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The correct choice of in vitro pollen germination media (PGM) is crucial in basic and
applied pollen research. However, the methodological gaps (e.g., strong focus of current
research on model species and cultivated plants along with the lack of general rules
for developing a PGM) makes experimenting with pollen difficult. We closed these
gaps by compiling a compendium of optimized in vitro PGM recipes from more than
1800 articles published in English, German, and Russian from 1926 to 2019. The
compendium includes 1572 PGM recipes successfully used to germinate pollen grains
or produce pollen tubes in 816 species representing 412 genera and 114 families (both
monocots and dicots). Among the 110 components recorded from the different PGM
recipes, sucrose (89% of species), H3BO3 (77%), Ca2+ (59%), Mg2+ (44%), and K+

(39%) were the most commonly used PGM components. PGM pH was reported in
35% of all studies reviewed. Also, we identified some general rules for creating PGM
for various groups of species differing in area of research (wild and cultivated species),
phylogenetic relatedness (angiosperms vs. gymnosperms, dicots vs. monocots), pollen
physiology (bi- and tri-cellular), biochemistry (starchy vs. starchless pollen grains),
and stigma properties (dry vs. wet), and compared the component requirements.
Sucrose, calcium, and magnesium concentrations were significantly different across
most categories indicating that pollen sensitivity to sugar and mineral requirements
in PGM is highly group-specific and should be accounted for when composing new
PGM. This compendium is an important data resource on PGM and can facilitate future
pollen research.

Keywords: cookbook, experiment, medium, in vitro, pollen

INTRODUCTION

Pollen, the male gametophyte, is an evolutionary development in higher plants that ensures
successful genetic exchange, establishment, and survival of the species (Ashman et al., 2004; Pacini
and Dolferus, 2016). Because of their crucial role in successful seed development (Shivanna and
Rangaswamy, 1992; Dafni and Firmage, 2000; Rosbakh et al., 2018), pollen germination (PG),
and pollen tube growth (PTG) have been in the focus of many studies ranging from research on
physiological and biochemical aspects of these processes (Taylor and Hepler, 1997; Wang et al.,
2010; Williams and Reese, 2019) to large-scale screenings of pollen abiotic stress-tolerance (Kakani
et al., 2005; Rosbakh et al., 2018). Additionally, pollen is an excellent model system for studying a
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number of basic processes including plant cell growth, cell
wall synthesis, intracellular transport, and cell-cell interaction
(Johnson-Brousseau and McCormick, 2004; Boavida and
McCormick, 2007). That is why pollen remains one of the most
attractive objects in plant research.

In basic and applied research, pollen functioning has been
studied with the help of two approaches, in vivo and in vitro.
In vivo studies are carried out directly at the stigmatic surface
in the natural state, while in vitro approaches rely on a
culture medium that simulates conditions of the style-stigma
(Rodriguez-Enriquez et al., 2013). The advantage of the in vivo
methods is that they consider all natural conditions pollen
grains experience on stigma (Dawkins and Owens, 1993; Albert
et al., 2018). However, such methods have sometimes proved
difficult (Shivanna and Rangaswamy, 1992). Partly, this is
due to the involvement of the pistillate tissue that interacts
with the growing pollen tubes thereby affecting physiological
and biochemical investigations (Shivanna and Rangaswamy,
1992; Zheng et al., 2019; Xu et al., 2020). Moreover, the
complex and labor-intensive nature of the in vivo approach
(e.g., maintenance of pistil tissue viability and post-experimental
sample processing) limits its applicability in large-scale research,
such as breeding programs (Kakani et al., 2005) or multispecies
ecological screenings (Rosbakh et al., 2018). The comparatively
technically simple in vitro approach, which is based on the
ability of pollen to germinate and grow without the pistillate
tissue, solves this problem making it possible to conduct
comprehensive pollen research (Taylor and Hepler, 1997).
Although being sometimes criticized for inaccurate replication
of the biological context (Rodriguez-Enriquez et al., 2013), the
in vitro approach is generally preferred because it provides
results comparable to in vivo studies (Sulusoglu and Cavusoglu,
2014; Jayaprakash, 2018; Luo et al., 2020). It is also easier to
detect alterations in PG or PTG performance using in vitro
approaches (Procissi et al., 2003; Steinebrunner et al., 2003;
Cole et al., 2005; Hashida et al., 2007) since the parameters
can easily be tested for defects which is difficult to perform
in vivo. Notably, in vitro PG rates are considered the best
estimate of pollen viability in vivo (Shivanna et al., 1991;
Stone et al., 1995).

Typically, an in vitro PG protocol includes cultivating of
fresh or stored pollen grains in/on a germination media
contained within a hanging drop/well or on a membrane
support (Conner, 2011; Soares et al., 2013; Jayaprakash, 2018).
In all such protocols, the correct choice of pollen germination
media (PGM) remains the most important part, as pollen is
highly sensitive to the PGM composition (Dafni et al., 2005).
To begin with, pollen of several species requires either liquid
(Hoffmann et al., 1990; Golan-Goldhirsh et al., 1991; Montaner
et al., 2003) or solid (e.g., with addition of agar) medium
(Shivanna and Sawhney, 1995; Jayaprakash, 2018) to germinate,
while others can germinate in/on both solid and liquid media
(Bilderback, 1981; Boavida and McCormick, 2007). Additionally,
most pollen grains need a carbohydrate source to germinate
successfully, and sucrose solution is generally used (Montaner
et al., 2003; Silva et al., 2016; Lagera et al., 2017). In some
cases, other sugars and sugar derivatives such as lactose, maltose,

raffinose, and fructose among others, are also used (Shaoling
et al., 2005; Hirsche et al., 2017; Lagera et al., 2017; Impe
et al., 2019). Furthermore, several inorganic compounds affect
in vitro PG with boron being one of the most important
element for most species (Brewbaker and Kwack, 1963; Wang
et al., 2003; Yao and Zhao, 2004; Fang et al., 2016). Besides
boron, minerals such as calcium, magnesium, potassium are
also known to have stimulatory effects on PG (Brewbaker and
Kwack, 1963; Čapková-Balatková et al., 1980; Song et al., 2009;
Biswas and Mondal, 2014; Jayaprakash, 2018). The different
compounds in the medium affect the pH that must therefore
be adjusted to species-specific values, to allow for optimal
conditions for pollen to germinate (Tupý and Řhová, 1984;
Fricker et al., 1997; Fan, 2001). Trisaminomethane (Tris) and
2-ethanesulfonic acid (MES) belong to the buffers that has
been often used to maintain a constant pH in the medium
(Tupý and Řhová, 1984; Holdaway-Clarke et al., 2003). Further,
several other substances such as hormones, vitamins, buffers,
proteins, lipids, antibiotics, enzymes, plant, and animal extracts
are sometimes added to increase the percentage of PG and
to accelerate the rate of PTG (Vasil, 1960; de Bruyn, 1966;
Boavida and McCormick, 2007; Jayaprakash, 2018). Finally,
different plant groups are also suggested to have different PGM
requirements (e.g., plants with binucleate vs. trinucleate pollen
grains (Hoekstra, 1979; Bergamini and Mulcahy, 1988; Zhang
et al., 1997; Gibernau et al., 2003); those with dry vs. wet
stigmas (Boavida and McCormick, 2007; Rodriguez-Enriquez
et al., 2013); angiosperms vs. gymnosperms (Paoletti and Bellani,
1990); monocots vs. dicots (Jayaprakash, 2018); and in plants
with starchy vs. starchless pollen grains (Bellani et al., 1985;
Franchi et al., 2007).

Despite the fact that several PGM are widely available
(Brewbaker and Kwack, 1963; Hong-Qi and Croes, 1982; Roberts
et al., 1983; Rodriguez-Enriquez et al., 2013), experimentation
on PG in vitro is still challenged by several problems. Firstly,
information on PGM requirements for a species in question is
usually extremely scattered in works published in very different
journals and/or years. Secondly, although numerous protocols
describe methods to induce PG, they are not applicable to all
species as they are strongly biased either to model species,
such as Arabidopsis thaliana (Boavida and McCormick, 2007;
Rodriguez-Enriquez et al., 2013) or domesticated plant species,
their cultivars and wild relatives (Roberts et al., 1983; Cheng
and Mcomb, 1992; Jayaprakash et al., 2018). In contrast, PG
studies for any given wild species are limited (Mortenson et al.,
1964; Fernando et al., 2001; Sorkheh et al., 2011). Thirdly, it
is not clear whether the available protocols can be generalized
to create some general rules for developing a PGM for a single
species or various species groups especially those that have not
yet been studied.

Here, we close these gaps by compiling a compendium
of in vitro PGM recipes available in the published literature.
Specifically, we first provide a list of optimized media successfully
used to germinate pollen grains and/or produce pollen
tubes in different species. In addition, we identify the key
PGM components required for various groups of species
differing in area of research (wild and cultivated species),
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phylogenetic relatedness (angiosperms vs. gymnosperms,
dicots vs. monocots), pollen physiology (bi- and tri-cellular),
biochemistry (starchy vs. starchless pollen grains), and stigma
properties (dry vs. wet) that will help to create and/or optimize
PGM recipes for the species, for which such information
is not available.

MATERIALS AND METHODS

To extract available information on PGM composition, we
first reviewed all studies published from 1926 to 2019
that included keywords “pollen”, “germination,” and “media”
either in the title or abstract. The literature was searched
using the Web of Science database1 with the searched
databases including, “Web of Science Core Collection,” “KCI-
Korean journal database,” “Medline,” “Russian science citation
index,” and “SciELO Citation.” Only publications in English,
Russian, and German were considered. The search resulted
in 1800 studies.

In the second step, we sorted out the publications that were
accessible in a digital form and/or contained information about
PGM composition with an estimate of its efficacy to stimulate
PG or PTG in the abstract or full text. From each of the
675 studies that fulfilled the selection criteria, we extracted the
author name(s), year of publication, full literature reference
and whether the publication was available in digital form.
For each species/variety studied in the selected publications,
we further extracted information on the PGM composition
including the ingredients used and their concentrations. When
several PGMs were used in a publication, only PGM reported to
be most effective, i.e., resulting in maximum PG, longest pollen
tubes, or minimum pollen bursting obtained, were extracted. If
component concentrations of effective PGMs were given as a
range, average values of such ranges were considered.

Additionally, we included unpublished data on PGM
composition for 104 Central European plant species collected
during PG studies at the University of Regensburg from 2014 to
2020 (S. Rosbakh unpublished).

Data Analysis
For the statistical analysis, all entries in the data set were
standardized by recalculating sucrose and agar concentrations
to percentages and the rest of the ingredient concentrations
to millimolar (mM). The species taxonomy was standardized
against the “Plant List” (2013).

In order to infer group-specific concentrations of PGM
components, we classified all species present in the data
set into several categories: (1) wild vs. cultivated species,
(2) angiosperms vs. gymnosperms, (3) dicots vs. monocots
plants, (4) bi- vs. tri-nucleate pollen (Brewbaker, 1967), (5)
starchy vs. starchless pollen (Baker and Baker, 1979), and (6)
dry vs. wet stigmas (Heslop-Harrison and Shivanna, 1977).
This analysis was carried out only with entries that included
information on the most frequent PGM components (agar,

1www.webofknowledge.com TA
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FIGURE 1 | Pollen germination media requirements for cultivated (n = 449) and wild species (n = 689): agar (A), sucrose (B), boric acid (C), calcium (D), magnesium
(E), potassium (F), and pH (G). *, significant (p < 0.05); NS, not significant.

sucrose, H3BO3, Ca2+, Mg2+, K+, and pH). The variation in
the PGM ingredients in the species groups were visualized with
the help of ggplot2 package (Wickham, 2016) in the R software
version 4.0.0 (R Core Team, 2020). A Kruskal–Wallis non-
parametric test at a 95% confidence interval was performed to
test for significant differences among PGM requirements in the
different plant groups.

RESULTS AND DISCUSSION

The Compendium of PGM for Pollen
Research
The final version of the PGM compendium (Supplementary
Appendix 1) is composed of 1572 recipes successfully used
to germinate pollen grains and/or produce pollen tubes
in 816 species representing 412 genera and 114 families
(both monocots and dicots). All together, we recorded 110
components from the different in vitro PGM, used under
varying conditions and concentrations. Out of 816 species,
51% (420) and 32% (260) germinated in liquid or solidified
(mainly agar with concentrations 0.5–1.5%) media, respectively,
while 17% (136) germinated in both solid and in liquid

media. The liquid media is preferred when pollen needs
to reach a certain turgescence level to germinate (Martin
and Brewbaker, 1971; Montaner et al., 2003), but also
because water serves other hydrolytic and synthetic reactions
(Brink, 1924). However, in some species, cultivation in liquid
media leads to pollen bursting, due to quick hydration
thus solid (e.g., agarified) media is required (Burke, 2002;
Sun et al., 2008; Jayaprakash, 2018). In such media, agar
also enables incorporation of sucrose or other stimulants,
helps to maintain relative humidity at constant levels and
provides appropriate aerobic conditions for adequate PG
(Linskens and Stanley, 1974).

Among other components, sucrose (89% of species), H3BO3
(77%), Ca2+ (59%), Mg2+ (44%), and K+ (39%) were the most
frequently used while enzymes, vitamins, and amino acids were
less common (1, 6, and 1%, respectively); PGM pH values were
reported in 35% of all studies reviewed. The high frequency of
the former five components in the extracted PGM correspond
to other studies on PGM (e.g., Imani, 2012; Jayaprakash, 2018;
Wani et al., 2020) and might reflect the wide application of
the classic Brewbaker and Kwack PGM (Brewbaker and Kwack,
1963) in pollen research. As for the roles of the most frequent
PGM components, sucrose serves as an effective energy source
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and an osmoticum for PG in vitro (Heslop-Harrison and Heslop-
Harrison, 1992; Rodriguez-Enriquez et al., 2013; Selinski and
Scheibe, 2014; Reinders, 2016). Pollen bursting and failure to
germinate in vitro is often associated with inadequate sucrose
concentrations (Baloch et al., 2001). The mineral elements
boron and calcium have also been found to play several
critical regulatory and structural functions in PG. For instance,
boron is required for the pollen wall structure, absorption, and
metabolism of sugars by forming a sugar–borate complex, and
increases oxygen uptake for metabolism (Vasil, 1960; Sidhu and
Malik, 1986; Yang and Li, 1999; Wang et al., 2003). Boron
deficiency in PGM, often leads to pollen tube bursting or failed
PTG (Cheng and Rerkasem, 1993; Fang et al., 2019).

Similarly, calcium is a central regulator, providing various
governing roles in the initiation and regulation of PG through
ionic balance and cell signaling (Brewbaker and Kwack, 1963;
Steinhorst and Kudla, 2013). Calcium in in vitro PGM has
proved essential in pollen tip growth (Steinhorst and Kudla, 2013)
with its deficiency leading to morphological abnormalities such
as coiling and tip swelling (Shivanna and Rangaswamy, 1992;
Taylor and Hepler, 1997). Other combined roles of boron and
calcium (e.g., in sugar synthesis and accumulation) have been
emphasized in different studies (Shu-juan, 2010; Muengkaew
et al., 2017). Elements such as magnesium and potassium were
also frequently used ingredients in PGM because of their role

in cellular physiological processes, such as osmotic balance and
membrane potential (Čapková-Balatková et al., 1980; Taylor and
Hepler, 1997; Song et al., 2009; Wu et al., 2011). They also
improve the germination and elongation of pollen tubes by
enhancing the calcium effect (Brewbaker and Kwack, 1963). The
pH of the in vitro germination medium is an important factor
controlling PG and pollen tube development in different plant
species (Bellani et al., 1997; Munzuroglu et al., 2003; Burke et al.,
2004; Zaman, 2011; Fragallah et al., 2019), because it affects
physiological processes through enzyme activation or inhibition
(Fan, 2001; Bisswanger, 2014). Finally, the comparatively low
percentages of PGM components including enzymes, vitamins,
and amino acids can be explained by the fact that pollen grains
are rich in these components and therefore do not generally
require exogenous supply of such substances in the in vitro PGM
(Campos et al., 2008; Komosinska-Vassev et al., 2015).

PGM Requirements in Different Plant
Groups
The median concentration requirements for the frequently used
ingredients varied among the plant groups with different degrees
of magnitude. Because data distribution in the majority of the
plant groups was skewed, we preferred median values over mean
values when discussing the results.

FIGURE 2 | Pollen germination media requirements for angiosperms (n = 1092) and gymnosperms (n = 46): agar (A), sucrose (B), boric acid (C), calcium (D),
magnesium (E), potassium (F), and pH (G). *, significant (p < 0.05); NS, not significant.
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To begin with, successful PG and PTG was observed mainly
in a liquid PGM (agar = 0%, Table 1) regardless of the
characteristics of the tested species, except for a few cases such
as in Poaceae where agar was required for some special needs
(see below). The strong dominance of liquid PGM recipes in our
compendium could be also explained by high popularity of the
“hanging drop” cultivation approach in pollen research (Stanley
and Linskens, 1974). Furthermore, pollen of the plant families
strongly represented in the compendium (e.g., Solanaceae 10%
and Rosaceae 9%), prefer to germinate in liquid medium. Finally,
researchers might prefer liquid PGMs over the solid ones because
they are slightly more practical (i.e., no need to add agar every
time you want to germinate pollen).

Among other components considered, pollen requirements
for H3BO3 (1.6 mM) and pH (range 5.5–6.3) in PGM were
similar across all plant groups, except for species with different
cultivation status (CW; Table 1). The former being similar could
be attributed to the broad usage of Brewbaker–Kwack protocol
in our dataset, whose boric acid concentration has proved to
be right in many studies (Chauhan et al., 1987; Kumari et al.,
2015; Souza et al., 2017). Correspondingly, boric acid is the least
variable component in PGMs, markedly affecting PG and PTG
(Stanley, 1971) with small deviations making it either inadequate
(Cheng and Rerkasem, 1993; Fang et al., 2019) or toxic (Fang
et al., 2016). Similarly, slight or drastic changes in the pH media

can affect the pollen cytoplasmic pH resulting in slow pollen
growth or total growth inhibition (Tupý and Řhová, 1984; Fricker
et al., 1997; Fan, 2001). This suggests that boron has equal
importance in PG and PTG regardless of the pollen anatomy,
morphology, and physiology.

As for the remaining most frequently used PGM components,
Ca2+ and Mg2+ were significantly different in all categories
except for species with starch vs. starchless pollen (SS). Sucrose
concentration was also significantly different in all groups
compared, except for SS and CW (Table 1). Notably, although
Mg2+ was statistically significant in all categories (except SS),
the differences in both median and mean values were marginal
(Mg2+ median concentration range: 0.8–1 mM; Table 1).
This can be explained by low data variability in our dataset
(Supplementary Appendix 1), affected by wide usage of PGM
based on the Brewbaker and Kwack PG protocol (Brewbaker
and Kwack, 1963). The group-specific difference and possible
underlying reasons are discussed in the following paragraphs.

In cultivated plants, the median concentration of H3BO3
(1.6 mM) and pH (6.1) were significantly higher than in wild
plants (H3BO3 = 1.3 mM and pH = 5.5). In contrast, wild
species had significantly higher concentrations of Ca2+ (1.8 mM)
and K+ (3.0 mM) than the cultivated ones (Ca2+ = 1.3 mM,
K+ = 1.0 mM; Table 1 and Figure 1). Some studies indicate that
pollen of wild species have lower PGM requirements than the

FIGURE 3 | Pollen germination media requirements for dicotyledons (n = 818) and monocotyledons (n = 274): agar (A), sucrose (B), boric acid (C), calcium (D),
magnesium (E), potassium (F), and pH (G). *, significant (p < 0.05); NS, not significant.
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cultivated ones (Jayaprakash, 2018) as was observed in the case of
boric acid. However, we have no a plausible explanation for the
pH differences or why the mineral concentrations were higher
in the wild plants than the cultivated. The differences could be
attributed to domestication and artificial selection, which may
cause cultivars to change their physiological and morphological
attributes thus differing from the wild counterparts (Chaudhary,
2013; Gepts, 2014; Liu et al., 2019). Finally, the experimental
design and selection of various conditions for domesticated
and wild species by different researchers could as well have
contributed to the observed differences.

In angiosperms, the median concentrations of sucrose
(12%) and Ca2+ (1.7 mM) were significantly higher than
in gymnosperms (sucrose = 10%, Ca2+ = 1.3 mM; Table 1
and Figure 2). These results are in line with the study by
Brewbaker and Kwack (1963) that shows that gymnosperm
pollen generally require lower concentration of these substances
(Brewbaker and Kwack, 1963). The lower calcium requirements
can be attributed to the generally comparatively slow growth
of germinating gymnosperm pollen (Brewbaker and Kwack,
1963; Williams, 2012). The dissimilarity in the cytology and
wall structure between angiosperms and gymnosperms pollen
(e.g., Pacini et al., 1999; Fernando et al., 2005) could probably

also contribute to the observed differences. Further, pollen
cytology plays a significant role in the metabolic processes
(Bergamini and Mulcahy, 1988). For instance, pollen grains of
most gymnosperms are wind pollinated (Faegri and van der
Pijl, 1979) and hence, released with a low moisture content to
reduce weight (Fernando et al., 2005). In order for gymnosperm
pollen to germinate, rehydration takes place quickly in the
liquid medium/pollination drop within the micropylar (Nepi
et al., 2005; Firon et al., 2012). This suggests that a higher
osmotic potential (lower salt content) is required probably
explaining the lower concentrations of sucrose and Ca2+

observed in the PGM for gymnosperms. Contrary, angiosperm
pollen is released with higher moisture content with rehydration
being slower, and grows hurriedly, utilizing the available
ingredients quickly (Dawkins and Owens, 1993; Pacini et al.,
1999; Nepi et al., 2005; Firon et al., 2012). This probably
explains the higher concentration of sucrose and Ca2+ in the
in vitro media.

In dicots, the median concentrations of sucrose (14%) and
Ca2+ (1.8 mM) were significantly higher, than in monocots
(sucrose = 10%, Ca2+ = 1.3 mM; Table 1 and Figure 3).
These results are in accordance with previous research showing
that monocot pollen require lower mineral content than dicots

FIGURE 4 | Pollen germination media requirements for binucleate (n = 913) and trinucleate pollen (n = 713): agar (A), sucrose (B), boric acid (C), calcium (D),
magnesium (E), potassium (F), and pH (G). *, significant (p < 0.05); NS, not significant.
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(Jayaprakash, 2018). A possible explanation is that monocot
pollen is usually recalcitrant (i.e., have high moisture content
of 30–40%) as compared to orthodox pollen of dicots (1–5%;
Franchi et al., 2011; Jayaprakash, 2018). This suggests therefore,
that monocot pollen requires lower ion concentrations in a PGM
to reach the turgence level needed to germinate. Additionally,
pollen of several monocots such as Typha latifolia L., are released
with high concentration of sugars in it (mainly sucrose) and
other protective molecules to confer stability after release, an
adaptation against desiccation (Wolkers et al., 2001; Pacini et al.,
2006). They therefore require low concentrations of these in
the media. Contrastingly, the largely orthodox dicot pollen are
desiccation tolerant and are released with low moisture and
mineral content (Wolkers et al., 2001; Pacini et al., 2006; Franchi
et al., 2011), hence requiring a higher supply of these substances
in in vitro media.

In tri-nucleated pollen, requirements for sucrose in PGM
were significantly higher than in binucleated pollen (15 vs.
10%, respectively; Table 1 and Figure 4). The component
requirements in vitro highly depend on the existing endogenous
pollen reserves, whether these are sustainable autotrophically
and are readily available for metabolism (Read et al., 1993;
Stephenson et al., 2003; Carrizo García et al., 2012). Trinucleated
pollen is found to be highly dependent on exogeneous supply of
substances important for PG and PTG (Mulcahy and Mulcahy,

1988). This can be associated with tricellular pollen germinating
faster, a heterochronic evolutionary shift from bicellular pollen
(Brewbaker, 1967; Mulcahy and Mulcahy, 1988), accounting
for the higher sucrose requirements observed. In contrast,
binucleated pollen grains initially rely on their own reserves
when germinating in vitro, hence the lower sucrose requirements
(Mulcahy and Mulcahy, 1988). Pollen requirements for Ca2+ in
PGM were also statistically different between tri- vs. bi-nucleated
pollen but the median values were similar (1.7 mM; Table 1) as
was the case for Mg2+.

In plant with dry stigmas, sucrose (15%) and Ca2+ (1.8 mM)
requirements were significantly higher than in wet stigma plants
(sucrose = 10%, Ca2+ = 1.3 mM; Table 1 and Figure 5). Under
natural conditions, wet stigmatic plants produce exudates rich in
minerals and sugars (Labarca et al., 1970; Hawker et al., 1983;
Kandasamy and Vivekanandan, 1983; Lau et al., 2017) in which
pollen germinates (Park and Lord, 2003; Allen and Hiscock,
2010; Rejón et al., 2014). This would suggest that pollen in wet
stigmatic plants should as well require a higher exogenous supply
of these substances in vitro. However, this was contrary with
our results. A possible explanation is that most dry stigmatic
plants tend to have trinucleate pollen with high requirements
for exogenous minerals (see also above), whereas wet stigmas
are associated with binucleated pollen (lower supply; Brewbaker,
1967; Montaner et al., 2003).

FIGURE 5 | Pollen germination media requirements for dry stigma (n = 604) and wet stigma plants (n = 475): agar (A), sucrose (B), boric acid (C), calcium (D),
magnesium (E), potassium (F), and pH (G). *, significant (p < 0.05); NS, not significant.
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In plants with starchy vs. starchless pollen, we detected
statistically significant differences for K+ requirements only
(Table 1 and Figure 6). The lower requirements of starchless
pollen (median 2.6 mM) than in starchy (3.0 mM) can be
attributed to the fact that the former are usually associated to
binucleated pollen which require lower mineral input than in
starchy/trinucleate (Lora et al., 2012). Notably, both pollen types
can occur in the same anther (Baker and Baker, 1979; Lora et al.,
2012) and yet may need different requirements to germinate
in vitro (Franchi et al., 2007).

As for the groupings by taxonomy, plant families Solanaceae
(10%), Rosaceae (9%), Fabaceae (8%), Poaceae and Pinaceae
at 5% had the strongest representation in the compendium
accounting all together for 586 PGM recipes for 285 (35%)
species. The high contribution from these five families can be
explained by the fact that many species from these families
are cultivated plants (e.g., Solanaceae: tomato, potato; Rosaceae:
almond, apple, pear, cherry; Fabaceae: peas and beans; Poaceae:
rice, wheat, barely; Pinaceae: pines). Nicotiana tabacum L. (27
recipes), Zea mays L. (25), and Lilium longiflorum Thunb.
(22), which are also economically (Z. mays) and scientifically
(N. tabacum and L. longiflorum) important plants, were the most
studied species. N. tabacum L., the tobacco plant, has also been
widely used as a model plant in pollen research, as it produces
long-living pollen in large quantities (Cheung et al., 1995; Conze

et al., 2017). The medium requirements for the most frequently
cultivated species as well as model species such as A. thaliana (L.)
Heynh. are summarized in the Table 2.

The PGM requirements for the most used components also
tend to be different for the families. Among the frequent
families, only Poaceae pollen tends to germinate better and
produce pollen tubes on solid medium (0.6% agar; Table 3)
with the rest of the families preferring liquid medium. The
tendency of Poaceae pollen to germinate in PGM with higher
agar concentration can be explained by the dry stigmata in
this family. Germinating pollen of plants with dry stigmas
has often proved challenging as it is more difficult to imitate
the complex interactions on dry stigmatic surfaces (Allen and
Hiscock, 2010; Rodriguez-Enriquez et al., 2013). Therefore, the
higher agar concentration in PGM of pollen from dry stigmatic
plants helps in incorporating the ingredients, maintaining
humidity, and adequate aerobic conditions for PG (Linskens
and Stanley, 1974). In contrast, the rest of frequent families
mostly have wet stigmas with exudates (Allen and Hiscock, 2010)
which are easier to imitate in vitro and germinate the pollen
in liquid media.

Furthermore, Poaceae and Solanaceae tend to have
comparatively higher sucrose requirements than the other
frequent families (15 vs. 9–10%; Table 3). Notably, some
Poaceae species such as Triticum aestivum L. even require

FIGURE 6 | Pollen germination media requirements for starchy (n = 86) and starchless pollen (n = 268): agar (A), sucrose (B), boric acid (C), calcium (D),
magnesium (E), potassium (F), and pH (G). *, significant (p < 0.05); NS, not significant.
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TABLE 2 | The median (M), mean (µ) concentrations, and standard error of the most frequently used ingredients in in vitro pollen germination media for the most
studied species.

Species Agar (%) Sucrose (%) H3BO3 (mM) Ca2+ (mM) Mg2+ (mM) K+ (mM) pH

n M µ SE± M µ SE± M µ SE± M µ SE± M µ SE± M µ SE± M µ SE±

Arabidopsis
thaliana (L.) Heynh.

6 0.6 0.6 0.16 18 16 2.72 1.6 1.5 0.16 4 2.9 0.93 1 0.7 0.3 0.6 0.6 0.37 7 6.9 0.25

Lilium longiflorum
Thunb.

19 0 0.1 0.07 10 9 1.05 0.2 0.8 0.16 1.3 1.7 0.64 0.9 0.9 0.09 1 1 0 5.6 5.5 0.11

Lotus corniculatus
L.

11 0 0.1 0.09 0 6 2.6 0.8 1 0.11 5.4 4.8 0.53 1.2 1.2 0.12 3 2.6 0.37 5.5 5.9 0.44

Lycopersicon
esculentum Mill.

12 0 0.5 0.19 12 12 1.78 1 1.2 0.18 1.3 1.6 0.35 0.8 1 0.21 – – – 6 6.1 0.37

Nicotiana tabacum
L.

23 0 0 0.03 10 10 0.9 1.6 1.6 0.13 1.3 1.6 0.25 0.8 1 0.08 1 1 0 6 6.3 0.14

Olea europaea L. 8 0.5 0.4 0.12 10 12 1.38 1.6 2.5 0.71 1.5 1.5 0.28 1.2 1.2 0.43 1 1 – 5.3 5.4 0.23

Petunia hybrida
Vilm.

13 0 0.1 0.09 10 11 1.15 1.6 1.6 0.17 1.3 1.7 0.69 0.8 1.1 0.28 1 1 – 6 6.0 0.07

Prunus dulcis (Mill.)
D.A.Webb

5 1 0.6 0.23 15 13 1.22 1.6 1.3 0.31 1.5 1.5 0.28 0.8 0.8 – 1 1 – 5.8 5.8 –

Zea mays L. 16 0.6 0.6 0.11 15 15 0.51 1.6 1.3 0.15 1.8 1.8 0.14 – – – – – – 6 6.1 0.29

TABLE 3 | The median (M), mean (µ) concentrations, and standard error of the most frequently used ingredients in in vitro pollen germination media for the most
represented families.

Family Agar (%) Sucrose (%) H3BO3 (mM) Ca2+ (mM) Mg2+ (mM) K+ (mM) pH

n M µ SE± M µ SE± M µ SE± M µ SE± M µ SE± M µ SE± M µ SE±

Fabaceae 90 0 0.1 0.04 10 12 0.94 1.6 1.3 0.07 1.8 3.1 0.23 0.8 1.1 0.05 2.6 2 0.19 5.5 5.91 0.18

Liliaceae* 58 0 0.2 0.05 10 9 0.63 1.6 1.1 0.09 1.8 2.7 0.33 1 1.2 0.09 2 1.9 0.43 5.7 5.98 0.20

Pinaceae 38 0 0.3 0.07 9 8 0.78 1.6 1.3 0.09 1.3 1.3 0.09 0.8 0.7 0.12 1 1.4 0.26 5.8 5.72 0.06

Poaceae 59 0.6 0.6 0.07 15 16 0.99 1.6 1.3 0.1 1.5 1.8 0.17 0.9 1.1 0.17 0.7 0.7 0 5.8 5.88 0.08

Rosaceae 87 0 0.4 0.05 10 12 0.52 1.6 1.5 0.16 1.3 1.7 0.17 0.8 1 0.05 1 1.6 0.37 6 6.12 0.14

Solanaceae 139 0 0.2 0.03 15 14 0.54 1 1.4 0.09 1.3 1.5 0.14 0.8 1 0.06 1 1.1 0.08 6 6.03 0.08

*Includes species from other families such as Amaryllidaceae.

higher concentrations of other sugars such as maltose (18–
30%; Supplementary Appendix 1). This can be explained by
Poaceae having trinucleated pollen that mostly rely on the
exogenous mineral supply (also see above). Solanaceae having
high sucrose requirements can be attributed to the high data
variability in our dataset for this family (sucrose concentration
range 10–20%). Generally, pollen anatomy, morphology, and
physiology can vary considerably among species (Baker and
Baker, 1979; Pacini, 1996; Speranza et al., 1997) contributing
to observed differences in the media requirements among
families (Table 3).

Developing PGM Recipes
The detected (dis)similarities in pollen requirements for the most
frequently used PGM components can be used for creating a new
PGM where no ready recipe is available in our data set. Below, we
suggest a number of “base” recipes for various plant groups:

• Angiosperms: liquid media, 12% sucrose, 1.6 mM H3BO3,
1.7 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+, and pH 5.9

• Gymnosperms: liquid media, 10% sucrose, 1.6 mM H3BO3,
1.3 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+, and pH 5.8
• Dicots: liquid media, 14% sucrose, 1.6 mM H3BO3, 1.8 mM

Ca2+, 0.8 mM Mg2+, 1.3 mM K+, and pH 5.8
• Monocots: liquid media, 10% sucrose, 1.6 mM H3BO3,

1.3 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+, and pH 6.3
• Binucleate pollen: liquid media, 10% sucrose, 1.6 mM

H3BO3, 1.7 mM Ca2+, 0.8 mM Mg2+, 2.2 mM K+, and pH
5.9
• Trinucleate pollen: liquid media, 15% sucrose, 1.6 mM

H3BO3, 1.7 mM Ca2+, 1.0 mM Mg2+, 1.0 mM K+, and pH
5.8
• Dry stigmatic plants: liquid media, 15% sucrose, 1.6 mM

H3BO3, 1.8 mM Ca2+, 0.8 mM Mg2+, 3.0 mM K+, and pH
5.8
• Wet stigmatic plants: liquid media, 10% sucrose, 1.6 mM

H3BO3, 1.3 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+, and pH
6.0
• Starchless pollen: liquid media, 10% sucrose, 1.6 mM

H3BO3, 1.3 mM Ca2+, 0.8 mM Mg2+, 2.6 mM K+, and
pH 6.2
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• Starchy pollen: liquid media, 10% sucrose, 1.6 mM H3BO3,
1.8 mM Ca2+, 1.0 mM Mg2+, 3.0 mM K+, and pH 5.5.

For some frequent families, the following from our data set
can be used as a guide in creating new PGM:

• Fabaceae: liquid media, 10% sucrose, 1.6 mM
H3BO3, 1.8 mM Ca2+, 0.8 mM Mg2+, 2.6 mM K+,
and pH 5.5
• Pinaceae: liquid media, 9% sucrose, 1.6 mM H3BO3,

1.3 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+, and pH 5.8
• Poaceae: 0.6% agar, 15% sucrose, 1.6 mM H3BO3, 1.5 mM

Ca2+, 0.9 mM Mg2+, 0.7 mM K+, and pH 5.8
• Rosaceae: liquid media, 10% sucrose, 1.6 mM H3BO3,

1.3 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+, and pH 6
• Solanaceae: liquid media, 15% sucrose, 1.0 mM

H3BO3, 1.3 mM Ca2+, 0.8 mM Mg2+, 1.0 mM K+,
and pH 6.

DATA AVAILABILITY STATEMENT

The original contributions presented in the study
are included in the article/Supplementary Material,
further inquiries can be directed to the corresponding
author/s.

AUTHOR CONTRIBUTIONS

SR designed the study. DT and SR made substantial
contributions to the acquisition, analysis, and interpretation
of the work. Both authors proofed and corrected the
manuscript.

FUNDING

Research funding was provided by the Deutsche
Forschungsgemeinschaft (DFG), Project RO 4909/1-1 (SR).

ACKNOWLEDGMENTS

We thank Vladimir Orbovic and the two reviewers for their
comments on the earlier version of the manuscript.

SUPPLEMENTARY MATERIAL

The Supplementary Material for this article can be found
online at: https://www.frontiersin.org/articles/10.3389/fpls.2021.
709945/full#supplementary-material

Supplementary Appendix 1 | Compendium of pollen germination media.

REFERENCES
Albert, B., Ressayre, A., Dillmann, C., Carlson, A. L., Swanson, R. J., Gouyon, P.-

H., et al. (2018). Effect of aperture number on pollen germination, survival
and reproductive success in Arabidopsis thaliana. Ann. Bot. 121, 733–740. doi:
10.1093/aob/mcx206

Allen, A., and Hiscock, S. J. (2010). Molecular communication between plant
pollen and pistils. CAB Rev. 5:105053. doi: 10.1079/PAVSNNR20105053

Ashman, T.-L., Knight, T. M., Steets, J. A., Amarasekare, P., Burd, M., Campbell,
D. R., et al. (2004). Pollen limitation of plant reproduction: ecological and
evolutionary causes and consequences. Ecology 85, 2408–2421. doi: 10.1890/03-
8024

Baker, H. G., and Baker, I. (1979). Starch in angiosperm pollen grains and its
evolutionary significance. Am. J. Bot. 66, 591–600. doi: 10.1002/j.1537-2197.
1979.tb06262.x

Baloch, M. J., Lakho, A. R., Bhutto, H., and Solangi, M. Y. (2001). Impact of sucrose
concentrations on in vitro pollen germination of okra, Hibiscus esculentus.
Pakistan J. Biol. Sci. 4, 402–403. doi: 10.3923/PJBS.2001.402.403

Bellani, L. M., Pacini, E., and Franchi, G. G. (1985). In vitro pollen grain
germination and starch content in species with different reproductive cycle
i. Lycopersicum peruvianum Mill. Acta Botan. Neerlandica 34, 59–64. doi: 10.
1111/j.1438-8677.1985.tb01852.x

Bellani, L. M., Rinallo, C., Muccifora, S., and Gori, P. (1997). Effects of simulated
acid rain on pollen physiology and ultrastructure in the apple. Env. Pollut. 95,
357–362. doi: 10.1016/S0269-7491(96)00127-3

Bergamini, M. G., and Mulcahy, D. L. (1988). The effect of supplemented media
on the growth in vitro of bi- and trinucleate pollen. Plant Sci. 55, 213–216.
doi: 10.1016/0168-9452(88)90063-5

Bilderback, D. E. (1981). Impatiens pollen germination and tube growth as a
bioassay for toxic substances. Env. Health Perspect. 37:95. doi: 10.2307/3429256

Bisswanger, H. (2014). Enzyme assays. Perspect. Sci. 1, 41–55. doi: 10.1016/j.pisc.
2014.02.005

Biswas, P., and Mondal, S. (2014). Role of some nutrients on in vitro pollen
germination and tube development of Luffa cylindrica (L.) Roem. Ann. Plant
Sci. 3, 813–821.

Boavida, L. C., and McCormick, S. (2007). Temperature as a determinant factor for
increased and reproducible in vitro pollen germination in Arabidopsis thaliana.
Plant J. 52, 570–582. doi: 10.1111/j.1365-313X.2007.03248.x

Brewbaker, J. L. (1967). The distribution and phylogenetic significance of
binucleate and trinucleate pollen grains in the angiosperms. Am. J. Bot. 54,
1069–1083. doi: 10.1002/j.1537-2197.1967.tb10735.x

Brewbaker, J. L., and Kwack, B. H. (1963). The essential role of calcium ion in pollen
germination and pollen tube growth. Am. J. Bot. 50:859. doi: 10.2307/2439772

Brink, R. A. (1924). The physiology of pollen iii. growth in vitro and
in vivo. Am. J. Bot. 11, 351–364. doi: 10.1002/j.1537-2197.1924.tb
05781.x

Burke, J. J. (2002). Moisture sensitivity of cotton pollen. Agron. J. 94, 883–888.
doi: 10.2134/agronj2002.8830

Burke, J. J., Velten, J., and Oliver, M. J. (2004). In vitro analysis of cotton pollen
germination. Agron. J. 96, 359–368. doi: 10.2134/agronj2004.3590

Campos, M. G. R., Bogdanov, S., Almeida-Muradian, L. B., de, Szczesna, T.,
Mancebo, Y., et al. (2008). Pollen composition and standardisation of analytical
methods. J. Apicult. Res. 47, 154–161. doi: 10.1080/00218839.2008.11101443
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