds, and the closing operation
was for removing the noise holes inside. That is, set A was closed
using the structure element B. Denoising was performed using
the morphological method. However, the black noise within the
contour of the bud became enhanced (Figure 6).

After image segmentation, some small curled petals might
be separated from the overall contour of the bud under certain
conditions. However, these petals were of negligible size. To
reduce the error in the computation of the image centroid, we
proposed extracting the maximum connected region from the
main contour of the bud. In this study, 50 sample images were
used for cutting point positioning on the inflorescence axis.
Given the large sample size, the conventional denoising approach
usually has a low efficiency as denoising is performed for one
image at a time. Here, denoising was performed using the batch
processing method.

Solving the Image Centroid
After extracting the maximum connected region, a binary image
was obtained for the bud region. The pixel value of this region
was set to 1 (white), while the remaining was set at 0 (black).
The centroid coordinates of the bud were estimated (Luo et al.,
2018) using the formula below according to the definition of the
moment of the image centroid:{

xci =
∑

xf (x, y)/
∑

f (x, y)
yci =

∑
yf (x, y)/

∑
f (x, y)

(8)

where xci, yci are the centroid coordinates of the upper and lower
parts of the bud, respectively; x, y are the pixel coordinates; f (x, y)
is the pixel value of the binary image at point (x,y).

After binarization, the image in the H channel was divided
into the upper and lower parts. The pixel location information
was estimated for each target. It was determined whether the
pixel point fell within the bud region. The pixel information was
estimated and the centroids in the upper and lower parts were
determined. The centroid rc1 (xc1, yc1) in the upper part and the
centroid rc2(xc2, yc2) in the lower part were connected to find the
centerline of the bud. The image centroid of the banana buds is
shown in Figure 7. After obtaining the centroid coordinates, the
minimum bounding rectangle was found for the bud region by
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FIGURE 5 | Flowchart of cutting point positioning.

fitting. When λ = 900, = 0, the bud and the inflorescence axis
point vertically downwards and are symmetric. When λ < 900,
the bud and the inflorescence axis are at an angle of δ with respect
to vertical direction, as shown in Figure 7B.

lmax is the maximum width of the bud contour; s is the distance
from the detected straight line to the centroid; T(xt, yt) is the
highest point on the bud edge; Qi1 and Qi2 are end points of
the detected line segment; Ht is the height of our interest in the
inflorescence axis; Qih is the cutting point in the inflorescence

point, with a distance of HQ. Based on the principles above, the
image centroid and central axis were found for the buds, as shown
in Figure 8.

Geometric Calculation of the Position of
the Cutting Point in the Bud
According to the growth features of the buds and inflorescence
axes and the principles of geometric method, we constructed a
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FIGURE 6 | Image segmentation process of the banana buds. (A) Original image. (B) H component image. (C) Segmented image. (D) Denoising.

FIGURE 7 | Schematic for solving image centroid and cutting point. (A) = 900. (B) = 900.

schematic diagram for the calculation of the cutting point. First,
the bounding rectangle of the inflorescence axis was found. Then,
the inflorescence axis information and growth direction were
extracted. Finally, the coordinates of the optimal cutting point
were determined.

Due to shading and color interference, it was difficult to
extract the inflorescence axis. In Figure 9A, the inflorescence axis
and the banana leaves in the background are similar in color.
Therefore, it is difficult to extract the inflorescence axis region
by setting a specific hue. Besides, the inflorescence axis itself
has a complex geometric shape. Under a particular illumination,
shadows will appear on the boundaries of the inflorescence axis,
causing considerable interference in the binary image. Here,
the inflorescence axis was treated as a slender cylinder in axial

symmetry, and the region was extracted by image processing.
Thus, the problem of extracting inflorescence axis information
was converted into a problem of extracting the binary mask of
the inflorescence axis.

The images where converted into the HSV coordinate system;
the HSV channels were observed, and the V channel (Figure 9B)
showed the best separation of the inflorescence axis from the
background. Thus, image segmentation was primarily performed
in the V channel. To remove the problems of random colors
and uneven brightness, we subtracted the values in the V and
H channels after histogram equalization. This was followed by
a phase inversion. After this procedure, only the portion with
higher brightness remained as noise (Figure 9C). The boundaries
of the inflorescence axis in the original image were blurred. We
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FIGURE 8 | Image centroid calculation for the buds. (A) Original image of the bud. (B) Upper and lower part of the bud. (C) Calculating the centroid. (D) Central axis.

FIGURE 9 | Inflorescence axis extraction and growth direction calculation. (A) Original image. (B) Image in the brightness channel. (C) Threshholding. (D) Denoising.
(E) Morphological processing. (F) Final solution of results.

ran the contour-finding algorithm for all the homochromatic
simply connected regions in Figure 9C. The regions below
the threshold within the contour were eliminated. In this way,
nearly all the noise was removed while maximally preserving the
boundary features of the inflorescence axis (Figure 9D).

The following assumption was made within the bounding
rectangle of the inflorescence axis to eliminate the influence of
the remaining irrelevant area and boundary irregularity of the
inflorescence axis: The inflorescence axis had the largest area
ratio. Figure 9D was further subject to morphological processing,

such as expansion and corrosion, to obtain Figure 9E. Then
Figure 9E was solved to calculate the growth direction of the
inflorescence axis (Figure 9F).

As to the bounding rectangle of the inflorescence axis,
the boundaries were determined by finding the pixel pair.
First, the boundary coordinates of the inflorescence axis were
estimated and clustered. The outliers were eliminated by using
the clustering-based denoising algorithm. The feature boundary
line was fitted. The center of the inflorescence axis was found
based on the mean diameter or pixels of the inflorescence axis.
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FIGURE 10 | Comparison of the multi-target recognition results of bananas.
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TABLE 2 | Comparison of the multi-target detection results between the YOLOv3 model, YOLOv3 model based on clustering optimization, R-CNN model and YOLOv4
model (238 images).

Model Flower buds Banana Inflorescence axis mAP t (s)

AP Recall AP Recall AP Recall

Faster-R-CNN 98% 99.90% 99% 99% 90% 90.30% 95.80% 0.43

YOLOv3 98% 97.83% 96% 95.95% 85% 85.07% 92.95% 0.24

Modified YOLOv3 97% 97.90% 94% 93.60% 88% 90% 92.98% 0.24

YOLOv4 98% 98.64% 96% 96.76% 86% 88.21% 93.46% 0.20

The pixel coordinates of the two end pointsQi1, Qi2 in the
line segment of the inflorescence axis are (xi1, yi1) and (xi2, yi2),
respectively. The two endpoints are connected by a straight line:

li
(
x, y

)
= (x− xi1)

(
yi2 − yi1

)
− (y− yi1)(xi2 − xi1) (9)

The centroid in the upper part of the bud and the center of the
bud were already known. The bud was basically symmetrical.
The inflorescence axis is usually above the centroid of the
bud. When the bud and the inflorescence axis point vertically
downwards, the centerline of the bud overlaps with the axis of
the inflorescence axis (Figure 7A). The extension of the axial line
of the inflorescence axis passes through the centroid of the bud
(Luo et al., 2018). But in a real orchard, a few buds do not point
vertically downwards but at an angle of δ (Figure 7B). Here, the
minimum constraint function min (Si) for the distance from the
point to the line was solved to find the straight line segment where
the cutting point was located. The midpoint of this straight line
segment Qih was considered the cutting point (Figure 9F).

By analogy with the method of solving the distance from the
point to the straight line segment, we found the distance from
each straight line segment to the centroid Si:

Si = min
(xc1 − xi1)

(
yi2 − yi1

)
− (yc − yi1)(xi2 − xi1)√(

yi2 − yi1
)2
+ (xi2 − xi1)

2
(10)

EXPERIMENTAL RESULTS AND
ANALYSIS

Classification and Recognition of
Banana Fruits, Flower Buds, and
Inflorescence Axes
The modified YOLOv3 model was trained using the training
set and subsequently verified using the validation set. Features
were repeatedly extracted from the trunk layer and the detection
layer on multiple scales to improve the efficiency of the network
in detecting tiny objects. A comparison was made between the
modified YOLOv3 model, YOLOv4 model, and Faster R-CNN.
The values in the brackets are the precision.

As shown in Figure 10, the precision was higher for banana
fruits and buds. YOLOv3 had a higher precision for detecting
the inflorescence axis, which was comparable to that of the faster
R-CNN. However, when the inflorescence axis was very short, a
part of it was blocked by the petals growing upwards. Besides,

the short inflorescence axis could hardly be separated from the
background. Apparently, lighting had a large impact on the
precision of the YOLOv3 model.

Comparison of the precision and elapsed time for the modified
YOLOv3, faster R-CNN, and YOLOv4 in multi-target detection is
shown in Table 2. The average elapsed time for each image in the
sample set is denoted by t.

Table 2 shows that the mAP of YOLOv3 and clustering
optimization-based YOLOv3 was 92.95 and 92.98%, respectively,
for the multi-target detection of bananas. The average elapsed
time for the detection of each image was 0.24 s. Table 2 shows that
the mAP of the YOLOv4 model was 93.46% for the multi-target
detection of bananas. The average elapsed time for the detection
of each image was 0.2 s. The mAP of Faster R-CNN was 95.80%
for the multi-target detection of bananas. The average elapsed
time for the detection was 0.43 s per image.

To account for the influence of lighting on multi-target
recognition, 1,062 and 1,072 images of banana fruits, buds, and
inflorescence axes in front-lighting and backlighting conditions,
respectively, were used for the recognition experiment.

The results showed that under the front-lighting condition,
YOLOv3 based on clustering optimization had the highest
mAP, which was 97.90%, followed by Faster-R-CNN. Both had
a precision above 97.00%. Under the backlighting condition,
Faster-R-CNN had the highest precision of 97.47%, followed by
YOLOv3 based on clustering optimization. The overall average
recall was 97.55% with Faster-R-CNN vs. 95.50% with YOLOv3
based on clustering optimization. In the front-lighting condition,
both models had a comparable recall. But in the backlighting
condition, Faster-R-CNN had a higher recall.

Taken together, YOLOv3 based on clustering optimization
performed better in both front-lighting and backlighting
conditions with a higher recall. The modified YOLOv3 model
based on clustering optimization performed well with a good
balance between speed and precision under both the front-
lighting and backlighting conditions. During the robotic bud
cutting and picking operation, the modified YOLOv3 based on
clustering optimization can preferably be chosen for positioning
in the front-lighting condition.

Positioning of the Banana Buds and
Cutting Point in the Inflorescence Axes
Thirty groups of samples were chosen for the cutting point
positioning experiment. First, the cutting point was positioned
manually in the inflorescence axis. Next, the proposed
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TABLE 3 | Comparison of the multi-target detection results between the YOLOv3 model, YOLOv3 model based on clustering optimization, R-CNN model and YOLOv4
under front-lighting and backlighting conditions.

Model AP for fruits AP for flower buds AP for fruit axes Mean average precision (mAP)

Front-lighting Backlighting Front-lighting Backlighting Front-li ghting Backlighting Front-lighting Backlighting

Faster-R-CNN 100% 100% 100% 100% 93% 93% 97.64% 97.47%

YOLOV3 based on
parameter
optimization

100% 95% 94% 92% 84% 66% 92.63% 84.38%

YOLOV3 based on
clustering
optimization

98% 94% 100% 97% 95% 82% 97.9% 91.11%

YOLOV4 100% 96% 96% 92% 89% 74% 95.30% 87.37%

TABLE 3–1 | Comparison table of cutting point and pixel positioning error under two types of lighting.

Image Image
frame

Scope of the optimal Calculated cutting Error between the optimal and

cutting point/pixel point/pixel the calculated cutting point/pixel

X Y x y ex ey e

Front-lighting
on sunny days

47 147 44 145 3 2 4

Backlighting on
sunny days

85 202 88 206 3 4 5

algorithm was run for calculation and comparison, and the
error was estimated.

Let the optimal cutting point positioned manually on the
inflorescence axis be Mih. The calculated cutting point is Qih.
Thus, the error 1 is given by:

1x = |Xi − xi| (11)

1y = |Yi − yi| (12)

where Xi, Yi are the pixel coordinates of the i row and the i
column in the pixel region for the optimal cutting point manually
determined in the inflorescence axis, respectively. xi, yi are the
pixel coordinates of the i row and the i column for the calculated
cutting point in the inflorescence axis, respectively.

The pixel scope of the optimal cutting point (20 ± 15
pixels × 65 ± 30 pixels) was manually set up. The optimal
cutting point was located along the centerline of the inflorescence
axis (20 ± 15 pixels × 65 ± 30 pixels). The pixel positioning
errors calculated for the 60 images are shown in Table 3. X
and Y are the pixel scopes of the optimal cutting point; x and
y are the coordinates of the calculated cutting point; ex is the
pixel positioning error along the row direction; ey is the pixel
positioning error along the column direction; e is the overall pixel
positioning error.

As shown by the cutting point positioning errors for the buds
and inflorescence axes, the error was kept below 15 pixels for 55
images. On these images, the cutting point was positioned along
the edge of the inflorescence axis. The error was above 15 pixels
for five images, where the cutting point was positioned outside
the inflorescence axis. The positioning error along the Y-direction
was significantly lower than that along the X-direction. This

was probably because the mask generated by the morphological
processing of shadows on the edge of the inflorescence axis
shifted in the X-direction.

When detecting the rectangular region associated with the
inflorescence axis, the cutting point might be mistakenly
positioned at the edge of the axis. However, the optimal cutting
point must be located on the centerline of the inflorescence axis.
The positioning error can be estimated as the radius of the fruit
stem. We have developed a clamping and cutting mechanism for
the end actuator based on fault tolerance analysis (Zou et al.,
2016). This mechanism can compensate for the pixel positioning
error of the cutting point in the X (row) direction and identify
the cutting point.

The previous algorithms can only get better results when
facing fruits with simple outline shape, but cannot get better
classification results when facing fruits with complex and
irregular or fruits with complex growing environment (such
as bananas). The algorithm proposed in this study can further

TABLE 3–2 | Statistical table of cutting point positioning under two types of
lighting.

Lighting
conditions

Original
image/
frame

Number of
images

meeting the
positioning

requirements/
frame

Percentage of
images

meeting the
positioning

requirements

Average
elapse
time

Front-lighting
on sunny days

30 28 93% 439

Backlighting on
sunny days

30 27 90% 448
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calculate the detected target on the basis of deep learning, and
has achieved high detection accuracy in both bright and backlight
environments, and has high robustness in cooperation with the
end effector based on fault-tolerant design developed by us.

CONCLUSION

This study focused on the multi-target recognition of banana
fruits, buds, and inflorescence axes in a complex orchard
environment, and proposed YOLOv3 model and edge detection
algorithm based on cluster optimization, and constructed a
calculation model of flower bud cutting point. Experiments
showed that the mAP and speed of modified YOLOv3 and
YOLOv4 were satisfactory. The precision was 92.98 and
93.46%, respectively. The average time for field detection of
each image was 0.24 and 0.2 s, respectively. The accuracy
of the improved YOLOv3 is 97.90 and 91.11% under the
conditions of front-lighting and backlighting conditions,
respectively. The improved YOLOv3 had better performance
and higher recall rate, and had achieved a good balance
between speed and accuracy. Under the conditions of
front-lighting and backlighting, the total pixel positioning
errors between the calculated optimal cutting point and
the manually determined optimal cutting point in flower
bud were 4 and 5 pixels, respectively. The proportion of
images meeting the positioning requirements was 93 and
90%, respectively. The experiments showed that the proposed
algorithm could satisfy the requirements for recognition
performance and comprehensive performance in the cutting
point positioning process.

Multi-target classification and recognition of bananas from
images potentially offer data support for the yield estimation
of bananas. In the present study, we performed multi-target

detection of bananas using monocular vision and by calculating
the cutting point on the xy-plane. We recommend stereoscopic
vision to obtain the 3D spatial information required for the
detection. Another important research task related to the smart
banana orchard operation is the robotic recognition of spatial
coordinates of the inflorescence axis based on stereoscopic vision
and the robot obstacle avoidance and cutting behavior.
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