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We assembled a dual-layered biological network to study the roles of resistance gene
analogs (RGAs) in the resistance of sugarcane to infection by the biotrophic fungus
causing smut disease. Based on sugarcane-Arabidopsis orthology, the modeling used
metabolic and protein-protein interaction (PPI) data from Arabidopsis thaliana (from
Kyoto Encyclopedia of Genes and Genomes (KEGG) and BioGRID databases) and
plant resistance curated knowledge for Viridiplantae obtained through text mining of the
UniProt/SwissProt database. With the network, we integrated functional annotations
and transcriptome data from two sugarcane genotypes that differ significantly in
resistance to smut and applied a series of analyses to compare the transcriptomes
and understand both signal perception and transduction in plant resistance. We
show that the smut-resistant sugarcane has a larger arsenal of RGAs encompassing
transcriptionally modulated subnetworks with other resistance elements, reaching hub
proteins of primary metabolism. This approach may benefit molecular breeders in search
of markers associated with quantitative resistance to diseases in non-model systems.

Keywords: biological networks, data mining, data integration, transcriptome, biotrophic pathogens, Saccharum

INTRODUCTION

Plant defense mechanisms against pathogens are a multi-layered complex of biological interactions.
Resistance signaling cascades are triggered in plants through direct and indirect associations of
resistance proteins with either pathogen/microbe/damage-associated molecular patterns (PAMP,
MAMP, and DAMP) or more target-specific effector proteins (Jones and Dangl, 2006; Macho and
Zipfel, 2014). Other mechanisms such as the guardee hypothesis (Dangl and Jones, 2001; Jones
and Dangl, 2006), the decoy model (Van Der Hoorn and Kamoun, 2008), and the formation of
multi-protein R-complexes (Friedman and Baker, 2007) have also been shown to trigger resistance
in plants. Furthermore, quantitative disease resistance (QDR) is predominant in crops and is
conferred by a complex association of multiple plant pathways (Delplace et al., 2020).
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Resistance (R) genes harbor conserved features frequently
used in genomic studies searching for associations between
RGAs and disease resistance in crops (Hübner et al., 2019;
Neupane et al., 2019; Rody et al., 2019). Despite the wealth
of available “omics” data, understanding the dynamics of
biochemical interactions within and across organisms remains
challenging. Network analysis based on graph theory is a critical
component of systems biology and offers a promising approach
for reconstructing complex biological networks and integrating
omics with primary biological data (Junker and Schreiber, 2008;
Peyraud et al., 2017). Although promising in humans (Khorsand
et al., 2020; Kösesoy et al., 2021) and Arabidopsis (Li et al.,
2017), the modeling and analysis of biological networks have
yet to be widely applied to study plant-pathogen interactions of
non-model organisms such as sugarcane.

Sugarcane is the primary crop of the world for sugar and
biofuel production. Despite its economic importance, no large-
scale databases such as KEGG (Kanehisa et al., 2004) and
BioGRID (Oughtred et al., 2019) provide interaction information
for sugarcane. Due to the complex combination of polyploidy
and aneuploidy (D’Hont et al., 1998; Piperidis and D’Hont,
2020), only recently has an allele-defined genome sequence, one
of the principal ancestors of modern sugarcane, the Saccharum
spontaneum clone AP85-441, become available (Zhang et al.,
2018). Subsequently, a monoploid version of the modern
sugarcane R570 (Garsmeur et al., 2018) and a gene space assembly
of the SP80-3280 genotype (Souza et al., 2019) have contributed
further to start a new genomic era for sugarcane breeding.

In this study, we modeled a dual-layered (metabolic and PPI
layers) biological network for sugarcane using interaction data
from Arabidopsis thaliana and curated interaction knowledge
regarding plant resistance for Viridiplantae obtained through
text-mining of the UniProt/SwissProt database (Boutet et al.,
2007). We integrated multiple functional annotations and
transcriptome data (Rody et al., 2019) from two sugarcane
genotypes exhibiting different levels of resistance to biotrophic
Sporisorium scitamineum, the causative agent of smut disease.
Then, we investigated whether the model would help us
understand the roles of RGAs and subsequent molecular events
following biotrophic pathogen infection. Both genotypes had
subnetworks encompassing fully transcriptionally modulated
paths from the peripheral RGAs to the central hub proteins of
primary metabolism. We show that differences in the arsenal
of expressed RGAs between the two genotypes are potentially
related to chromosome ancestry, offering clues regarding the
ultimate source of augmented pathogen perception by the
resistant genotype.

RESULTS

The Dual-Layered Network
A total of 9,186 nodes (proteins and/or reactions) and 42,499
edges (interactions) formed the multigraph of the Arabidopsis-
based dual-layered sugarcane network, harboring 428 connected
components in a disconnected network. The largest connected
component of the network (Table 1) was comprised of 8,548

(93%) nodes and 42,243 (99%) edges. Because (1) some statistics
require the network to be fully connected to be applied and (2)
finding pathways was the main focus of this study, we considered
the latter in all downstream analyses.

The sugarcane dual-layered network exhibited a highly
inhomogeneous and long-tailed degree distribution (Figure 1A),
with many nodes forming few connections, and few nodes
forming many connections. Likewise, the K-means unsupervised
learning algorithm predicted that most nodes (N = 6,576)
belong to group A of less connected nodes (Figure 1C),
and only a few super-connected nodes belong to group D
(N = 52) (Figures 1C,D). Nodes within-group D were also
considered hubs.

Results from the Molecular Complex Detection (MCODE)
algorithm also illustrate the inherent modularity of biological
networks. MCODE predicted 3,139 nodes within 341 different
densely connected modules. Overall, there was a consistent
overlap of nodes from the three different interaction datasets
(KEGG, BioGRID, and SwissProt) (Figure 1B). The PPI layer
had 4,696 nodes connected to 2,187 first neighbor nodes from
the metabolic layer, which allowed us to explore signaling
transduction on pathogen infection through both metabolic
reactions (enzyme catalysis) and protein-protein interactions
(PPIs). Most of the nodes and interactions predicted using
text mining were also predicted by either BioGRID or KEGG
databases (Figure 1B). Only 102 nodes (1.19% of 8,548 nodes),
including 10 RGA nodes, were predicted using text mining over
UniProt/SwissProt.

RGAs Nodes Within the Dual-Layered
Network
We supplied information from an annotated set of sugarcane
RGAs (Rody et al., 2019) into the network. Most of the RGA
nodes (nodes having at least one sugarcane RGA ortholog) were
within the less connected group A (N = 214) (Figure 1C),
and therefore, RGA nodes were mainly at the periphery of the
dual-layered network. No RGA nodes were within the super-
connected nodes of group D. PPI layer (N = 342) and text mining
annotations (N = 120) predicted most of the RGA nodes, with
an overlap of 109 nodes. Only nine RGA nodes were within the
metabolic layer (Figure 1B).

We identified 654 protein nodes (excluding reaction
nodes) as cutting vertices (CV) in the dual-layered network
(Supplementary Table 1). It is noteworthy that 37 RGA nodes
were among CV protein nodes (RGA-CV nodes) (Table 2).
From these, eight RGA-CV nodes were classified within the
highly connected centrality group C, including orthologs of
the well-studied leucine-rich repeats (LRR) proteins of BAK1,
BRI1, FLS2, and BRL2 regulators of the immune response in
Arabidopsis.

RGAs in Core-Periphery Strongly
Connected Components
We interrogated the network for information about the
roles of differentially expressed RGAs (RGA-DEs) using data
from previous experiments with susceptible (IAC66-6) and
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FIGURE 1 | Overview of the sugarcane dual-layered network topology. (A) Histogram of degree centrality showing the majority of nodes with low values. (B) The
number of nodes from each of the three interaction databases is used in this work. (C) The number of total nodes and nodes harboring RGA orthologs in each of the
four K-means degree centrality groups of (A) less connected, (B) intermediate connected, (C) highly connected, and (D) super-connected nodes. (D) Graph view of
the largest component of the sugarcane dual-layered network with nodes colored according to the legend.

resistant (SP80-3280) sugarcane genotypes inoculated with smut
biotrophic pathogen. By applying the expression values of the
sugarcane ortholog with the smallest DE p-value as attributes of
nodes, we investigated whether the RGA-DE nodes were within
the predicted MCODE modules and which other DEGs were
within the same modules.

Eleven MCODE modules (Supplementary Table 2) covered
nodes extending from the core to the outermost peripheral nodes
(A to D centrality groups) (Figure 2). Of these, five modules
included RGA nodes (Figure 2; indicated with black diamonds),
and three modules had RGA-DE nodes: MCODE 42 (6 RGA-
DE nodes from IAC and 10 from SP experiments), MCODE
76 (1 from IAC and 6 from SP), and MCODE 324 (2 from
IAC). These three modules matched the pattern we were seeking;
they were core-periphery and included DEGs and RGA-DEs.

TABLE 1 | Dual-layered network statistics.

Statistics Value

Diameter length 29

Connectivity density 0.0011

Average shortest path length (ASPL) 5.39

Average clustering coefficient (ACC) 0.31

Cutting vertices protein nodes 654

Focusing on the core-periphery modules, we could infer if
RGAs participated in transcriptionally modulated pathways
and offer clues about other proteins that might influence the
overall response.

The MCODE module 42 was enriched with orthologs
annotated as from the KOG T category of signaling transduction
and showed the greatest difference between the expression
profiles of IAC and SP within nodes (Figure 3). It included
48 nodes, and of these, 33 were RGA nodes. Most of the
RGA orthologs in the nodes of MCODE 42 were from the
TM-LRR family (RLPs and RLKs), and one node had an
RGA ortholog from the TM-CC class. Besides RGAs, module
MCODE 42 included nodes containing orthologs of the WD40-
like repeat protein (N = 1), the RAF-like subtype of the
MAPKKK family (N = 2), proteins related to cell wall/membrane
functions (N = 8), and transport (N = 15), and proteins
related to oxidative burst (N = 5) (Supplementary Table 3).
Four of these nodes belonged to the super-connected group D
(Figure 3), which included orthologs of IQ-domain 6 (IQD6,
AT2G26180), cyclophilin-like peptidyl-prolyl cis-trans isomerase
family (AT3G66654), Rab5-interacting family (AT5G49540), and
heptahelical protein 4 (AT4G37680). They all had orthologs in
the sugarcane database (Supplementary Table 3).

The IQD6 was the only CV node from the MCODE 42 module
found within the centrality group D (and between the centrality
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TABLE 2 | The number of RGA nodes identified as the CV in three centrality groups of the dual-layered network.

Centrality
group

Number of RGA
CV nodes

Number of
sugarcane orthologs

Nodes

A 7 45 AHK3, CESA6, AT4G21380, AT2G42620, AT2G45140, AT4G23180, AT1G04960

B 22 126 EFR, COI1, AB36G, AHK4, CESA3, CEPR2, CLV1, AHK2, MIK1, PXL1, 2.4.1.43,
AT3G56370, AT5G56750, AT5G64560, AT3G05710, AT3G24660, AT5G47910, AT4G34220,
AT5G67280, AT4G04570, AT5G49770, AT4G23270

C 8 61 BAK1, FLS2, BRI1, Y5838, SUVH2, BRL2, AT5G46860, AT1G45145

CV, cutting vertices; RGA, resistance gene analogs.

group C). Consequently, the IQD6 node was considered of high
importance in that module according to two centrality measures,
which placed it as highly central in the network and situated in
the path to connect a high number of other nodes. Importantly,
IQD6 was connected to upregulated nodes in which the edges
cross-less connected nodes, reaching more peripheral RGA-DE
nodes (Figure 3B).

Most of the IAC RGA-DE nodes were downregulated (5
downregulated and 1 upregulated) in the MCODE 42. Only
one RGA, an ortholog of Arabidopsis PSKR1, was identified as
upregulated. On the contrary, SP had 10 RGA-DE nodes in
MCODE 42 (1 downregulated and 9 upregulated).

Besides using DE data, we applied the computation method
of Gene Set Enrichment Analysis (GSEA) to identify gene
set enrichment in the transcriptome data. GSEA also showed
widely divergent expression signatures between IAC and SP
transcriptomes (Figures 3C,D). Distribution plots showed
distinct peaks at the end for IAC (Figure 3E and Supplementary
Table 4) and at the beginning for SP (Figure 3F and
Supplementary Table 5) of the GSEA ranked gene list, indicating
a subset of members that contributed most to the enrichment
score (ES). Because we used comparisons of inoculated vs.
control transcriptome experiments, the positive value of ES for
SP (p < 0.01) suggested a positive correlation with the inoculated
treatment, whereas the negative ES value of IAC (p < 0.05)
was consistent with the negative regulation in the inoculated

FIGURE 2 | Eleven MCODE core-periphery modules harboring nodes from all
the four K-means degree centrality groups colored according to the legend.
Black diamonds indicate modules harboring RGA nodes.

treatment. Leading-edge genes in the SP included two IQD6
orthologs, and several TM-LRR RGAs (N = 25), orthologs
of the STRUBBELIG-receptor family (N = 13), fatty alcohol
oxidase (N = 2), and respiratory burst oxidase homolog D
(N = 3). There were 56 leading-edge genes in the SP experiment
(Figure 3F), whereas 42 leading-edge genes were detected in the
IAC experiment (Figure 3E). Not previously identified by DE
analysis, GSEA showed that the super-connected hub IQD6 had
a modulated path to peripheral RGA-DE nodes in both IAC and
SP experiments (Figures 3A–D).

Core-Periphery Subnetworks: From
RGAs to the Core of Metabolism
We also investigated if RGA-DEs participated in fully
transcriptionally modulated core-periphery sub-networks
other than MCODE modules. To achieve this purpose, we used
the depth-first search (DFS) algorithm with the RGA-DE nodes
as sources and traversed the network across other DEGs. We
found one fully modulated core-periphery sub-network for the
SP (SP2) and two for the IAC (IAC1 and IAC9) transcriptome
(Supplementary Table 6).

There were similarities among the largest sub-networks
identified in SP (SP2, N = 332 nodes) and IAC (IAC9, N = 108
nodes). The highest percentage of node matches occurred in
the centrality group D (41.67%) and decreased progressively in
the less connected groups, reaching the smallest node match
percentage in group A (2.76%) (Table 3). RGAs represented the
major divergence between the IAC9 and SP2.

Despite the elevated (∼41%) node matches in group D,
the expression profile of those matching nodes also diverged,
to some extent, between transcriptomes. Examples are node
2.7.1.40 of pyruvate kinase (IAC upregulated; SP downregulated)
and the AT4G26630 node corresponding to a DEK-domain
containing protein 3 (DEK3), which is involved in chromatin
remodeling (IAC downregulated; SP upregulated). Although
not further analyzed in this study, other nodes related to
the glycolysis pathway were also identified as harboring DE
sugarcane orthologs (Supplementary Figure 1).

Genomic Features of RGA-DEs Found in
Core-Periphery Subnetworks
Saccharum spontaneum (AP85-441) orthologs found within the
same orthogroups as the sugarcane RGA-DEs present in core-
periphery subnetworks were investigated for their clustering
and genome organizations. A total of 82 RGA-DEs were
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FIGURE 3 | Graph overview of core-periphery MCODE module 42 (48 nodes and 166 edges) alongside the expression profiles of genes within nodes from two
sugarcane transcriptome experiments of IAC66-6 and SP80-3280. (A) IAC DEGs, (B) SP DEGs, (C) IAC GSEA leading-edge genes, (D) SP GSEA leading-edge
genes. Node sizes represent centrality degree values. Node expression profiles are colored according to the legend, standing for not differentially expressed (DE),
upregulated or downregulated, relative to sugarcane orthologs with the lowest p-value of each node in the two sugarcane transcriptome experiments. Node edges
are colored according to the legend of the K-means degree centrality groups. Edges connecting DE nodes were also colored as gray, red, or blue, indicating the
expression profile pattern of the node. GSEA signatures of IAC and SP in (E) and (F), respectively, show the module 42 gene set distribution.

unveiled from IAC (N = 30) and SP (N = 58) core-periphery
subnetworks (Supplementary Table 7), delivering a total of
369 ortholog sequences from S. spontaneum (Supplementary
Table 8). Chromosomes 2, 5, and 6 showed an elevated number
of RGA-DE orthologs compared with the other chromosomes,
which together harbored 55.8% (N = 206) of orthologs
(Figure 4). Many RGA-DE orthologs were identified within
predicted clusters across the aforementioned chromosomes
(Supplementary Figure 2), with an important discrepancy
between the IAC and SP RGA-DE orthologs: chromosome 5
had more orthologs of IAC organized in clusters (N = 4
IAC; N = 2 SP), whereas on chromosomes 2 (N = 1 IAC;
N = 3 SP) and 6 (N = 3 SP), there were more ortholog
clusters of SP.

Orthologs of SP RGA-DEs, especially RLKs, were more
abundant than those of IAC (Figure 4B and Supplementary

Table 7), leading to a very distinct chromosomal distribution of
orthologs between the IAC and SP experiments. Susceptible IAC
had more RGA-DEs orthologs from CNL and TM-CC classes on
chromosome 5 than had the SP (Figure 4A). However, resistant
SP had more RGA-DEs orthologs from CN and CNL classes
(RPM1-like, orthogroups GRU18 and GRU103) on chromosome
6 (Figure 4B). Orthogroups GRU18 and GRU103 represented an
important disparity observed among orthologs originating from
IAC and SP. Only SP had an RGA-DE predicted as belonging
to GRU18. The distribution of orthologs from GRU18 and
GRU103 across S. spontaneum chromosomes was very dissimilar:
GRU18 orthologs were mainly on chromosome 6 (N = 20),
whereas GRU103 orthologs were mainly located on chromosome
5 (N = 9).

Chromosome 6 of S. spontaneum also harbored the longest
segment of exclusive SP RGA-DE orthologs, including CNLs
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FIGURE 4 | Distribution of Saccharum spontaneum orthologs of RGAs identified as within core-periphery subnetworks and DE in each of the two sugarcane
transcriptome experiments of (A) susceptible IAC66-6 genotype and (B) resistant SP08-3280 genotype. Colored dots within circles indicate the positions of RGA
orthologs along eight chromosomes, as well as the colored traces in chromosome bars. Colors depict seven main orthogroups according to the legend, and gray
color depicts orthologs from other orthogroups.

TABLE 3 | Comparison by K-means degree centrality groups between the
core-periphery sub-networks of IAC9 and SP2 generated through the depth-first
search (DFS) of the RGA-DE nodes from transcriptome experiments
with IAC and SP.

Centrality
group

Total
nodes

IAC9
nodes

SP2
nodes

Matches Mismatches Match%

All nodes

A 181 26 160 5 176 2.76

B 146 48 123 25 121 17.12

C 52 28 38 14 38 26.92

D 12 6 11 5 7 41.67

RGA-DE
nodes

A 18 1 17 0 18 0.0

B 24 2 24 2 22 8.33

C 7 1 7 1 6 14.29

RGA-DE, differentially expressed RGAs.

from GRU18. Another important discrepancy is that both IAC
(N = 4) and SP (N = 2) had orthologs organized into clusters on
chromosome 5, whereas only SP (N = 3) had orthologs in clusters
on chromosome 6 (Supplementary Figure 2). Chromosome 6 of
SP also contained a handful of other exclusive RGA orthologs,
such as BAK1 (GRU65) and the cellulose synthase A (GRU15).
Other RLKs such as Xa21 (GRU2), RPP3 (GRU4), and CEPR2
(GRU6) were shared by the SP and IAC genotypes across different
chromosomes (Supplementary Table 8).

DISCUSSION

Using graph theory, we modeled a dual-layered biological
network, at steady state, for the non-model organism sugarcane,
based on the metabolic and PPI data for A. thaliana. The network
allowed us to integrate multiple functional annotations related to
the plant immune system and the differential expression (DE)
profiles of two sugarcane genotypes having distinct degrees of
resistance to the biotrophic fungus S. scitamineum. By applying
network topology analysis, we demonstrated that the more
extensive RGA fighting arsenal of smut-resistant sugarcane
is involved in an augmented and fully modulated signaling
network that reaches hub proteins in the core metabolism.
Further, we show that discrepancies in the expression patterns
of RGAs between genotypes are potentially related to their
clustered arrangement as observed for its orthologs, especially on
chromosomes 2 and 6 of S. spontaneum.

The Modularity of Sugarcane
Dual-Layered Network
Biological networks exhibit specific organizing principles that
reflect the interactions occurring among molecules in the cell(s)
of all life domains. Although the assembled sugarcane dual-
layered network did not show a degree distribution (Figure 1A)
that followed the conceptual power-law pattern in a strict
statistical sense, the inhomogeneous and long-tailed distribution
suggested an elevated number of nodes performing only a
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few connections as compared to nodes of high degree values.
Consistent with this prediction, only a few nodes were classified
into the highly connected C (N = 324) or super-connected
D (N = 52) centrality groups using the unsupervised learning
K-means algorithm.

The calculated average clustering coefficient (ACC) of the
sugarcane dual-layered network (0.31) was lower than the ACC
of the sugarcane metabolic layer alone (0.55) and also lower than
the average ACC (0.45; σ 0.0019) of metabolic networks for 95
plant species using KEGG data (data not shown). As a measure
of the tendency of nodes to form clusters (Ravasz, 2009), these
ACC values indicate that the addition of the PPI layer decreased
the network modularity value due to the introduction of many
and low connected nodes. Ravasz et al. (2002) observed that the
clustering coefficient of metabolic networks was independent of
their size among 43 distinct organisms from archaea, bacteria,
and eukaryote domains of life. The calculated ACC for metabolic
networks of 95 plants followed the observations of Ravasz
et al. (2002), which indicates that plants might share similar
modularization of their metabolic networks. Most of the nodes
had small clustering coefficients in the PPI layer, which led to the
calculated ACC equal to 0.10. Although the calculated ACC for
the PPI layer alone was similar to what has already been shown
in other organisms such as Saccharomyces cerevisiae (Uetz et al.,
2000), the ACC of plants PPI networks established until now
varies largely, from 0.06 in A. thaliana to 0.35 in Oryza (Chen
et al., 2020). Nevertheless, it is known that PPI networks may not
reflect the total interactome of an organism due to experimental
limitations and that partial sampling can lower the clustering
coefficient of networks (Friedel and Zimmer, 2006).

The diameter of the sugarcane dual-layered network (length
29) was comparable with an interactome predicted for Brassica
rapa (length 32) using A. thaliana PPI data (Yang et al., 2013).
The average shortest path length of the dual-layered network
(5.39), which can be interpreted as another representation of
the diameter of a network, was also similar to the calculations
of 43 organisms obtained by Jeong et al. (2000). The dual-
layered network density was very low (0.001) and comparable
with the density value of a calculated A. thaliana PPI network
(Chen et al., 2020). Biological networks are expected to show
sparse connection features, which means that the number of
edges tends to be much smaller than that of the number
of possible edges. Generally, sparsely connected networks are
thought to confer an evolutionary advantage because of the
preservation of robustness (Leclerc, 2008). Looking at the
densities of the two layers separately, the sugarcane PPI layer
was sparser (density of 0.001) than the metabolic layer (density
of 0.003), which may be due to the aforementioned limitations
of PPI networks.

Smut-Resistant Sugarcane Harbors an
Amplified RGA Signaling
To extend the understanding of the roles of RGAs during
the interaction of sugarcane with smut, we researched the
topological features of nodes of the dual-layered network housing
orthologs of those predicted RGA-DEs. We considered as

expression signals of the nodes the profile of the RGA-DE having
the lowest p-value. Then, (1) identifying densely connected
components and (2) traversing the network having RGA-DEs
as sources, and only across other DE nodes, we identified
fully modulated subnetworks containing nodes from all four
centrality groups (core-periphery). Densely connected modules
in biological networks are believed to be formed among nodes
working toward a shared biological goal (Bader and Hogue,
2003). One core-periphery densely connected module, named
MCODE 42, was of particular interest because it showed an
elevated number of RGA-DEs (upregulated) in the SP experiment
as compared to IAC, mostly annotated for the signal transduction
KOG category. Further, only in SP did the peripheral RGA-DE
nodes have a path across other DE nodes (mostly upregulated) to
reach the DE hub IQD6 node. These results are consistent with
the formation of a larger and modulated subnetwork among the
DE nodes (RGAs or not) in the SP experiment, but not in IAC.

Within MCODE 42, GSEA uncovered more genes
contributing to the distinct expression profiles of inoculated and
control experiments of the two sugarcane genotypes. A goal of
GSEA is to provide a more robust way to compare independently
derived gene expression datasets (Swarnkar et al., 2015). In the
IAC, GSEA identified a negative correlation of leading-edge
genes after smut inoculation, whereas a positive correlation
was observed in the SP with the inoculation of correspondent
leading-edge genes. The hub IQD6 ranked as highly important
for MCODE 42, was among the antagonistic correlations with
inoculated IAC (negative) and SP (positive). Bürstenbinder et al.
(2017) suggested IQDs as hubs in cellular auxin and calcium
signaling, ultimately regulating plant growth and development.
A comprehensive characterization performed on IQD members
of A. thaliana and Phyllostachys edulis suggested their roles in
assembling macromolecular complexes orchestrating Ca2+ CaM
signaling from the membrane to the nucleus (Wu et al., 2016;
Bürstenbinder et al., 2017).

Traversing the dual-layered network from RGA-DE
nodes and only across DEGs unraveled the two genotypes
having subnetworks with the highest content of node
matches (about 41%, 5 nodes) among the super-connected
nodes (IAC9 and SP2) (Table 3). Pathogens from different
kingdoms have been found to deploy an apparatus of
virulence proteins to interact with a limited set of highly
connected cellular hubs and ultimately facilitate infection
(Mukhtar et al., 2011). Despite similarities, the two
genotypes had distinct expression profiles of some super-
connected nodes/proteins from the glycolysis pathway,
for example. Whether these changes are related to the
demands of energy or signaling for defense mechanisms
remains to be further explored (Katagiri, 2004; Bolton, 2009;
Shulaev et al., 2011).

Importantly, the smut-resistant sugarcane presented an
augmented and divergent arsenal of resistance peripheral nodes
(A and B groups) having a fully modulated path to the core of
plant metabolism. With the major divergence occurring among
the RGA-DE content of genotypes, divergent DEGs also included
orthologs involved in signal transduction, MAPKs, cell wall and
membrane functions, transport, and proteins related to oxidative
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burst. Previously, we demonstrated that smut-resistant sugarcane
plants activated an early basal defense (48 HAI) involving the
oxidative burst (Peters et al., 2017; Rody et al., 2019).

Amplified RGA Signaling May Be Due to
Clustering Organization in a Few
Chromosomic Regions
Disease resistance of modern sugarcane cultivars is derived from
the 10–15% of chromosomes inherited from S. spontaneum
(Zhang et al., 2018; Piperidis and D’Hont, 2020). Nucleotide-
binding site encoding genes, related to disease resistance, are
mostly located on four rearranged chromosomes (2, 5, 6, and 7)
of S. spontaneum (Zhang et al., 2018; Rody et al., 2019), and up to
39% of sugarcane RGAs have been demonstrated to be organized
in clusters (Rody et al., 2019).

We now demonstrate that despite the increased numbers on
chromosome 5 of RGA-DEs orthologs from both IAC and SP, the
other S. spontaneum rearranged chromosomes 2 and 6 (2 and 7
in S. bicolor) contained a predominance of RGA-DE orthologs
exclusively found in the core-periphery subnetworks obtained
with the RGA-DEs from SP (Figure 4). Whereas RLKs largely
account for the larger number of smut-responsive RGAs of the
SP genotype, a set of CN (N = 5) and CNLs (N = 9) RGA-
DE orthologs localized on chromosome 6 were now uncovered
as exclusive to SP (Supplementary Table 8). These differences
in the chromosomal composition of RGA-DE orthologs between
the two transcriptomes appear to relate to their breeding history.
The IAC66-6 line is derived from a cross between Co419 and
Co350, which has recent ancestry from Sorghum durum, whereas
the SP80-3280 is derived from the cross between SP71-1088 and
H57-5028 (IAC Sugarcane Breeding Program Databank, Caiana).
The recent assembly of 373 k gene spaces of the SP80-3280
genome, alongside predictions of potential transcription factors
(TFs) and transcriptional factors binding sites (TFBS) regulatory
regions, showed that this genotype harbors a vast repertoire of
regulatory elements (Souza et al., 2019). Pathogen elicitors may
activate multiple TFs that could ultimately trigger signaling from
many defense genes (Zhu et al., 1996; Yang et al., 1997). However,
the identification of SP-derived RGA-DE orthologs organized
in multiple clusters along the chromosomes of S. spontaneum
– especially chromosomes 2 and 6 – reinforces the importance
of RGAs organization in clusters and might indicate that smut
resistance contributes to signaling cascades as a consequence of
coordinated expression of RGAs organized in long chromosomal
segments, rather than the effect of multiple regulatory regions
that may have been lost in the susceptible genomes.

Modern sugarcane cultivars were already shown to host
complete versions of S. spontaneum chromosomes 2 and 6, and
6–10% of chromosomes originated from interspecific exchanges
(Piperidis and D’Hont, 2020). Further, their study supported
the hypothesis that modern cultivars predominantly maintain
chromosomes of S. spontaneum cytotypes with x = 8. Modern
sugarcanes may also have larger RGA clusters not previously
identified in Rody et al. (2019). The average clustering size of
AP85-441 was 0.21 Mbp. Haplotype blocks of 1–100 Mbp in
size, possibly representing introgressions, were recently shown as

associated with relevant traits such as flowering time and dune
adaptation of wild sunflowers (Todesco et al., 2020). Although
the ancestral S. spontaneum has been considered susceptible
to smut (Cheavegatti-Gianotto et al., 2011; Silva, 2017), wild
accessions collected in Japan were recently found to be resistant
(Sakaigaichi et al., 2019).

Further investigations covering RGAs and genomic
architecture of smut-susceptible and smut-resistant sugarcane
genotypes represent productive approaches for untangling the
mechanisms of biotrophic disease progression. The continuous
range of smut symptom variation is typical of a quantitative
resistance mechanism, and the basal defense is most likely the
main response (Niks et al., 2015). Smut-resistance determinants
are under constant investigation, and heritability is estimated
as moderate (Chao, 1990). Sugarcane is not a model plant,
experimentation is demanding, and unlike other crops, near-
isogenic lines are hard to obtain due to the nature of the
sugarcane hybrid and highly polyploid genome. The biological
network proposed in this study offered a feasible alternative
to analyzing molecular events and selecting candidates related
to resistance not only to sugarcane pathosystems but also
potentially to other plant-pathogen interactions. Although the
limitations concerning orthology predictions between species
that diverged at the basis of flowering plants such as sugarcane
and Arabidopsis, the latter represents the model organism
having the most functional annotation regarding plant-pathogen
interactions. In both the metabolic and PPI layers, interactions
occurring in Arabidopsis may not occur in sugarcane. However,
the inherent organization of the core metabolism is conserved
among organisms of all three domains of life (Jeong et al., 2000),
although there are variations in the constituents of the pathways.
As far as we are aware, this is the first large-scale network
assembled for sugarcane, and we believe the approach could be
broadly applied to other crops and their improvement.

MATERIALS AND METHODS

Genomic and Transcriptomic Data
Collection
We obtained a dataset of sugarcane ORFs from the Sugarcane
Orthologs of Resistance Database (SORD) (Rody et al., 2019),
which contain predictions for a set of 72,269 unique de novo
transcripts from six sugarcane genotypes (Cardoso-Silva et al.,
2014) alongside 16,219 de novo assembled transcript sequences
from variety RB925345 (Schaker et al., 2016). From SORD,
we also obtained a set of 2,470 RGAs sequence predictions.
A. thaliana protein sequences were obtained from TAIR111.
The sugarcane genomic reference of S. spontaneum AP85-441
(Zhang et al., 2018) was also recovered. Transcriptome data
comprising DE for two sugarcane genotypes having distinct
degrees of resistance to smut (IAC66-6 susceptible and SP80-
3280 resistant) were obtained from BioProject under accession
number PRJNA546134 (Rody et al., 2019). Both transcriptomes
were generated for control mock and pathogen-inoculated plants

1https://www.arabidopsis.org/
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48 h after inoculation (HAI). For brevity, these two focal
transcriptomes are referred to as IAC and SP in the following
sections of this study.

Sugarcane vs. A. thaliana Orthologs
Predictions
The largest ORF sequences of the sugarcane were used as
queries during BLASTp (Altschul et al., 1990) searches against
a database assembled with A. thaliana protein sequences using
a cutoff of e−05, minimum of 40% of identity, and 80% of
query coverage (parameter-outfmt “6 std qcovs”). For each
sugarcane ORF having matches to A. thaliana that passed the
filter, we defined the best-hit ortholog by ranking the matches
by the bitscore parameter. Although BLASTp alone may produce
higher error rates than other methods to infer orthology, we
considered this method to fit better to the sugarcane sequences
and for this study. Besides the phylogenetic distance between
sugarcane and Arabidopsis, the largest ORFs of the sugarcane
were obtained from de novo transcripts and may contain partial
sequences, impairing the prediction of true orthologs due to
assembly biases.

UniProt/SwissProt Text Mining
Resistance-Related Interaction Data
Manually annotated proteins from the structured database of
SwissProt (Boutet et al., 2007) were queried through automated
Python3 scripts on the UniProt website2 using the text terms
“plant defense” and “plant resistance.” The retrieved sequence
identifiers were downloaded in TXT format, containing all the
available annotations, to assemble an initial dataset DatasetTemp
(N = 8,454). Python3 scripts were then used to parse the
DatasetTemp, filter results taxonomically for Viridiplantae,
and use regular expression syntax to search for general
abbreviations/acronyms (e.g., BAK1 and XA21) that could
represent the names of genes/proteins in the following SwissProt
annotations such as function, catalytic activity, induction, activity
regulation, interaction, and pathway. Significant hits followed
by the correspondent species code were initially classified as
“putative interactors.” Abbreviations that could not be retrieved
from UniProt were discarded as “false putative interactors,”
whereas those that could be retrieved were classified as “true
putative interactors.” This last step was carried out recursively
until no more true putative interactors were retrieved. The
final text mining curated knowledge interaction database from
SwissProt (N = 3,142) was assembled as a tab-delimited file with
the following columns: (A) UniProt ID, (B) Interactors ID, (C) EC
number(s), and (D) UniProt function. Finally, we performed a
new round of BLASTp searches to establish orthology among the
retrieved true putative interactors and sugarcane ORFs, using the
same approach as used between sugarcane–Arabidopsis described
in the preceding section.

Modeling of a Dual-Layered Network
We modeled an Arabidopsis-based sugarcane dual-layered
network having two layers of interactions among nodes

2https://www.uniprot.org/

representing proteins. The first layer comprised a metabolic
network composed of product-substrate interactions among
nodes based on biochemical data of the KEGG database
(Kanehisa et al., 2004). The second layer was a PPI network
based on physical direct interaction experimental data obtained
from BioGRID (Oughtred et al., 2019). Both metabolic and
PPI data were obtained for A. thaliana and used if there
were corresponding ortholog(s) in sugarcane. In addition, a
curated knowledge interaction SwissProt database was used.
Nodes from different sources and sharing orthologs were
merged. All functional annotations obtained were integrated
into the network as node attributes: (1) transcript expression
data from two different sugarcane experiments (e.g., IAC66-
6 48 HAI and SP80-3280 48 HAI), (2) RGA annotation, and
(3) functional annotations obtained from the aforementioned
interaction databases.

Modeling of the Metabolic Interaction
Layer
Python3 scripts were used to deploy the Bio.KEGG module
and the KEGG API pathways data3 for the model organism
A. thaliana to first assemble a local dataset containing the
following: (a) Enzyme code (EC) or reaction code, (b) A. thaliana
gene(s), (c) Reaction codes, (d) Pathway codes, (e) substrates
attributed to reactions, and (f) products attributed to reactions.
The NetworkX package (Hagberg et al., 2008) of Python3 was
then used to establish the metabolic network layer based on
the following statements: (1) the proteins/enzymes, if having
an ortholog in sugarcane, were set as the nodes of the graph
for a practical and biological point of view and further data
integration; (2) the connections among the nodes were given
by undirected edges created when the product of any reaction
associated with a protein was the substrate for any reaction
connected with a subsequent protein; (3) if there was no protein
listed to a reaction, the reaction was set as a node in the graph;
and (4) if a certain protein was related to a reversible reaction, the
product of such reaction was also considered as a substrate of that
protein. Although product–substrates are direct relationships,
the use of an undirected graph permits the modeling of the
second PPI layer.

Modeling of the PPI Layer
The PPI layer was modeled over the metabolic layer using both
text mining and experimental data. Experimental data were
obtained for A. thaliana from the BioGRID database. Nodes
were set as either new or merged with the existing nodes already
established in the first layer of the network when parsing the
SwissProt text mining and BioGRID interactions data, still only
considering those nodes having predicted sugarcane orthologs.
In the latter case, the merge was performed by updating all
node attributes. Connections among nodes were followed as
undirected edges of PPI networks. The full assembled network
is provided as a GRAPHML file on Mendeley Data (DOI:
10.17632/5vtg4rk89j.1).

3https://www.kegg.jp/kegg/rest/
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Network Analysis and Statistics
We further investigated the sugarcane dual-layered network
using the NetworkX package of Python3. We ranked and
classified the nodes according to their measures of centrality
in the network by using an unsupervised learning K-means
clustering algorithm. Nodes with higher values of centrality
measures, such as degree and betweenness centralities, may
work as hubs since they interact with a large number of other
nodes in the networks. Degree centrality is used to rank central
nodes according to the number of connections with other
nodes, whereas betweenness centrality ranks nodes based on the
proportion of paths between two other nodes in the networks that
the targeted node is involved in, unraveling the essential nodes
for the communication between neighbor nodes. Other topology
statistics such as density, ACC, and average shortest path length
were also computed.

We also investigated the presence of densely connected
modules using the Molecular Complex Detection (MCODE)
algorithm (Bader and Hogue, 2003) wrapped into Cytoscape
v3.8.1 (Shannon et al., 2003) with default parameters. Finally,
we examined the putative signaling extension of the DE of
RGAs found as DE. For this analysis, we used a DFS algorithm
implemented in NetworkX to traverse the dual-layered network
from nodes harboring RGAs found as differentially expressed
(RGA-DEs) as the sources and across all subsequent nodes
harboring differentially expressed genes (DEGs).

Gene Set Enrichment Analysis
In an attempt to identify the most significant genes conferring
the differences in the levels of smut resistance among the two
targeted sugarcane genotypes of this study, we utilized the GSEA
v4.1 software (Subramanian et al., 2005) to analyze gene sets
GMT files obtained from densely connected module predictions
with MCODE software. The expression input GCT file consisted
of transcript count-per-million (CPM) values trimmed mean of
M-values (TMM) normalized for all the control and inoculated
biological replicates of each of the two transcriptome experiments
(N = 12). No collapse parameter was set, and phenotypes
were compared as inoculated vs. control within sugarcane
experiments. GSEA calculates the gene set ES that represents
the maximum deviation from zero and reflects the degree to
which a gene set is over-represented. The minimum size and the

maximum size of gene sets were set as 15 and 500, respectively.
Statistical significance was calculated based on 1,000 gene set
permutations. ESs for single gene sets were considered significant
if the calculated nominal p-value < 0.05. GSEA leading-edge
genes representing core members of high-scoring gene sets
that contributed to the calculated significant NES were further
functionally evaluated.
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