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Waterlogging is one of the main abiotic stresses severely reducing barley grain

yield. Barley breeding programs focusing on waterlogging tolerance require an

understanding of genetic loci and alleles in the current germplasm. In this study,

247 worldwide spring barley genotypes grown under controlled field conditions were

genotyped with 35,926 SNPs with minor allele frequency (MAF) > 0.05. Significant

phenotypic variation in each trait, including biomass, spikes per plant, grains per

plant, kernel weight per plant, plant height and chlorophyll content, was observed.

A genome-wide association study (GWAS) based on linkage disequilibrium (LD) for

waterlogging tolerance was conducted. Population structure analysis divided the

population into three subgroups. A mixed linkage model using both population structure

and kinship matrix (Q+K) was performed. We identified 17 genomic regions containing

51 significant waterlogging-tolerance-associated markers for waterlogging tolerance

response, accounting for 5.8–11.5% of the phenotypic variation, with a majority of them

localized on chromosomes 1H, 2H, 4H, and 5H. Six novel QTL were identified and

eight potential candidate genes mediating responses to abiotic stresses were located

at QTL associated with waterlogging tolerance. To our awareness, this is the first

GWAS for waterlogging tolerance in a worldwide barley collection under controlled field

conditions. The marker-trait associations could be used in the marker-assisted selection

of waterlogging tolerance and will facilitate barley breeding.

Keywords: barley, waterlogging tolerance, genome-wide associated study, marker-trait association, quantitative

trait loci, candidate genes

INTRODUCTION

Waterlogging is a major abiotic stress that causes oxygen depletion and carbon oxide accumulation
in the rhizosphere (Bailey-Serres and Voesenek, 2008) and has become one of the main concerns
for crops limiting agricultural production globally. It is estimated that, worldwide, 10–16% of the
arable soils are affected by waterlogging (Setter and Waters, 2003; Yaduvanshi et al., 2014). In
western Canada, waterlogging has been identified as an important limiting factor for the crops
grown, including barley. In the last decade, waterlogging was accountable for 52% of post-harvest
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claims for crop losses by farmers in Manitoba and Saskatchewan
[Manitoba Agricultural Services Corporation (MASC), 2017;
Saskatchewan Crop Insurance Corporation (SCIC), 2017].
Waterlogging occurs when there is excess moisture in the soil
caused by high precipitation combined with poor soil drainage,
resulting in anoxic and hypoxia within roots (Arduini et al.,
2016). Waterlogging also causes an excess of ethylene and carbon
dioxide that also increases metabolic toxins and microelements
such as iron and manganese in soil solution or roots, reduces
respiration, root conductivity to water, and nutrient uptake, thus
affecting plant growth and survival (Setter and Waters, 2003).

Barley (Hordeum vulgare L.) is the fourth most important
cereal crop globally and Canada’s fourth-largest crop and is
primarily used for livestock feed, malting, and food (FAOSTAT
Production, 2020; Statistics Canada, 2020). Canada is the fourth
largest barley producer and the second-largest malt exporter in
the world. On average, each year,∼$1 billion is directly generated
from the export of feed barley and malt [Canadian Agri-Food
Trade Alliance (CAFTA), 2020]. Barley is more susceptible to
waterlogging stress than other cereals (Setter and Waters, 2003).
Waterlogging stress may cause significant yield losses in barley
that vary from 10 to 50%, depending on factors such as the
depth and duration of flooding, the development stage of the
waterlogged plant, temperature (Setter et al., 1999) and type of
soil (Pang et al., 2004). Waterlogging stress affects the genome-
wide gene expression responses in barley roots, increasing the
expression of many genes related to stress tolerance in barley
roots, including glycolysis and fermentation-related genes, as well
as ethylene-responsive element binding factors, and decreasing
the expression of genes related to starch and sucrose metabolism,
and nitrogen and amino acid metabolism (Borrego-Benjumea
et al., 2020).

In barley, damages caused by soil waterlogging include
chlorosis and premature leaf senescence, reduced root growth,
tillering, drymatter accumulation, number and weight of kernels,
and increased floral sterility (De San Celedonio et al., 2014, 2018;
Masoni et al., 2016; Ploschuk et al., 2018; Sundgren et al., 2018).
Under outdoor conditions in Argentina, Ploschuk et al. (2018)
assessed tolerance to 14-days of early- or late-stage waterlogging
of winter barley, which produced adventitious roots with 19%
of aerenchyma. They showed that photosynthesis was reduced
during waterlogging, but early-waterlogged plants were able to
recover upon drainage with seed production reaching 85% of the
controls, while late-waterlogged plants only attained 32% in seed
production. Sayre et al. (1994) found that the growth stage of
barley from leaf emergence to the booting stage is more sensitive
to waterlogging, while Liu et al. (2020) reported that waterlogging
close to heading is the most susceptible period, with yield losses
primarily attributed to reductions in spikelet fertility and grain
weight. In the Canadian Prairies, it has been projected increased

Abbreviations: BIO, above-ground dry Biomass; CABC, chlorophyll a+b content;
CCC, chlorophyll carotenoids content; GP, number of grains per plant; GWAS,
Genome-wide association study; KWP, kernel weight per plant; LD, linkage
disequilibrium; PH, plant height; QTL, quantitative trait loci/locus; SNP, single
nucleotide polymorphism; SP, number of spikes per plant; WLS, waterlogging
score.

precipitation in the coming years during May-June period (Blair
et al., 2016). This is a critical period in the barley growing season
in this region where increased precipitation reduces barley grain
yield (Borrego-Benjumea et al., 2019). Therefore, it is important
to develop cultivars tolerant to excess moisture and thus to
increase the yield stability of barley.

Waterlogging tolerance is a complex quantitative trait under
strong environmental influence with relatively low heritability
of grain yield in barley (Hamachi et al., 1990). Due to this low
heritability and dependency on environmental conditions, the
direct selection of barley for waterlogging tolerance is time-
consuming and less effective. Marker-assisted selection (MAS) is
an effective approach that can improve the efficiency of breeding
waterlogging-tolerant barley varieties and avoid environmental
effects. MAS requires identifying appropriate quantitative trait
loci (QTL) for traits associated with waterlogging tolerance,
and the development of molecular markers closely linked to
these traits. In barley, major QTL associated with waterlogging
tolerance have revealed numerous genomic regions that affect
important traits, such as chlorophyll fluorescence (Bertholdsson
et al., 2015), root aerenchyma formation in cultivated and
wild barley (Li et al., 2008; Zhang et al., 2016; Zhang X.
et al., 2017), root membrane potential (Gill et al., 2017), root
porosity (Broughton et al., 2015; Zhang et al., 2016), reactive
oxygen species (ROS) formation (Gill et al., 2019), waterlogging
score (Li et al., 2008; Zhou, 2011; Zhou et al., 2012), and
yield components (Xue et al., 2010; Xu et al., 2012). All these
major QTL have been mapped using doubled haploids (DH)
populations from bi-parental crosses of contrasting phenotype
parents for waterlogging. Although this approach has been the
most applied and has been very successful in detectingmanyQTL
for waterlogging tolerance in barley, few of the QTL reported
have been successfully used in MAS.

Association mapping (AM) is another alternative to mapping
QTL associated with complex traits in crops. The AM takes
advantage of historic linkage disequilibrium to uncover genetic
associations. Genome-wide association study (GWAS) requires
high marker density because linkage disequilibrium (LD) is low
inGWAS populations than in bi-parental populations. In GWAS,
the mapping population consists of a diverse set of individuals or
lines drawn from natural populations and breeding populations.
GWAS has been used to detect QTL involved in response
to waterlogging stress in various crops such as maize (Zhang
et al., 2013), rice (Zhang M. et al., 2017), soybean (Cornelious
et al., 2005) and wheat (Sundgren, 2018). In barley, GWAS
has been used to identify QTL for not only agronomic traits,
such as yield and yield components-related traits, using GWAS
(Pasam et al., 2012; Locatelli et al., 2013; Tondelli et al., 2013;
Pauli et al., 2014; Bellucci et al., 2017; Xu et al., 2018) but
also tolerance to abiotic stresses such as salinity (Long et al.,
2013; Fan et al., 2016; Mwando et al., 2020), drought (Varshney
et al., 2012; Jabbari et al., 2018; Tarawneh et al., 2020), acid soil
(Zhou et al., 2016), and low potassium (Ye et al., 2020) stress
tolerance. However, no information is available for QTLmapping
for waterlogging tolerance in barley by GWAS. In the present
study, we assessed a worldwide barley collection for waterlogging
stress tolerance under controlled field conditions. We evaluated
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the phenotypic and genetic diversity and the patterns of LD
decay across the barley genome. We conducted GWAS for
waterlogging tolerant traits, aiming to uncover novel genomic
regions and identify marker-trait associations for waterlogging
tolerance and confirm the previously identified genomic regions
and single nucleotide polymorphism (SNP) marker associated
with waterlogging tolerance. To our awareness, this is the first
AM study for waterlogging stress tolerance in a worldwide barley
collection under controlled field conditions.

MATERIALS AND METHODS

Plant Material
A spring barley worldwide collection of 247 genotypes, including
advanced breeding lines, cultivars, and landraces, was assembled
and used in this study. The majority of genotypes were from
Canada (30%), the USA (12%), China (10%), and Australia (8%).
The rest were from 35 different countries.

Field Experiment
The barley genotypes were evaluated for waterlogging tolerance
in controlled field conditions in one location at the experimental
station of the Brandon Research and Development Centre
(49◦52

′

N, 99◦58
′

W) in two consecutive years (2016 and 2017).
This location is a place where water is prone to accumulate,
creating excess moisture problems. The soil has a sandy loam
texture. The field trial area was leveled before seeding to
ensure that all plants would be under the same water level.
A ridge was built on the treatment side and was encircled
by a plastic film to avoid water escape. The experimental
design used was a randomized complete block design with
three replications. Each plot represented one experimental unit,
consisting of a single-row plot of 0.92m length containing 25
seeds evenly distributed with 0.31m spacing between rows.
Seeds were sown in late May or early June following standard
agronomic practices. Waterlogging-tolerant genotype Deder2
and waterlogging-sensitive genotype Franklin were used as
checks. The waterlogging stress treatment was initiated at the
tillering stage on the treatment side by adding the water to
0.5–1 cm above the soil surface. Waterlogging treatment was
maintained at the same level and continued until the susceptible
checks showed considerable stress symptoms (around 70%
leaf symptom yellowing) and genotypic differences were easily
distinguishable. The treatment duration was 9 and 7 days in
2016 and 2017, respectively. Then water in the waterlogged
plots was drained out, and the plants were allowed to grow
to maturity. Standard agronomic and cultural practices were
applied to the other side of the field, used as control. The
precipitation during the growing season was 394 and 245mm in
2016 and 2017, respectively.

After full maturity, three individual plants were randomly
harvested from each plot for analytical measurements. The traits
evaluated included above-ground dry Biomass (BIO), number
of spikes per plant (SP), number of grains per plant (GP),
kernel weight per plant (KWP), plant height (PH), chlorophyll
a+b content (CABC), chlorophyll carotenoids content (CCC),
and waterlogging score (WLS) and were measured for 2

years in both treatment and control conditions. WLS was
determined based on plant survival and leaf chlorosis (1 = not
affected by waterlogging, 9 = plants died from waterlogging)
(Supplementary Figure 1) after drainage (Zhou, 2011). For
chlorophyll content determination, the pooled upper second leaf
samples of six plants per plot under waterlogging conditions
and three plants per plot under control were collected after
the last day of treatment. From each pooled tissue leaf sample
per plot, three biological replicates of 50mg leaf tissue each
were incubated with methanol. The absorbance, at wavelengths
470, 653, and 666 nm, was read using a spectrophotometer
(SpectraMax 190 Microplate Reader). The number of pigments
was calculated according to the formula from Lichtenthaler and
Wellburn (1983). The mean values (three plants from each
replicate × three replicates) of each plot sampled were subjected
to statistical analysis.

Statistical Analysis of Phenotypic Data
All data were analyzed using the statistical software JMP SAS
version 14.1 (SAS Institute Inc., Cary, USA). The phenotypic
data were analyzed using a mixed-effects model with genotype
as a fixed effect, and year and replication nested within year
as random effects. Least-squares means were estimated for
waterlogging-treatment and control datasets within combined
data across years. Pearson’s correlation coefficient between pairs
of traits was estimated to express the relationships between traits
using the least-squares means across the combined years.

Genotyping
The barley collection was grown in the greenhouse to generate
plant tissue for DNA extraction using a standard potting mix,
standard photoperiod conditions (16 h light), and 70% humidity.
Genomic DNA from each genotype was extracted from pooled
leaf tissue samples of four seedlings per genotype using a
Qiagen DNeasy Plant Mini Kit (Qiagen GMbH, Germany).
Before normalization, the quality and quantity of the extracted
DNA were verified using a NanoDrop 1000 spectrophotometer
(Thermo Scientific, Wilmington, Delaware, USA) and agarose
gel electrophoresis, respectively. The samples were genotyped
using the Barley 50K iSelect SNP Array (Illumina Inc., San
Diego, CA, USA), containing 44,040 working assays (Bayer et al.,
2017). All these data is presented in Supplementary Table 0.
The SNP markers were further filtered using thresholds for
minor allele frequency (MAF) of 0.05, missing rate of 0.20, and
heterozygosity of 0.01. The final, filtered set of 35,926 SNPs
was subsequently used for GWAS. Genotypes showing more
than 0.02 heterozygous loci and call rates below 0.95 were also
excluded from further analysis. There were 3551, 5798, 5486,
3904, 6497, 4233, and 5017 SNPs located at chromosomes 1 to
7, respectively, with 1,440 markers of unknown position.

Population Structure, Kinship, and Linkage
Disequilibrium Analyses
The population structure of the 247 barley genotypes, which
represents the genetic similarity among genotypes, was assessed
using the STRUCTURE program. Principal component analysis
(PCA) (JMP Genomics 9.1) and neighbor-joining (NJ) (TASSEL
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5.2.28) tree analysis were used as complementary approaches
to confirm the results obtained using STRUCTURE. The
STRUCTURE software version 2.3.4 (Pritchard et al., 2000) was
used to estimate the most likely number of subpopulations
(K) and the subpopulation coefficients (Q) by detecting allele
frequency differences within the data and assigning individuals
to those subpopulations based on analysis of likelihoods. A
subset of 185 SNP markers, from the final filtered set of 35,926
SNP markers genotyped, were selected every ∼25,000,000 bp
on each chromosome through the barley genome, to ensure
that the sample was representative. A Bayesian-based analysis
was run using the admixture ancestry model with correlated
allele frequencies (Falush et al., 2003). The burn-in period was
set at 100,000, and the Markov Chain Monte Carlo (MCMC)
repetitions at 100,000. The number of assumed clusters (k)
was set from k = 1–7, and for each k, five runs were
performed separately. The output data from STRUCTURE were
assessed using STRUCTURE Harvester (Earl and von Holdt,
2012), where the optimum number of subpopulations (K) was
determined by the Evanno method (Evanno et al., 2005). The
K value was considered to be optimum, while 1K reaches the
maximum. Data for the most likely number of determining
clusters (K = 3) were run to correctly align the clusters
labeled from all five replications in STRUCTURE to obtain
Q coefficients. The Q matrix with the lowest variance for the
most likely number of k populations was selected and used
as the fixed covariate in GWAS models. PCA was performed
in JMP Genomics version 9.1 (SAS Institute Inc., Cary, USA).
A K matrix representing the proportion of shared alleles for
all pairwise comparisons in each population was computed.
The neighbor-joining phylogenetic tree was implemented in
TASSEL version 5.2.28 (Bradbury et al., 2007), which uses
simple parsimony substitution models and is displayed by
Archaeopteryx software.

The pairwise kinship values (kinship K matrix) for the
association panel were calculated using the Identity-by-Descent
(IBD) method in JMP Genomics 9.1. The K matrix estimates
the relationships among the lines using marker data, rather than
pedigree information, and computes the relationship measures
directly while also accounting for selection and genetic drift.
This kinship matrix was used for the subsequent GWAS in
JMP Genomics as a random factor. The kinship coefficient was
calculated and plotted vs. its frequency in the association panel.

Linkage disequilibrium (LD) analysis of the whole-genome
and each of the seven chromosomes was performed in JMP
Genomics 9.1 using 35,926 SNPs. Squared correlation coefficients
(r2) were used to estimate the LD among the pairwise SNP
markers using the maximum likelihood algorithm. To visualize
the extent of LD, r2 was plotted against the map distance (bp),
and a smoothing spline was fitted (λ = 100,000). The baseline r2

value was 0.1; an arbitrary value often used to describe LD decay
(Zhu et al., 2008). The LD decay was estimated at the intersection
point of the smoothing spline-fitting curve and the r2 value and
was considered to estimate the extent of LD in the genome. All
LD values above this critical r2 value were considered to be caused
by genetic linkage.

Genome-Wide Association Mapping
Analysis and SNP Markers Identification
A total of 247 spring barley genotypes were used in this study
based on genotypic and phenotypic data availability. Genome-
wide association (GWA) mapping was conducted on each group
using a total of 35,926 SNPs in JMP Genomics 9.1. Based on the
population structural analysis, the general linear model (GLM)
and mixed linear model (MLM) were run to investigate best-
fit models in the current study to search for SNP associations
with the traits. The MLM model considers both population
structure (Q) and relative kinship (K) effects, and showed the
best approximation of the expected cumulative distribution
of P-values, and therefore, more effective in controlling false
positives, and it was used for GWAS. The population structure
matrix (Qmatrix) evaluated using STRUCTURE and the kinship
matrix analyzed using JMP Genomics 9.1 were used for the
model. Association analysis was performed for each trait in each
treatment for the phenotypic mean value of 2016 and 2017.
The estimated effects for each allelic class were obtained directly
from the mixed linear model. Adjusted R2 values were estimated
from the linear regression model representing the percentage of
phenotypic variation explained by the associated SNPs.

A GWAS threshold P-value of < 1.6 × 10−4 [−log10(P-
value) < 3.8] was used for declaring significant-marker trait
associations. They were based on the median of two threshold
methods for determining significant P-values: a more stringent
method of determining P-value (Wang et al., 2012), where the
significance threshold is determined using the equation α =

1/m where m is the number of markers [–log10(P-value) <

4.5]; and a less stringent method (Chan et al., 2010) that is still
widely accepted, where the bottom 0.1 percentile distribution
of P-values is used as a threshold for significance [–log10
(P-value) < 3]. Manhattan plots were constructed with the
chromosome position on the X-axis against –log(P-value) of all
SNPs, and quantile-quantile (QQ) plots of observed P-values
were constructed against expected P-values using JMP Genomics
9.1. The distribution of the QQ plot was considered to select the
best model for each trait. The optimum model for each variable
was determined as the one with the QQ plot with a smaller
deviation from the normal distribution.

The GWAS was performed with the control, waterlogging
treatment and relative datasets. The relative dataset was
calculated as the relative difference between trait performance
at the control and waterlogging treatment conditions. The
markers that were significantly associated were assigned to QTL
regions based on the trait, their chromosomal positions, and the
estimated LD decay (1.460 Mbp). The identified QTL regions
under control conditions were compared with QTL reported
in previous studies in barley dealing with agronomic traits
(Supplementary Table 1), and the waterlogging treatment and
relative datasets were compared with QTL reported in previous
studies in barley for waterlogging stress tolerance-related traits
(Supplementary Table 2). When possible, BarleyMap (http://
floresta.eead.csic.es/barleymap/find/) was used to collect cM
positions from the POPSEQ_2017 genome map (Mascher et al.,
2013) for significant markers in our study, to enable an
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approximate comparison between the physical and genetic map
positions with the previous studies that reported QTL regions in
genetic distance.

The phenotypic allele effect of each SNP locus, on the
evaluated traits, was calculated through comparison of the
average phenotypic value for each genotype for the specific allele
with that of all genotypes (Mei et al., 2013).

Candidate Gene Prediction
We opted to investigate the genes in the vicinity of each
significant marker-trait associations, using a pre-defined
flanking window of 200-kb upstream and downstream, below
the 1.46Mb LD decay detected in the current barley mapping
collection (Lei et al., 2019). The identified genes were manually
screened for potential annotations. Predicted genes were
extracted from the barley reference genome assembly (IBSC
v2; Mascher et al., 2017). Annotations were downloaded from
Ensembl (http://plants.ensembl.org/Hordeum_vulgare/Info/
Index) and AmiGO Gene Ontology (amigo.geneontology.org).
The role of the potential candidate genes in response to abiotic
stresses, especially waterlogging, was further examined using
published literature.

RESULTS

Phenotypic Data
Phenotypic variation was observed among genotypes for all
traits in both control and waterlogging treatment (Table 1;
Supplementary Figure 2). The frequency distribution of the
genotypes for the investigated traits in the control and
waterlogging treatment is presented in Supplementary Figure 3.
In the control dataset, averaged over 2 years, BIO of the genotypes
varied from 12.5 to 71.9 g, generated 5.4 to 22.4 SP, 9.2 to 312.2
GP, and weighted 0.2 to 14.5 g KWP. PH ranged from 18.5 to
95.8 cm, CABC varied from 0.89 to 1.54 mg/g leaf tissue, while
CCC content varied from 0 to 0.17 mg/g leaf tissue (Table 1).
After the exposure to waterlogging stress in the waterlogged
dataset, averaged over 2 years, the genotypes varied in BIO from
1.7 to 36.3 g, generated 1.9 to 17.2 SP, 3.5 to 255.8 GP, and
weighted 0.1 to 7.7 g KWP. PH ranged from 11.4 to 58.7 cm,
CABC varied from 0.39 to 1.23mg/g leaf tissue, while CCC varied
from 0 to 0.12 mg/g leaf tissue (Table 1). As for WLS, the mean
was 6.8, with a range from 4.7 to 8.8. Overall, for all genotypes,
waterlogging stress reduced BIO, SP, GP, KWP, PH, CABC, and
CCC by 72.1, 61.7, 67.5, 71.7, 45.1, 38.7, and 54.2%, respectively
(Supplementary Figure 3). The coefficient of variation for the
combined 2 years of data was higher for KWP (38.5 and
49.5% in control and waterlogging treatment, respectively),
and lower for PH (16.0 and 17.4% in control and treatment
conditions, respectively). There were highly significant (P< 0.05)
genotypic differences both on individual and combined years
for all traits except CABC and CCC (Table 1). The frequency
distribution of all the traits generally fits a normal distribution
(Supplementary Figure 3).

Correlations among traits under control and waterlogging
treatment for 2016, 2017, and overall are shown in Table 2. In
the combined 2 years of data, a negative correlation (r = −0.14

to −0.55; P ≤ 0.001) was observed between the WLS and all the
traits (Table 2). Yield component traits (BIO, SP, GP, KWP, and
PH) had high correlations in both control (r = 0.72 to 0.94; P ≤

0.001) and waterlogging (r = 0.50–0.98; P ≤ 0.001) treatment.

Population Structure, Kinship, and Linkage
Disequilibrium Analyses
The Bayesian approach implemented in STRUCTURE revealed
the presence of three subpopulations with the highest likelihood
for K = 3 (Supplementary Figure 4) and partitioned the
247 genotypes into three principal groups composed of 96,
83, and 68 genotypes each. Furthermore, the PCA analysis
displayed consistent results, confirming the existence of the
three subpopulations in agreement with the population structure
analysis by STRUCTURE (Figure 1C), with the first two
coordinates accounting for 72.5% of the genotypic variation
(Figure 1A). The phylogenetic analysis partitioned the 247
genotypes into three principal groups, following the results
obtained with STRUCTURE and PCA analyses (Figure 1B).
Subpopulation 1 is mainly composed of genotypes from the USA
(21), Canada (16), and Australia (8), subpopulation 2 included
genotypes mainly from China (23), Australia (10), Switzerland
(9), and Ethiopia (8), while subpopulation 3 included genotypes
from Canada (55), US (9), Australia (1), Brazil (1) China (1),
and Japan (1).

Squared correlation coefficient (r2) values among the marker
pairs were used to estimate LD decay across all seven
chromosomes (Figure 2) and each chromosome separately. The
mean r2 ranged from 0.0178 (chromosome 5H) to 0.0261
(chromosome 4H). The arbitrary baseline r2 value was 0.1. The
LD across all chromosomes decayed at 1,460,356 bp, whereas LD
decay calculated for each chromosome separately ranged between
1,036,588 bp (chromosome 6H) and 2,290,772 bp (chromosome
1H). Based on the LD decay results, 35,926 SNPs (MAF >

0.05) will cover the entire barley genome and are adequate for
GWAS with the assembled barley collection. Therefore, the mean
window size of the QTL determined in this barley collection is
±1,460,356 bp from the highest peak of the significant marker-
trait association.

Association Mapping Analysis
We performed GWAS using 35,926 SNPs (with MAF > 0.05)
for the control and waterlogging treatment conditions, as well as
the relative difference between them using the phenotypic overall
field experiment (mean value of 2016 and 2017), and a threshold
P-value of < 1.6 × 10−4 [–log10(P-value) < 3.8]. Manhattan
plots showed the significance of markers associated with the
evaluated traits for the overall control, waterlogging treatment
and relative datasets in Figures 3–5. QQ plots displayed that the
expected and observed P-values initially matched, but eventually,
they were delineated and deviated to indicate a reasonable
positive (Supplementary Figures 5–7). Thus, the GWAS analysis
is reliable and not likely to give false negatives (Figures 3–5).

Control Dataset
In the overall control conditions, the GWAS analysis identified
a total of 92 markers significantly associated with BIO (52
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TABLE 1 | Mean values and standard deviations of waterlogging-related traits observed under control and waterlogging treatment in field conditions for 247 spring barley

genotypes.

Trait Year Treatment Mean SD Min Max Red.a SE CV (%) G

BIO (g) 2016 Control 37.3 16.9 2.5 86.7 71.5% 1.07 45.3 ***

Waterlogged 10.6 6.5 2.4 50.4 0.41 61.3 ***

2017 Control 42.8 7.7 20.3 79.0 72.6% 0.49 18.0 ***

Waterlogged 11.7 5.4 0.4 31.3 0.34 45.9 ***

2016/17 Control 40.1 11.1 12.5 71.9 72.1% 0.70 27.7 ***

Waterlogged 11.2 5.0 1.7 36.3 0.32 44.6 ***

SP 2016 Control 12.2 4.9 2.0 25.0 75.1% 0.31 39.9 ***

(number) Waterlogged 3.0 2.4 0.0 24.2 0.15 78.7 **

2017 Control 13.8 2.7 6.7 23.4 49.8% 0.17 19.8 ***

Waterlogged 6.9 1.8 2.2 12.2 0.11 25.8 ***

2016/17 Control 13.0 3.0 5.4 22.4 61.7% 0.19 23.3 ***

Waterlogged 5.0 1.6 1.9 17.2 0.10 32.3 ***

GP 2016 Control 150.8 84.3 2.0 430.5 90.0% 5.35 55.9 ***

(number) Waterlogged 15.0 26.2 0.0 329.0 1.7 174.4 ***

2017 Control 167.5 49.0 13.4 362.0 47.1% 3.11 29.3 ***

Waterlogged 88.6 35.1 1.0 196.9 2.2 39.6 ***

2016/17 Control 159.2 57.0 9.2 312.2 67.5% 3.62 35.8 ***

Waterlogged 51.8 24.2 3.5 255.8 1.5 46.8 ***

KWP (g) 2016 Control 6.3 3.7 0.0 19.0 92.5% 0.23 58.6 ***

Waterlogged 0.5 0.9 0.0 9.1 0.1 182.8 ***

2017 Control 6.6 2.2 0.3 16.1 51.9% 0.14 33.4 ***

Waterlogged 3.2 1.4 0.0 8.6 0.1 43.8 ***

2016/17 Control 6.4 2.5 0.2 14.5 71.7% 0.16 38.5 ***

Waterlogged 1.8 0.9 0.1 7.7 0.1 49.5 ***

PH (cm) 2016 Control 73.5 13.7 17.5 101.3 54.8% 0.87 18.7 ***

Waterlogged 33.2 10.7 12.3 65.0 0.7 32.3 NS

2017 Control 72.5 11.0 19.5 104.0 35.3% 0.70 15.2 ***

Waterlogged 46.9 8.6 7.8 70.5 0.5 18.4 ***

2016/17 Control 73.0 11.6 18.5 95.8 45.1% 0.74 16.0 ***

Waterlogged 40.1 7.0 11.4 58.7 0.4 17.4 ***

CABC 2016 Control 1.13 0.2 0.66 1.55 41.3% 0.01 13.75 NS

(mg/g leaf tissue) Waterlogged 0.66 0.3 0.03 1.39 0.02 38.12 NS

2017 Control 1.39 0.1 0.96 1.67 36.6% 0.01 9.63 NS

Waterlogged 0.88 0.2 0.39 1.47 0.01 21.79 ***

2016/17 Control 1.26 0.1 0.89 1.54 38.7% 0.01 8.41 NS

Waterlogged 0.77 0.2 0.39 1.23 0.01 21.22 **

CCC 2016 Control 0.06 0.02 0.00 0.12 10.5% 0.00 42.75 NS

(mg/g leaf tissue) Waterlogged 0.05 0.02 0.00 0.09 0.00 34.52 NS

2017 Control 0.14 0.03 0.01 0.22 71.8% 0.00 24.02 NS

Waterlogged 0.04 0.03 0.00 0.16 0.00 82.08 NS

2016/17 Control 0.10 0.03 0.00 0.17 54.2% 0.00 33.38 NS

Waterlogged 0.04 0.02 0.00 0.12 0.00 58.30 NS

WLS 2016 Waterlogged 6.9 1.2 3.3 9.0 0.08 17.5 *

(1–9 rating) 2017 Waterlogged 6.7 0.7 4.7 9.0 0.05 10.8 ***

2016/17 Waterlogged 6.8 0.8 4.7 8.8 0.05 12.0 ***

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; CABC, chlorophyll a+b; CCC, carotenoids content; WLS, waterlogging score;

SD, standard deviation; Red., Reduction; SE, standard error; CV, coefficient of variance; G, genotypic effect.
aReduction ratio of all genotypes relative to control.

*Significant at P ≤ 0.05; **significant at P ≤ 0.01; ***significant at P ≤ 0.001; NS not significant.
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TABLE 2 | Pearson’s phenotypic correlation coefficients among mean variables (least-squares entry means) of traits for control and waterlogging treatment measured in

the spring barley collection in field conditions.
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Year Control

BIO SP GP KWP PH CABC CCC

2016 BIO 0.83*** 0.76*** 0.70*** 0.51*** −0.05 NS 0.07 NS

SP 0.70*** 0.87*** 0.79*** 0.44*** 0.00 NS 0.07 NS

GP 0.71*** 0.79*** 0.94*** 0.48*** 0.03 NS 0.04 NS

KWP 0.71*** 0.81*** 0.96*** 0.48*** 0.02 NS 0.05 NS

PH 0.25*** 0.46*** 0.28*** 0.27*** −0.12** 0.15***

CABC 0.23*** 0.24*** 0.12** 0.12** 0.50** −0.55***

CCC 0.18*** 0.10** 0.08* 0.06 NS 0.29*** 0.25***

WLS −0.51*** −0.53*** −0.39*** −0.41*** −0.61*** −0.47*** −0.28***

2017 BIO 0.71*** 0.76*** 0.80*** 0.51*** −0.07 NS 0.10**

SP 0.61*** 0.73*** 0.69*** 0.22*** −0.01 NS 0.11**

GP 0.61*** 0.76*** 0.96*** 0.35*** −0.02 NS 0.04 NS

KWP 0.55*** 0.69*** 0.96*** 0.37*** −0.03 NS 0.07*

PH 0.51*** 0.32*** 0.51*** 0.49*** −0.03 NS 0.08*

CABC −0.22*** 0.07 NS 0.12** 0.19*** −0.05 NS 0.02 NS

CCC 0.05 NS 0.08* 0.05 NS 0.05 NS 0.04 NS −0.11**

WLS −0.52*** −0.31*** −0.32*** −0.27*** −0.42*** 0.27*** −0.12**

2016/17 BIO 0.79*** 0.76*** 0.72*** 0.49*** 0.02 NS 0.15***

SP 0.61*** 0.83*** 0.76*** 0.35*** 0.06* 0.15***

GP 0.53*** 0.83*** 0.94*** 0.43*** 0.05 NS 0.09**

KWP 0.50*** 0.80*** 0.98*** 0.44*** 0.01 NS 0.06*

PH 0.35*** 0.55*** 0.53*** 0.52*** −0.10*** 0.04 NS

CABC 0.10*** 0.30*** 0.28*** 0.30*** 0.42*** 0.18***

CCC 0.08** 0.00 NS −0.04 NS −0.03 NS 0.06* 0.00 NS

WLS −0.51*** −0.44*** −0.31*** −0.29*** −0.55*** −0.29*** −0.14***

Control above diagonal, waterlogging treatment below diagonal. The correlations are estimated by the REML method.

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; CABC, chlorophyll a+b; CCC, carotenoids content.

*Significant at P ≤ 0.05; **significant at P ≤ 0.01; ***significant at P ≤ 0.001; NS not significant.

markers), SP (18 markers), GP (23 markers), KWP (15 markers),
and PH (62 markers), with some markers associated with
multiple traits (Supplementary Table 3). Based on their position
on chromosomes, these 92 significant markers mapped on 28
QTL regions on chromosomes 2H, 3H, 5H, 6H, and 7H, with
each QTL region consisting of 1 to 34 markers, which included
two regions for KWP; four regions for SP and GP; 12 regions for
BIO; and 20 regions for PH (Figure 3; Supplementary Table 3).
Some genomic regions were associated with multiple traits,
indicating possible shared QTL between traits. For BIO in the
control conditions, we found six genomic regions, out of 12,
consisting of clusters of significant markers that mapped at
27.8, 29.1, 515.6, 542.4, and 547.4 Mbp on chromosome 2H,
and at 600.9 Mbp on 5H (Table 3; Supplementary Table 3;
Figure 3); each region consisted of clusters from 2 to up
to 34 markers and explained on average from 6.2 to 12.3%
of the phenotypic variation. Chromosome 2H consisted of
the highest number of markers significantly associated with
BIO (52 SNPs), of which BOPA2_12_30872 had the lowest

P-value (6.3 × 10−12) with an allele effect size of 6.8 that
individually explained 17.7% of phenotypic variation for BIO
(Supplementary Table 3). The three genomic regions associated
with SP in the control conditions were mapped at 29.7 Mbp on
chromosome 2H, at 634.9 Mbp on chromosome 3H, and 35.4
Mbp on chromosome 6H and accounted on average for 5.8, 6.8,
6.9, and 6.4% of the phenotypic variation, respectively (Table 3;
Supplementary Table 3). For GP in the control condition, we
found two genomic regions at 29.7 Mbp (clusters of 14 SNPs)
on chromosome 2H and 634.8 Mbp (7 SNPs) on 3H. On
average, each genomic region explained between 6.9 and 7.1%
of the phenotypic variation (Table 3; Supplementary Table 3).
The two genomic regions associated with KWP in the control
conditions were mapped at 29.7 Mbp on 2H (12 SNPs), and at
634.8 Mbp on 3H (3 SNPs). Each region explained, on average,
from 6.1 to 6.7% of the phenotypic variation across the 2 years
(Supplementary Table 3). For PH in the control conditions, we
found nine genomic regions consisting of clusters of at least two
significant markers that mapped at 28.5 Mbp (34 SNPs), 518.3
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FIGURE 1 | Model-based populations of spring barley collection: (A) Two-dimension distribution analyzed by principal component analysis (PCA) by JMP Genomics

9.1, (B) phylogenetic tree constructed by neighbor-joining (NJ) of genetic distance by TASSEL 5.2.28, and (C) Classification of three populations using STRUCTURE

2.3.4. The color code indicates the distribution of the accessions to different populations (Q1: red, Q2: green, Q3: blue) consistent in (A–C).

Mbp (2 SNPs), 523.4 Mbp (2 SNPs), 550.8 Mbp (2 SNPs), 723.7
Mbp (2 SNPs), and 727.6 Mbp (2 SNPs) on 2H, at 600.9 Mbp
(2 SNPs), 613.3 Mbp on 5H (2 SNPs), and 75.1 Mbp on 7H (2
SNPs). Each region individually explained from 5.8 to 11.4% of
the phenotypic variation (Supplementary Table 3).

Under control conditions, six marker-trait associations
representing genomic regions were associated with different
traits (Table 3). On chromosome 2H, the marker JHI-Hv50k-
2016-69385 at 19.0 Mbp was associated with the traits BIO
and PH, with similar effects in phenotype (6.9 and 5.8%
phenotypic variation, respectively); the marker JHI-Hv50k-
2016-72991 at 27.8 Mbp was coincidental for BIO, SP, and
PH, although with different effects in each trait (from 5.8
to 11.9% phenotypic variation); the marker JHI-Hv50k-2016-
73691 located at 29.6 Mbp was associated with the traits SP,
GP, and KWP; and the marker JHI-Hv50k-2016-94875 at 496.6
Mbp was shared by the traits BIO and PH (6.9 and 5.8%
phenotypic variation, respectively). On chromosome 3H, the
traits GP and KWP were associated with the same marker
JHI-Hv50k-2016-205562 located at 634.8 Mbp, with 8.2 and
6.8% phenotypic variation, respectively (Table 3). Finally, on
chromosome 5H, the traits BIO and PH were associated with

the marker JHI-Hv50k-2016-336773 mapped at 600.9 Mbp with
similar effects for the two traits (6.2 and 7.5% phenotypic
variation, respectively).

Waterlogging Treatment Dataset
In the overall waterlogging treatment conditions, the
GWAS analysis identified a total of 63 markers significantly
associated with BIO (33 markers), SP (11 markers), GP (10
markers), KWP (20 markers), PH (4 markers), and WLS
(25 markers), with some markers associated with multiple
traits (Supplementary Table 4). Based on their position on
chromosomes, these 63 significant SNPs were assigned to 24
QTL regions on chromosomes 1H, 2H, 3H, 4H, 5H, 6H, and 7H,
with each region consisting of 1–30 markers, which included
three regions for BIO; seven regions for GP; nine regions each
for SP and KWP, four regions for PH, and five for WLS (Table 4;
Figure 4). Some QTL regions were associated with multiple
traits, indicating possible shared QTL between traits. For BIO in
the waterlogging treatment conditions, three genomic regions
were detected at 27.8, 28.3, and 516.6 Mbp on chromosome
2H. The genomic region at 28.3 Mbp consisted of the highest
number of markers significantly associated with BIO (32 SNPs),
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FIGURE 2 | Plot of pairwise SNP linkage disequilibrium (LD) r2 value as a function of inter-marker genetic distances (Mbp) of 247 spring barley genotypes. The blue

curve represents the smoothing spline regression model fit to LD decay. The red line represents the baseline r2 value at 0.1. The intersection of the fitted smoothing

spline and r2 was observed at around 1,460,356 bp.

explaining on average 9.5% of the phenotypic variation of the
trait (Table 4; Figure 4). The most significant SNP marker,
BOPA2_12_30872 had the lowest P-value (3.3 × 10−8) with
an allele effect size of 2.8 that individually explained 11.8%
of phenotypic variation for BIO (Supplementary Table 4).
For SP in the waterlogging treatment conditions, we found
two genomic regions consisting of clusters of two significant
markers that mapped at 662.0 Mbp on 2H, and at 371,3 Mbp
on 4H. Each region with an allele effect size of 1.2 individually
explained from 7.4 to 8.57% of the phenotypic variation
(Table 4). Clusters of two and three SNPs on chromosomes
2H at 29.6 Mbp and 5H at 568 Mbp, respectively, were
significantly associated with GP in the waterlogging treatment
conditions, which on average, accounted for 6.3 and 7.1% of
phenotypic variation (Table 4; Supplementary Table 4). For
KWP in the waterlogging treatment conditions, we found two
genomic regions with at least two SNPs, at 16.8 Mbp (2 SNPs),
and 29.7 Mbp on chromosome 2H (11 SNPs). On average,
each genomic region explained between 6.1 and 6.9% of the
phenotypic variation (Supplementary Table 4). The three
genomic regions, with more than one SNP, associated with
WLS in the waterlogging treatment conditions were found
at 29.1 Mbp (17 SNPs) on chromosome 2H, and 0.37 and
569.8 Mbp (four and two SNPs, respectively) on 4H (Table 4;
Supplementary Table 4; Figure 4); each region explained
on average from 5.7 to 7.4% of the phenotypic variation.
Chromosome 2H consisted of the highest number of markers
significantly associated with WLS, of which BOPA2_12_30872
had the lowest P-value (7.5 × 10−6) with an allele effect size of

0.4 that individually explained 7.9% of phenotypic variation for
WLS (Supplementary Table 4).

Eight marker-trait associations associated with different traits
were found in the waterlogging treatment conditions (Table 4).
On chromosome 2H, the marker JHI-Hv50k-2016-68186 located
at 16.8 Mbp was associated with the traits GP and KWP, although
with different effects in each trait (from 6.1 to 7.6% phenotypic
variation); themarker BOPA2_12_30872 located at 29.1Mbp was
coincidental for the traits BIO and WLS, with different effects on
each trait (from 7.9 to 11.8% phenotypic variation); and the traits
GP and KWP were associated to the same marker JHI-Hv50k-
2016-73689 at 29.6 Mbp. On chromosome 4H, the traits SP and
WLS were associated with the marker JHI-Hv50k-2016-225852
at 0.37 Mbp (7.3 and 6.8% phenotypic variation, respectively);
and GP and KWP were associate to the same marker JHI-Hv50k-
2016-249670 located at 512.9Mbp (∼6.1% phenotypic variation).
On chromosome 5H, the traits SP and GP were associated with
the marker JHI-Hv50k-2016-322832 regions at 569.3 Mbp; and
the marker BOPA2_12_11245 at 579.3 Mbp was coincidental for
the traits SP, GP, and KWP, with a similar effect for the three
traits, ∼6.2% phenotypic variation (Table 4). On chromosome
7H, the marker JHI-Hv50k-2016-449124 located at 13.6 Mbp was
coincidental for the traits GP and KWP, with a similar effect.

Additionally, the analysis showed three markers on
chromosome 2H co-localized in both control and waterlogging
treatment conditions (Tables 3, 4). The marker JHI-Hv50k-
2016-72991 located at 27.8 Mbp was found to be associated with
BIO, SP, and PH under control, and with BIO under waterlogging
treatment conditions; the marker BOPA2_12_30872 at 29.1 Mbp
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FIGURE 3 | Manhattan plots resulting from the SNP-based GWAS in overall control under field conditions. Manhattan plots for Biomass (BIO), Spikes per plant (SP),

Grains per plant (GP), Kernel weight per plant (KWP), and Plant height (PH) are shown in (A–E), respectively, and the x-axis shows SNP loci along the seven barley

chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 × 10−4 or –log10 (P-value) value of 3.8. GWAS was performed

using the MLM (Q + K) model in JMP Genomics for the field traits.

was identified in BIO under control, and BIO and WL under
waterlogging treatment conditions; and the marker JHI-Hv50k-
2016-80986 located at 73.5 Mbp was identified in PH under both
control and waterlogging treatment conditions.

Relative Dataset
In order to find chromosomal regions that were significantly
associated with waterlogging tolerance response, we analyzed

the relative difference between the control and waterlogging
treatment conditions. In the overall relative dataset, the GWAS
analysis identified a total of 51 markers significantly associated
with BIO (1 SNP), SP (17 SNPs), KWP (4 SNPs), PH (24
SNPs), and WLS (25 SNPs), with some markers associated
with multiple traits (Supplementary Table 5). No significant
markers were detected for GP in the relative dataset, unlike
in the control and waterlogging treatment datasets. Based on
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FIGURE 4 | Manhattan plots resulting from the SNP-based GWAS in waterlogging treatment under field conditions. Manhattan plots for Biomass (BIO), Spikes per

plant (SP), Grains per plant (GP), Kernel weight per plant (GWP), Plant height (PH), and Waterlogging score (WLS) are shown in (A–F), respectively, and the x-axis

shows SNP loci along the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 × 10−4 or –log10
(P-value) value of 3.8. GWAS was performed using the MLM (Q + K) model in JMP Genomics for the field traits.
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FIGURE 5 | Manhattan plots resulting from the SNP-based GWAS identified in the relative dataset. Manhattan plots for Biomass (BIO), Spikes per plant (SP), Grains

per plant (GP), Kernel weight per plant (GWP), Plant height (PH), and Waterlogging score (WLS) are shown in (A–F), respectively, and the x-axis shows SNP loci along

the seven barley chromosomes. The horizontal red line shows the genome-wide significance threshold P-value of 1.6 × 10−4 or –log10 (P-value) value of 3.8. GWAS

was performed using the MLM (Q + K) model in JMP Genomics for the field traits.
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TABLE 3 | List of significant (P < 1.6 × 10−4) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for the assessed traits in the overall control conditions.

Trait Markera Ch Physical

position (bp)b
Genetic

position (cM)c
P-value R2 (%)d MAF Allelee Additive

effect

BIO JHI-Hv50k-2016-69385f,* 2H 19,064,497 13.31 3.60E-05 6.90 0.11 T/G −6.16

JHI-Hv50k-2016-71792f 2H 23,485,824 15.37 6.10E-05 6.40 0.19 T/C −3.19

JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 3.40E-08 11.90 0.10 A/T −5.85

BOPA2_12_30872 2H 29,124,597 19.90 6.30E-12 17.70 0.18 A/G −6.77

JHI-Hv50k-2016-94875f,* 2H 496,673,313 55.01 3.00E-05 6.90 0.08 T/C −5.23

BOPA1_ABC08774-1-1-752f 2H 508,786,535 7.60E-05 6.30 0.05 A/C −6.07

JHI-Hv50k-2016-95073f 2H 515,576,575 58.64 4.40E-05 6.70 0.08 T/C −4.79

SCRI_RS_127347f 2H 519,110,344 58.64 5.80E-05 6.40 0.11 T/C −4.56

JHI-Hv50k-2016-97672f 2H 542,384,101 59.42 1.10E-04 6.00 0.06 A/T −5.98

JHI-Hv50k-2016-98186f 2H 547,420,281 59.42 1.10E-04 6.00 0.06 C/G −5.98

JHI-Hv50k-2016-336773* 5H 600,914,687 126.30 8.70E-05 6.20 0.07 A/T −5.97

JHI-Hv50k-2016-336814 5H 600,979,263 8.70E-05 6.20 0.07 T/G −5.97

SP JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 1.50E-04 5.80 0.10 A/T −1.25

JHI-Hv50k-2016-73691* 2H 29,669,343 1.60E-05 7.60 0.15 A/G −1.40

JHI-Hv50k-2016-205634 3H 634,932,524 109.80 1.40E-05 7.50 0.35 T/C 1.09

JHI-Hv50k-2016-382988 6H 35,396,724 43.77 3.40E-05 6.90 0.25 A/G −0.96

GP JHI-Hv50k-2016-73691* 2H 29,669,343 4.70E-06 8.40 0.15 A/G −26.84

JHI-Hv50k-2016-88492f 2H 134,404,110 55.01 1.50E-04 5.80 0.13 A/G 25.01

JHI-Hv50k-2016-200577 3H 609,227,175 90.16 1.20E-04 6.00 0.27 A/G 15.27

JHI-Hv50k-2016-205562* 3H 634,801,729 108.90 5.60E-06 8.20 0.44 T/C 17.77

KWP JHI-Hv50k-2016-73691* 2H 29,669,343 3.30E-05 7.00 0.15 A/G −1.06

JHI-Hv50k-2016-205562* 3H 634,801,729 108.90 3.60E-05 6.80 0.44 T/C 0.70

PH JHI-Hv50k-2016-69385f,* 2H 19,064,497 13.31 1.60E-04 5.80 0.11 T/G −6.65

JHI-Hv50k-2016-72991* 2H 27,836,916 18.91 1.80E-06 9.00 0.10 A/T −5.90

JHI-Hv50k-2016-73085* 2H 28,455,236 18.91 1.10E-05 7.80 0.41 T/C 9.61

JHI-Hv50k-2016-80986f 2H 73,504,389 49.73 3.30E-05 6.90 0.07 T/G −7.98

JHI-Hv50k-2016-86347f 2H 112,364,666 1.40E-04 5.80 0.08 T/C 5.80

JHI-Hv50k-2016-94875f,* 2H 496,673,313 55.01 1.40E-04 5.80 0.08 T/C −5.81

JHI-Hv50k-2016-95379f 2H 518,293,896 58.00 4.10E-05 6.70 0.08 A/G −6.81

JHI-Hv50k-2016-95777f 2H 523,378,213 58.64 1.20E-04 5.90 0.12 A/T −6.05

JHI-Hv50k-2016-98273f 2H 548,916,905 6.30E-07 9.70 0.06 T/C −8.85

JHI-Hv50k-2016-98501f 2H 550,839,094 59.35 9.00E-05 6.20 0.18 C/G −4.88

JHI-Hv50k-2016-127739 2H 723,652,876 122.90 1.50E-04 5.80 0.13 T/G −4.62

JHI-Hv50k-2016-129870 2H 727,578,152 125.20 6.20E-05 6.40 0.07 A/G −7.42

BOPA2_12_10532f 3H 67,560,907 45.82 7.00E-06 8.00 0.05 C/G −7.71

JHI-Hv50k-2016-330643 5H 587,449,015 114.70 9.60E-05 6.10 0.08 T/C −5.60

JHI-Hv50k-2016-332746 5H 591,637,968 120.10 1.50E-04 5.90 0.07 A/G −7.35

JHI-Hv50k-2016-336773* 5H 600,914,687 126.30 1.40E-05 7.50 0.07 A/T −8.13

BOPA2_12_31234f 5H 613,268,086 134.70 2.40E-06 8.80 0.07 A/G −7.10

JHI-Hv50k-2016-447227f 7H 11,309,509 7.78 1.60E-04 5.70 0.05 A/T −6.84

JHI-Hv50k-2016-468495f 7H 71,962,797 58.04 5.20E-05 6.60 0.10 A/T −5.03

JHI-Hv50k-2016-468869f 7H 75,059,390 59.80 3.30E-05 6.90 0.09 A/G −5.21

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R2 in the genomic region is presented.
bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
cGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
dR2 (%) indicates the percentage of phenotypic variation explained by the significant marker.
eAllele that is in bold text is the favorable allele for the trait assessed.
fMarker-trait associations that have different positions than the previously identified QTL for yield and yield-related traits published on barley under unstressed conditions.

*Putative QTL that may be associated with multiple traits.
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TABLE 4 | List of significant (P < 1.6 × 10−4) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for assessed traits in the overall waterlogging treatment conditions.

Trait Markera Ch Physical

position (bp)b
Genetic

position (cM)c
P-value R2 (%)d MAF Allelee Additive

effect

BIO JHI-Hv50k-2016-72991 2H 27,836,916 18.99 1.30E-05 7.6 0.10 A/T −2.51

BOPA2_12_30872* 2H 29,124,597 19.90 3.30E-08 11.8 0.18 A/G −2.75

JHI-Hv50k-2016-95223 2H 516,581,410 57.72 8.80E-05 6.2 0.10 T/C −2.42

SP JHI-Hv50k-2016-3532 1H 3,453,791 4.96 1.30E-04 6.2 0.07 A/G 0.85

JHI-Hv50k-2016-68266 f 2H 16,823,564 11.40 1.70E-05 7.4 0.08 A/G 1.34

JHI-Hv50k-2016-109151 2H 662,018,769 82.51 3.70E-06 8.5 0.06 A/G 1.24

JHI-Hv50k-2016-161633 3H 32,637,255 37.04 4.20E-05 6.7 0.06 A/T 0.99

JHI-Hv50k-2016-225852f,* 4H 371,267 0.71 1.80E-05 7.3 0.06 T/C 1.17

JHI-Hv50k-2016-262685 4H 607,200,114 85.84 7.40E-07 9.6 0.06 A/G 1.31

JHI-Hv50k-2016-276624f 4H 645,759,577 117.30 7.20E-05 6.3 0.05 T/C 1.20

JHI-Hv50k-2016-322832* 5H 569,308,558 97.51 8.20E-05 6.2 0.05 A/G 1.13

BOPA2_12_11245* 5H 579,324,077 6.50E-05 6.4 0.06 C/G 1.07

GP JHI-Hv50k-2016-68186* 2H 16,813,000 11.40 9.20E-05 6.1 0.11 T/C 10.47

JHI-Hv50k-2016-73689* 2H 29,669,242 3.80E-05 6.8 0.14 A/G −11.29

JHI-Hv50k-2016-249670f,* 4H 512,990,076 54.32 1.10E-04 6.2 0.06 A/G 18.71

JHI-Hv50k-2016-322832* 5H 569,308,558 97.51 6.50E-06 8.1 0.05 A/G 18.67

BOPA2_12_11245* 5H 579,324,077 8.60E-05 6.2 0.06 C/G 15.07

JHI-Hv50k-2016-410329f 6H 492,880,745 65.93 2.00E-05 7.3 0.07 A/C 18.63

JHI-Hv50k-2016-449124f,* 7H 13,658,217 11.54 1.50E-04 5.8 0.35 T/C 7.27

KWP JHI-Hv50k-2016-68186f,* 2H 16,813,000 11.40 1.30E-05 7.6 0.11 T/C 0.43

JHI-Hv50k-2016-73689* 2H 29,669,242 2.00E-05 7.2 0.14 A/G −0.44

JHI-Hv50k-2016-82113 2H 79,456,923 49.73 1.40E-04 5.8 0.13 T/G −0.34

JHI-Hv50k-2016-127867 2H 724,202,574 120.80 1.30E-04 5.9 0.35 A/G −0.26

JHI-Hv50k-2016-249670f,* 4H 512,990,076 54.32 1.40E-04 6.0 0.06 A/G 0.68

JHI-Hv50k-2016-322288 5H 568,058,046 97.51 8.10E-05 6.2 0.06 T/G 0.58

BOPA2_12_11245* 5H 579,324,077 1.00E-04 6.0 0.06 C/G 0.55

JHI-Hv50k-2016-424341f 6H 562,861,599 105.10 5.70E-05 6.5 0.06 T/G 0.56

JHI-Hv50k-2016-449124f,* 7H 13,658,217 11.54 1.10E-04 6.0 0.35 T/C 0.27

PH JHI-Hv50k-2016-73570 2H 29,307,953 9.00E-05 6.2 0.12 T/C −3.30

JHI-Hv50k-2016-80986 2H 73,504,389 49.73 7.00E-05 6.3 0.07 T/G −5.31

BOPA2_12_10968 3H 34,959,733 37.04 1.10E-04 6.0 0.06 A/G −4.08

JHI-Hv50k-2016-165725 3H 78,242,146 9.50E-05 6.2 0.30 A/G 3.61

WLS JHI-Hv50k-2016-19217 1H 61,923,247 7.30E-05 6.3 0.07 T/C −0.42

BOPA2_12_30872* 2H 29,124,597 19.90 7.50E-06 7.9 0.18 A/G 0.39

JHI-Hv50k-2016-225852f,* 4H 371,267 0.71 3.60E-05 6.8 0.06 T/C −0.59

BOPA1_3549-743f 4H 569,760,181 63.39 1.10E-04 6.0 0.40 A/G 0.26

JHI-Hv50k-2016-421359f 6H 554,181,962 92.07 1.40E-04 5.9 0.08 A/T −0.40

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R2 in the genomic region is presented.
bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
cGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
dR2 (%) indicates the percentage of phenotypic variation explained by the significant marker.
eAllele that is in bold text is the favorable allele for the trait assessed.
fMarker-trait associations that have different positions than the previously identified QTL for waterlogging stress-related traits published on barley under waterlogging conditions.

*Putative QTL that may be associated with multiple traits.

their position on chromosomes, these 51 significant SNPs were
assigned to 17 QTL regions on chromosomes 1H, 2H, 4H, 5H,
6H, and 7H, with each region consisting of 1 to 42 markers
(Table 5; Figure 5; Supplementary Table 5). Some QTL regions
were associated with multiple traits, indicating possible shared
QTL between traits.

Since the focus of our study is waterlogging tolerance in
barley, and the QTL found in the relative dataset are stable,

we centered the discussion on these QTL which we named
following the rule: “Q,” trait abbreviation, and chromosome
number. One QTL associated with BIO, named QBIO.2H,
was found on chromosome 2H and explained 6.6% of the
phenotypic variation (Table 5; Figure 5; Supplementary Table 5;
Supplementary Figure 8). This QTL also accounted for
BIO under control and waterlogging treatment conditions
(Tables 3, 4). Nine QTL for SP were detected on chromosomes
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TABLE 5 | List of significant (P < 1.6 × 10−4) marker-trait associations detected by GWAS using the MLM (Q + K) model in JMP Genomics and favorable alleles (bold)

for assessed traits identified in the relative dataset.

QTL Trait Markera Ch Physical

position (bp)b
Genetic

position

(cM)c

P-value R2 (%)d MAF Allelee Additive

effect

QBIO.2H BIO JHI-Hv50k-2016-73118 2H 28,612,330 18.91 4.95E-05 6.64 0.43 A/G 6.17

QSP.1H-1 SP JHI-Hv50k-2016-20766f 1H 107,293,686 5.17E-05 6.61 0.20 T/C −6.33

QSP.1H-2 JHI-Hv50k-2016-20908 1H 187,645,763 47.94 4.31E-05 6.67 0.20 T/C −6.38

QSP.1H-3 JHI-Hv50k-2016-21022 1H 241,516,420 47.94 8.79E-06 7.92 0.18 A/G −6.71

QSP.1H-4 JHI-Hv50k-2016-22269 1H 296,548,971 47.94 1.15E-04 5.98 0.15 T/G −6.12

QSP.1H-5 JHI-Hv50k-2016-22575 1H 303,086,870 47.94 1.15E-04 5.98 0.15 T/C −6.12

QSP.2H JHI-Hv50k-2016-73693* 2H 29,669,511 1.96E-05 7.24 0.06 A/C 13.31

QSP.5H-1 JHI-Hv50k-2016-312394f 5H 532,344,110 1.58E-04 5.79 0.08 T/G 10.59

QSP.5H-2 JHI-Hv50k-2016-332745 5H 591,637,898 120.07 1.30E-04 5.98 0.07 A/G 8.32

QSP.5H-3 JHI-Hv50k-2016-336773 5H 600,914,687 126.25 9.76E-05 6.07 0.07 A/T 8.15

QKWP.2H KWP JHI-Hv50k-2016-132004 2H 733,399,550 129.78 1.32E-04 5.85 0.06 T/C 6.98

QKWP.4H JHI-Hv50k-2016-230103 4H 10,736,375 29.15 7.30E-05 6.31 0.06 A/G 9.95

QPH.2H-1 PH BOPA2_12_30631f 2H 18,521,931 12.11 9.32E-05 6.10 0.50 A/G 2.91

QPH.2H-2 JHI-Hv50k-2016-73693* 2H 29,669,511 5.57E-08 11.46 0.06 A/T 12.99

QPH.7H JHI-Hv50k-2016-457680 7H 32,776,909 29.96 8.89E-05 6.14 0.33 A/C −4.13

QWLS.1H WLS JHI-Hv50k-2016-19217 1H 61,923,247 46.46 7.25E-05 6.29 0.07 T/C −0.42

QWLS.2H BOPA2_12_30872 2H 29,124,597 19.90 7.51E-06 7.94 0.18 A/G 0.39

QWLS.4H-1 JHI-Hv50k-2016-225850f 4H 370,915 0.71 4.05E-05 6.85 0.06 T/C −0.58

QWLS.4H-2 BOPA1_3549-743f 4H 569,760,181 63.39 1.08E-04 5.99 0.39 A/G 0.26

QWLS.6H JHI-Hv50k-2016-421359f 6H 554,181,962 92.07 1.36E-04 5.85 0.08 A/T −0s.40

BIO, biomass; SP, spikes per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number; MAF, minor allele frequency.
aThe marker with the highest R2 in the genomic region is presented.
bBase pair positions of the marker in the chromosome based on a high-quality reference genome assembly for barley (Hordeum vulgare L.) (Mascher et al., 2017).
cGenetic marker positions (cM) of the marker obtained from the POPSEQ_2017 genome map in BarleyMap (http://floresta.eead.csic.es/barleymap/find/) (Mascher et al., 2013).
dR2 (%) indicates the percentage of phenotypic variation explained by the significant marker.
eAllele that is in bold text is the favorable allele for the trait assessed.
fMarker-trait associations that have different positions than the previously identified QTL for waterlogging stress-related traits published on barley under waterlogging conditions.

*Putative QTL that may be associated with multiple traits.

1H (QSP.1H-1, QSP.1H-2, QSP.1H-3, QSP.1H-4 and QSP.1H-
5), 2H (QSP.2H), and 5H (QSP.5H-1, QSP.5H-2, QSP.5H-3),
and explained 5.8–7.9% of the phenotypic variance (Table 5;
Supplementary Table 5). Two QTL for KWP were detected
on chromosomes 2H (QKWP.2H) and 4H (QKWP.4H) and
explained 5.9–6.3% of the phenotypic variance (Table 5;
Supplementary Table 5). For PH, three QTL were identified,
located on chromosomes 2H (QPH.2H-1 and QPH.2H-2)
and 7H (QPH.7H). The QTL accounted for 6.1–11.5% of the
phenotypic variance (Table 5; Supplementary Table 5). The
QTL QWT.PH.2H-2 also accounted for PH under control
and waterlogging treatment conditions (Tables 3, 4). Five QTL
affectingWLS were identified and they accounted for 5.9–7.9% of
the phenotypic variance (Table 5; Supplementary Table 5). They
were located in chromosomes 1H (QWLS.1H), 2H (QWLS.2H),
4H (QWLS.4H-1 and QWLS.4H-2) and 6H (QWLS.6H).
These five QTL also accounted for WLS under waterlogging
treatment (Table 4).

One genomic region was associated with various traits
in the relative dataset (Table 5). On chromosome 2H, QTL
QWT.BIO.2H, QWT.SP.2H and QWT.PH.2H-2 located at 28-
29 Mbp were associated with BIO, SP, and PH, respectively,

although with different effects in each trait (6.6–11.5% of
phenotypic variation).

Candidate Genes
A total of 205, 190, and 156 genes were located within
a 200-kb genomic region up- and down-stream centered
from 32, 26 and 18 significant marker-trait associations in
control (Supplementary Table 6), waterlogging treatment
conditions (Supplementary Table 7) and relative dataset
(Supplementary Table 8), respectively. Among those markers,
22, 19, and 14, from control, waterlogging treatment and relative
datasets, respectively, were located inside genes. We focused
on these genes and identified nine possible candidate genes
associated with the measured traits under the control (Table 6),
13 possible candidate genes associated with these traits under
the waterlogging treatment conditions (Table 7), and eight
possible candidate genes associated with the measured traits in
the relative dataset (Table 8).

Significant markers associated with BIO in control conditions
were inside genes (HORVU2Hr1G013400, HORVU2Hr1G071
330, HORVU2Hr1G072400, HORVU2Hr1G075950, HORVU5
Hr1G096320, and HORVU2Hr1G070320) involved in the
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TABLE 6 | Summary of potential candidate genes that contain significant markers associated with the assessed traits under control conditions.

Marker Trait Ch Marker

position (bp)

Gene ID Start (bp) End (bp) Gene description

JHI-Hv50k-2016-71792 BIO 2H 23,485,824 HORVU2Hr1G011650 23,481,402 23,486,230 Undescribed protein

BOPA2_12_30872 BIO 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response regulator

7

BOPA1_ABC08774-1-1-752 BIO 2H 508,786,535 HORVU2Hr1G071330 508,785,994 508,794,465 Glycine–tRNA ligase

JHI-Hv50k-2016-95073 BIO 2H 515,576,575 HORVU2Hr1G071980 515,568,391 515,580,748 Heparan-α-glucosaminide

N-acetyltransferase

SCRI_RS_127347 BIO 2H 519,110,344 HORVU2Hr1G072400 519,108,149 519,110,415 Cytochrome P450

superfamily protein

JHI-Hv50k-2016-98186 BIO 2H 547,420,281 HORVU2Hr1G075950 547,420,245 547,422,120 Zinc finger homeodomain 1

JHI-Hv50k-2016-336773 BIO, KWP 5H 600,914,687 HORVU5Hr1G096320 600,914,511 600,916,443 UDP-Glycosyltransferase

superfamily protein

JHI-Hv50k-2016-94875 BIO, PH 2H 496,673,313 HORVU2Hr1G070320 496,671,113 496,676,443 Yellow stripe like 6

JHI-Hv50k-2016-88492 GP 2H 134,404,110 HORVU2Hr1G033730 134,403,521 134,420,781 Proteasome maturation

factor UMP1 family protein

JHI-Hv50k-2016-205562 GP, KWP 3H 634,801,729 HORVU3Hr1G091170 634,799,742 634,804,670 Receptor kinase 2

JHI-Hv50k-2016-73085 PH 2H 28,455,236 HORVU2Hr1G013020 28,452,211 28,456,166 Trichome birefringence-like

4

JHI-Hv50k-2016-86347 PH 2H 112,364,666 HORVU2Hr1G030520 112,360,955 112,366,308 Protein kinase superfamily

protein

JHI-Hv50k-2016-95777 PH 2H 523,378,213 HORVU2Hr1G072750 523,377,399 523,379,178 Protein Terminal flower 1

JHI-Hv50k-2016-98501 PH 2H 550,839,094 HORVU2Hr1G076520 550,832,263 550,840,111 Pectinesterase family

protein

JHI-Hv50k-2016-127739 PH 2H 723,652,876 HORVU2Hr1G111640 723,652,502 723,658,875 Plasma membrane ATPase

JHI-Hv50k-2016-129870 PH 2H 727,578,152 HORVU2Hr1G113190 727,572,166 727,583,311 Alpha-N-

acetylglucosaminidase

BOPA2_12_10532 PH 3H 67,560,907 HORVU3Hr1G021150 67,560,410 67,562,131 Gigantea protein (GI)

JHI-Hv50k-2016-332746 PH 5H 591,637,968 HORVU5Hr1G093390 591,633,650 591,639,220 Solute carrier family 22

member 1

BOPA2_12_31234 PH 5H 613,268,086 HORVU5Hr1G101820 613,267,130 613,268,378 Undescribed protein

JHI-Hv50k-2016-447227 PH 7H 11,309,509 HORVU7Hr1G008690 11,307,419 11,313,973 Protein kinase superfamily

protein

JHI-Hv50k-2016-468495 PH 7H 71,962,797 HORVU7Hr1G034400 71,959,645 71,963,636 Unknown function

JHI-Hv50k-2016-468869 PH 7H 75,059,390 HORVU7Hr1G034990 75,057,969 75,067,902 Kinesin-related protein 11

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

regulation of the circadian clock, regulation of flowering time
and development, embryogenesis, grain size and development,
plant growth, development and senescence (Table 6). The role
of the genes HORVU5Hr1G096320 and HORVU2Hr1G033730
harboring the markers JHI-Hv50k-2016-336773 and JHI-Hv50k-
2016-88492, respectively, associated with GP and KWP traits
were known to be essential in the regulation of seed development
and grain size (Table 6). Several genes (HORVU2Hr1G013020,
HORVU2Hr1G076520, and HORVU7Hr1G034990) associated
with the significant markers for PH trait were known to
be involved in cell wall processes, such as synthesis and
deposition of secondary wall cellulose, modulation of cell
wall mechanical stability during fruit ripening, cell wall
extension during pollen germination and pollen tube growth,
abscission, stem elongation, tuber yield and root development,
microtubule-binding proteins involved in the microtubule
control of cellulose microfibril order and cell wall strength. Some
other genes (HORVU2Hr1G030520, HORVU5Hr1G093390, and

HORVU7Hr1G008690) play a role in cell cycle regulation
processes, such as modulating vesicle transport and channel
activities, and specific transport of various substrates. Another
group of genes (HORVU2Hr1G072750, HORVU2Hr1G111640,
HORVU2Hr1G113190, and HORVU3Hr1G021150) regulate
plant growth and reproductive development, flowering time and
inflorescence architecture (Table 6).

Most of the genes harboring market-trait associations for the
related traits in waterlogging treatment conditions are known
to play a role in the regulation of waterlogging or other abiotic
stress responses (Table 7). The genes HORVU2Hr1G072140,
encoding Uridylate kinase, and HORVU2Hr1G013400, encoding
Pseudo-response regulator 7 (PRR7), contain significant markers
associated with BIO and are known to play a role in the response
to abiotic stress, such as salinity, cold and oxidative stress
(Table 7). The four genes HORVU6Hr1G070750 (annotated
as E3 ubiquitin-protein ligase makorin), HORVU4Hr1G090640
(E3 ubiquitin-protein ligase RFWD3), HORVU4Hr1G000090
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TABLE 7 | Summary of potential candidate genes that contain significant markers associated with the assessed traits under waterlogging treatment conditions.

Marker Trait Ch Marker

position (bp)

Gene ID Start (bp) End (bp) Gene description

JHI-Hv50k-2016-95223 BIO 2H 516,581,410 HORVU2Hr1G072140 516,578,216 516,583,796 Uridylate kinase

BOPA2_12_30872 BIO, WLS 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response

regulator 7

JHI-Hv50k-2016-161633 SP 3H 32,637,255 HORVU3Hr1G014290 32,636,782 32,639,178 Delta(8)-Delta(7) sterol

isomerase

JHI-Hv50k-2016-276624 SP 4H 645,759,577 HORVU4Hr1G090640 645,757,976 645,762,395 E3 ubiquitin-protein ligase

RFWD3

JHI-Hv50k-2016-109151 SP 2H 662,018,769 HORVU2Hr1G094030 662,015,232 662,019,114 Ubiquitin-conjugating

enzyme 3

JHI-Hv50k-2016-3532 SP 1H 3,453,791 HORVU1Hr1G001480 3,453,090 3,454,077 Undescribed protein

JHI-Hv50k-2016-322832 SP, GP 5H 569,308,558 HORVU5Hr1G083110 569,293,089 569,309,305 Leucine-rich repeat

receptor-like protein

kinase

BOPA2_12_11245 SP, GP, KWP 5H 579,324,077 HORVU5Hr1G087730 579,322,710 579,324,607 13S globulin seed storage

protein 2

JHI-Hv50k-2016-225852 SP, WLS 4H 371,267 HORVU4Hr1G000090 369,520 374,029 RING/U-box superfamily

protein

JHI-Hv50k-2016-410329 GP 6H 492,880,745 HORVU6Hr1G070750 492,878,969 492,884,688 E3 ubiquitin-protein ligase

makorin

JHI-Hv50k-2016-249670 GP, KWP 4H 512,990,076 HORVU4Hr1G061070 512,989,821 512,992,961 C2H2-like zinc finger

protein

JHI-Hv50k-2016-82113 KWP 2H 79,456,923 HORVU2Hr1G025510 79,452,094 79,457,099 B3 domain-containing

protein

JHI-Hv50k-2016-424341 KWP 6H 562,861,599 HORVU6Hr1G087000 562,860,368 562,867,337 Heparanase-like protein 3

JHI-Hv50k-2016-127867 KWP 2H 724,202,574 HORVU2Hr1G111780 724,201,388 724,204,020 Receptor-like protein

kinase 4

JHI-Hv50k-2016-322288 KWP 5H 568,058,046 HORVU5Hr1G082670 568,057,965 568,060,772 Undescribed protein

BOPA2_12_10968 PH 3H 34,959,733 HORVU3Hr1G015050 34,956,640 34,962,056 Enolase-phosphatase E1

JHI-Hv50k-2016-165725 PH 3H 78,242,146 HORVU3Hr1G022270 78,241,796 782,431,36 Pentatricopeptide repeat

336

BOPA1_3549-743 WLS 4H 569,760,181 HORVU4Hr1G069280 569,757,996 569,767,162 Alpha-L-fucosidase 2

JHI-Hv50k-2016-19217 WLS 1H 61,923,247 HORVU1Hr1G017900 61,919,204 61,923,605 Transcription factor PIF3

BIO, biomass; SP, spikes per plant; GP, grains per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

(RING/U-box superfamily protein), and HORVU2Hr1G094030
(Ubiquitin-conjugating enzyme 3) associated with SP, GP,
and KWP regulate abiotic stress signaling pathways, such as
in waterlogging or flooding conditions (Table 7). Also, the
associated genes HORVU5Hr1G083110 (Leucine-rich repeat
receptor-like kinase family protein) and HORVU2Hr1G111780
(Receptor-like protein kinase 4) are known to be involved in
abiotic stress responses, including drought, salt, cold, toxic
metals and other stresses. The gene HORVU2Hr1G025510 (B3
domain-containing protein), associated with SP, is involved
in abiotic stress and disease resistance signaling pathways.
The gene HORVU4Hr1G061070 (C2H2 zinc finger protein)
associated with GP and KWP, participates in mechanisms of
tolerance to salinity, osmotic, cold, drought, oxidative and high-
light stress response (Table 7). The gene HORVU3Hr1G022270
(Pentatricopeptide repeat 336), associated with PH, is known
to regulate plant responses to abiotic stresses (Table 7). The
significant markers associated with WLS were located inside the
genes encoding PRR7 and RING/U-box superfamily protein,

and the genes HORVU4Hr1G069280 (Alpha-L-fucosidase 2),
involved in the response to waterlogging, drought and salinity
stresses, and HORVU1Hr1G017900 (Phytochrome-interacting
factor 3), which regulates the plant response to drought and salt
stresses (Table 7).

In the relative dataset, the significant markers JHI-Hv50k-
2016-20766 and JHI-Hv50k-2016-21022 associated with SP,
were inside the genes HORVU1Hr1G024060 (Arginine/serine-
rich splicing factor 35) and HORVU1Hr1G036060 (tRNA
pseudouridine synthase A1), respectively, that play important
roles in development and response to abiotic stresses (Table 8).
The role of the gene HORVU2Hr1G114940, encoding Cyclic
nucleotide-gated channel 8, contains significant markers
associated with KWP and is known to play a crucial role in
pathways related to cellular ion homeostasis, development,
and defense against biotic and abiotic stresses. The gene
HORVU7Hr1G022410, encoding RNA-binding protein mde7,
was associated with PH and has functional roles during
growth, development, and abiotic stress responses in plants
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TABLE 8 | Summary of potential candidate genes that contain significant markers associated with the assessed traits identified in the relative dataset.

Marker Trait Ch Marker

position (bp)

Gene ID Start (bp) End (bp) Gene description

JHI-Hv50k-2016-20766 SP 1H 107,293,686 HORVU1Hr1G024060 107,289,291 107,295,231 Arginine/serine-rich splicing

factor 35

JHI-Hv50k-2016-20908 SP 1H 187,645,763 HORVU1Hr1G031370 187,632,592 187,656,006 tRNA pseudouridine synthase

A1

JHI-Hv50k-2016-21022 SP 1H 241,516,420 HORVU1Hr1G036060 241,482,945 241,524,027 Cationic amino acid

transporter 2

JHI-Hv50k-2016-22269 SP 1H 296,548,971 HORVU1Hr1G041530 296,548,421 296,553,191 Predicted protein

JHI-Hv50k-2016-22575 SP 1H 303,086,870 HORVU1Hr1G041960 303,085,891 303,088,081 Unknown function

JHI-Hv50k-2016-312394 SP 5H 532,344,110 HORVU5Hr1G071230 532,343,847 532,345,355 Unknown function

JHI-Hv50k-2016-332745 SP 5H 591,637,898 HORVU5Hr1G093390 591,633,650 591,639,220 Solute carrier family 22

member 1

JHI-Hv50k-2016-336773 SP 5H 600,914,687 HORVU5Hr1G096320 600,914,511 600,916,443 UDP-Glycosyltransferase

superfamily protein

JHI-Hv50k-2016-132004 KWP 2H 733,399,550 HORVU2Hr1G114940 733,394,545 733,400,877 Cyclic nucleotide gated

channel 8

JHI-Hv50k-2016-457680 PH 7H 32,776,909 HORVU7Hr1G022410 32,775,788 32,780,170 RNA-binding protein mde7

JHI-Hv50k-2016-19217 WLS 1H 61,923,247 HORVU1Hr1G017900 61,919,204 61,923,605 Transcription factor PIF3

BOPA2_12_30872 WLS 2H 29,124,597 HORVU2Hr1G013400 29,123,724 29,127,894 Pseudo-response regulator 7

JHI-Hv50k-2016-225850 WLS 4H 370,915 HORVU4Hr1G000090 369,520 374,029 RING/U-box superfamily

protein

BOPA1_3549-743 WLS 4H 569,760,181 HORVU4Hr1G069280 569,757,996 569,767,162 Alpha-L-fucosidase 2

SP, spikes per plant; KWP, kernel weight per plant; PH, plant height; WLS, waterlogging score; Ch, chromosome number.

(Table 8). Additionally, the genes HORVU5Hr1G093390 and
HORVU5Hr1G096320 were harboring markers associated
with SP and were also identified in the control dataset
harboring markers associated with PH, BIO, and KWP.
The genes HORVU1Hr1G017900, HORVU4Hr1G000090, and
HORVU4Hr1G069280 were harboring markers associated
with WLS and also were identified in the waterlogging
dataset associated with the same trait. Finally, the gene
HORVU2Hr1G013400, encoding PRR7, contained markers
associated with WLS in the waterlogging treatment and relative
datasets, and BIO in the control dataset (Tables 6–8).

DISCUSSION

Waterlogging is becoming one of the challenging issues for
modern agriculture globally. The development of tolerant
cultivars with enhanced resilience to waterlogging stress has
increasing importance to reduce the yield penalty. In this study,
GWAS was performed based on linkage disequilibrium on a
worldwide spring barley collection using control, waterlogging
treatment and relative datasets for identifying QTL associated
with yield-related traits and waterlogging tolerance.

Diverse Phenotypic Variation and
Waterlogging Tolerant Barley Genotypes
In the present study, the barley collection assembled showed
significant phenotypic variation, as well as highly genotypic
differences, for all traits after waterlogging stress treatment,
including BIO, SP, GP, KWP, PH, and WLS, except CABC and

CCC. These results suggest that there is a good potential that
these genotypes can be used to mine alleles for waterlogging
tolerance for introgression into breeding barley lines for
waterlogging tolerance improvement. Waterlogging stress
considerably reduced BIO, SP, GP, KWP, PH, CABC, and CCC
for all genotypes in response to waterlogging stress as expected,
and it is consistent with earlier studies (Li et al., 2008; Xue et al.,
2010). Significant negative correlations were found betweenWLS
and all other traits.

The barley genotype Deder2 from Ethiopia showed a
tolerant response to waterlogging stress, while the response
of the genotypes Yerong from Australia, TR 587 and CDC
Select from Canada, Champion, Xena, and TR 987 from the
USA, and Harumaki Rokkakumugi from North Corea, was
more moderate. Some of these barley genotypes (e.g., Deder2,
Harumaki Rokkakumugi, and Yerong) were previously reported
(Takeda, 1989; Li et al., 2008) to be tolerant to waterlogging stress
while the others, which are modern cultivars (Canadian Food
Inspection Agency, 2021; Washington State Crop Improvement
Association, 2021; Westland Seed, 2021) and elite breeding
lines, were not reported before and might represent novel
sources of tolerance.

Genome-Wide Association Study Analysis
The GWAS is a powerful approach to locate common alleles
associated with phenotypes with much higher resolution than
linkage mapping because they reflect historical recombination
events in broad-based diversity panels (Nordborg and Weigel,
2008). In this study, three statistical models were compared to
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assess their ability to map QTL and identify SNPs associated
with waterlogging tolerance. Finally, we selected the MLM +

Q + K approach, which accounts for both population structure
(STRUCTURE analyses) and K matrix, because of its statistical
power to control false-positives associations, which has been
used successfully in barley (Pasam et al., 2012; Fan et al., 2016;
Jabbari et al., 2018) and maize (Yu et al., 2006). Population
structure and familial relatedness can result in false positives in
GWAS. Therefore, when GWAS is conducted, these parameters
need to be considered in the model. In the present study, the
level of the genetic structure of the panel was assessed by the
NJ tree, PCA, and STRUCTURE analyses and all showed that
the investigated genotypes are structured into three principal
groups. This provided additional confidence given that most
of the barley population structure studies use only two of
these methods, STRUCTURE and PCA, to confirm their results
(Varshney et al., 2012; Long et al., 2013; Fan et al., 2016; Zhou
et al., 2016; Bengtsson et al., 2017; Jabbari et al., 2018; Thabet
et al., 2018; Milner et al., 2019; Mwando et al., 2020; Ye et al.,
2020). Moreover, the LD decay value identified (1.46 Mbp at
r2 = 0.1) suggested that the marker coverage is adequate for
further GWAS analysis. A wide range of levels of LD decay,
2–10 cM, was reported by previous studies of worldwide barley
collections (Comadran et al., 2009; Zhang et al., 2009; Pasam
et al., 2012; Varshney et al., 2012; Long et al., 2013; Zhou et al.,
2016). Comparison to any of these studies is hard to be made
due to several factors such as size and diversity of the germplasm
used, type and number of molecular markers, and measurement
unit. Recently, Mwando et al. (2020) reported a LD decay of 3.5
Mbp (r2 = 0.2) in 350 barley accessions using 24,138 DArTseq
and SNP markers. While this time the measurement unit is
the same (Mbp) the results are not directly comparable to our
study either, mainly due to the different germplasm assessed.
Nevertheless, the work conducted by Mwando et al. (2020)
demonstrated successful association mapping was achieved with
a lower number of molecular markers (24,138 vs. 35,926) than
used in our study.

The overall GWAS was able to identify significant QTL in all
control, waterlogging treatment and relative datasets for six (BIO,
SP, GP, KWP, PH, and WLS) out of the eight traits measured.
No significant QTL were detected for CABC and CCC in the
tested conditions. Chlorophyll is one of the major chloroplast
components for photosynthesis, and relative chlorophyll content
has a positive relationship with photosynthetic rate (Guo
et al., 2008). An earlier study reported the identification of
QTL for chlorophyll fluorescence in barley under low oxygen
concentration in hydroponics to simulate waterlogging but not
for chlorophyll content or chlorophyll (Bertholdsson et al., 2015).

Identification of Known
Waterlogging-Related QTL by GWAS
So far, several QTL mapping studies have been conducted using
linkage mapping analysis in barley and many QTL associated
with waterlogging tolerance have been successfully mapped using
bi-parental linkage mapping based on various waterlogging
related traits (Li et al., 2008; Xue et al., 2010; Zhou, 2011;
Xu et al., 2012; Zhou et al., 2012; Bertholdsson et al., 2015;
Broughton et al., 2015; Zhang et al., 2016; Gill et al., 2017,

2019; Zhang X. et al., 2017). These studies used DH populations
from bi-parental crosses of contrasting phenotype parents for
waterlogging. Direct comparisons of our GWAS findings with
those studies are intricate, as the marker-trait linkages and
chromosomal locations we identified were based on a worldwide
barley collection not previously investigated for waterlogging
traits. Moreover, different genotyping technologies and different
linkage maps have been used in some of the previous studies, so
the comparison is approximated. In general, our GWA mapping
was highly consistent with those previous waterlogging tolerance
QTL mapping studies conducted in bi-parental populations, and
many QTL were identified for the same or related traits at similar
positions, which confirmed the importance of the loci identified
in the present study.

Some of the waterlogging-related QTLs detected in the
waterlogging treatment dataset in our study are positioned
closer to previously identified waterlogging stress-related QTLs
for similar traits (Xue et al., 2010; Xu et al., 2012; Broughton
et al., 2015; Ma et al., 2015). SP trait was associated with
genomic regions related to the markers JHI-Hv50k-2016-3532
(at 3 Mbp on 1H), JHI-Hv50k-2016-109151 (at 662 Mbp on
2H) and JHI-Hv50k-2016-161633 (at 32 Mbp on 3H) were also
associated with the related traits shoot fresh weight (QHSFW.1H)
and tiller number (QHTiller.3H ) in the Franklin x YYXT
mapping population (Broughton et al., 2015), and grains per
spike (GSw1.1 and GSw1.2) in Franklin x Yerong mapping
population (Xue et al., 2010). The marker JHI-Hv50k-2016-3532
was also associated with the QTL for salinity and waterlogging
tolerance (QSlww.YG.1H-1) in a DH population of Gairdner
× YSM1 (Ma et al., 2015). The marker JHI-Hv50k-2016-
109151 was also closely positioned near the QTL tfsur-1 which
is associated with plant survival in the TX9425 × Franklin
mapping population (Li et al., 2008). One of the genomic
regions associated with KWP, related to the marker JHI-Hv50k-
2016-127867 located at 724 Mbp on 2H was coincident with
the previous identified QTL (SLw2.2) for spike length in the
Franklin x Yerong population (Xue et al., 2010). Zhou (2011)
also reported two QTL (QWL.YeFr.2H.2 and WL5.3) associated
with waterlogging tolerance score, which is positioned near the
marker JHI-Hv50k-2016-127867. WLS trait was associated with
BOPA2_12_30872 located at 29 Mbp on 2H. This genomic
region was previously detected in two different populations,
TX9425 x Naso Nijo (Xu et al., 2012) and YSM1 x Gairdner
(Ma et al., 2015), for the same trait. Additionally, in our study
BIO was also associated with the same marker that was located
on the genomic region 29.1–29.7 Mbp on chromosome 2H.
Interestingly, in our study, this same region was also associated
with the traits GP, KWP, and PH (JHI-Hv50k-2016-73570
and JHI-Hv50k-2016-73689).

Other waterlogging-related QTL detected in our study were
identified in previous waterlogging stress studies but associated
with different traits (Li et al., 2008; Xue et al., 2010; Zhou, 2011;
Xu et al., 2012; Zhou et al., 2012; Broughton et al., 2015; Ma et al.,
2015; Gill et al., 2017). For example, the traits SP, GP and KWP
were associated with the genomic region 568.0–569.3 Mbp on 5H
that was coincident for the QTL yfsur-2 for plant survival under
waterlogging in the DH population of Yerong × Franklin (Li
et al., 2008).
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In our study, we identified five QTL in the relative dataset
that were positioned closer to previously identified waterlogging
stress-related QTLs for similar traits (Xu et al., 2012; Broughton
et al., 2015; Ma et al., 2015). SP was associated with four QTL,
QSP.1H-2, QSP.1H-3, QSP.1H-4, and QSP.1H-5, that were also
associated with the related trait shoot dry weight (QHSDW.1H)
in the Franklin x YYXT mapping population (Broughton et al.,
2015). The QTL QWLS.4H-2 was associated with WLS and
was also present in the waterlogging treatment dataset. Other
waterlogging tolerance-related QTL detected in our study were
identified in previous waterlogging stress studies but associated
with different traits (Xue et al., 2010; Zhou, 2011; Xu et al., 2012;
Broughton et al., 2015; Ma et al., 2015).

Identification of Novel
Waterlogging-Related QTL by GWAS
Among the 37 QTL detected under waterlogging treatment
conditions, 13 QTL were detected on genomic regions where
no waterlogging-related QTL have been previously reported in
barley. These 13 QTL located in 10 different genomic regions,
probably represents novel loci for waterlogging stress. Two
significant associated markers, JHI-Hv50k-2016-68186 and JHI-
Hv50k-2016-68266, were identified on 2H at 16 Mbp. The first
marker was associated with the trait KWP and the second
with SP. On chromosome 4H at 0.37, 512, 569, and 645
Mbp, four markers, JHI-Hv50k-2016-225852, JHI-Hv50k-2016-
249670, BOPA1_3549-743, and JHI-Hv50k-2016-276624, were
identified. The first marker was associated with SP and WLS, the
second marker with GP and KWP, the third marker with WLS
and the last marker with SP. On chromosome 6H at 492, 554, and
562 Mbp, three markers, JHI-Hv50k-2016-410329, JHI-Hv50k-
2016-421359, and JHI-Hv50k-2016-424341, were associated with
GP, WLS, and KWP, respectively. The marker JHI-Hv50k-2016-
449124 was associated with GP and KWP on 7H at 13 Mbp.

In the relative dataset, six QTL (QPH.2H-1, QSP.1H-1,
QSP.5H-1, QWLS.4H-1, QWLS.4H-2, and QWLS.6H) out of 20
were detected on genomic regions that have not been reported in
previous waterlogging-related QTL studies on barley conducted
using bi-parental populations and they probably represent novel
loci for waterlogging tolerance. SP was associated with the
markers JHI-Hv50k-2016-20766 and JHI-Hv50k-2016-312394,
located on chromosome 1H at 107 Mbp and 5H at 532 Mbp,
respectively. The marker BOPA2_12_30631 was associated with
PH on 2H at 18 Mbp. For WLS, three markers were found to
be associated, JHI-Hv50k-2016-225850 and BOPA1_3549-743,
located on 4H at 0.37 and 569Mbp, respectively, and JHI-Hv50k-
2016-421359 on 6H at 554 Mbp. The genomic regions at 0.37
and 569 Mbp on 4H and 554 Mbp on 6H were co-localized
in waterlogging treatment and relative datasets, associated with
WLS. Interestingly, QWLS.4H-2 is positioned relatively close to
the QTL for aerenchyma formation (QTL-aerenchyma) and root
porosity (QTL-rp4H) (Zhang et al., 2016).

Waterlogging-Related Candidate Genes
In the present study, 92 markers significantly associated with
yield-related traits were identified in control conditions, which
were located along 28 QTL regions on chromosomes 2H, 3H,
5H, 6H, and 7H; 63 significant markers were identified under

waterlogging treatment conditions and mapped along 24 QTL
regions on all chromosomes in the barley genome; while 51
significant markers located in 17 QTL regions distributed along
chromosomes 1H, 2H, 4H, 5H, 6H, and 7H were identified
in the relative data set. Among those QTL, we detected
possible candidate genes that were associated with the measured
traits under the different growing conditions, i.e., control,
waterlogging treatment, and the relative difference between these
two conditions.

Genes affected by waterlogging stress and involved in the
tolerance of barley to this stress are most valuable in waterlogging
breeding programs to develop and improve the efficiency of
waterlogging-tolerant barley varieties. In our study, most of
the potential candidate genes containing significant markers
under waterlogging treatment conditions were detected on 2H
and 4H associated with BIO, GP and PH. However, for the
relative dataset, chromosome 1H contained most of the potential
candidate genes, followed by 2H, 4H, and 5H. Four QTL that
appears to harbor genes associated with abiotic stress tolerance
were detected on both waterlogging treatment and relative
datasets to be associated with WLS. The most significant two are
QWLS.2H, harboring the gene PRR7 (HORVU2Hr1G013400)
on 2H at 29.1 Mbp, is potentially similar to the reported QTL
for membrane potential QMP.TxNn.2H (Gill et al., 2017); and
the novel QWLS.4H-2, harboring the gene Alpha-L-fucosidase
2 (HORVU4Hr1G069280) on 4H at 569.7 Mbp, that is closely
located to the reported QTL for aerenchyma formation (Zhang
et al., 2016). PRR7 has a central role in the abiotic stress response
and influences the regulation of flowering time and ABA-related
processes, including control of genes affecting salinity, cold and
oxidative stress response (Liu et al., 2013). This gene harbored
the BOPA2_12_30872 marker that was also associated with BIO
under waterlogging stress conditions. Alpha-L-fucosidase 2 is
known to be involved in the breakdown of cell wall polymers and
was previously reported to be upregulated in tolerant genotypes
of maize, sesame, and chickpea in response to waterlogging,
drought and salinity stresses, respectively (Thirunavukkarasu
et al., 2013; Dossa et al., 2017; Kaashyap et al., 2018). These results
indicated the reliability of the QTL in this study. The other two
genes were detected on 1H and 4H. The Transcription factor
PIF3 on QWLS.1H regulates the plant response to drought and
salt stresses in maize (Gao et al., 2015) and plays a positive role
in submergence-induced hypocotyl elongation in Arabidopsis
(Wang et al., 2020). RING/U-box superfamily protein on the
novel QWLS.4H-1 is involved in the ubiquitination reaction, a
crucial mechanism that regulates signal transduction in diverse
biological processes, including abiotic stress signaling pathways,
such as in waterlogging or flooding conditions (Voesenek and
Bailey-Serres, 2015; Loreti et al., 2016). This strong ubiquitin
response is a robust indicator of changing physiological situation,
by repurposing proteins through proteolysis. Additionally, the
novel QWLS.6H detected only in waterlogging stress conditions
harbored Receptor kinase 2 that belongs to the largest group
within the receptor-like kinase (RLK) superfamily in plants and
had been reported as having a main role in developmental
processes, signaling networks and disease resistance. Many RLKs
are involved in abiotic stress responses, including drought, salt,
cold, toxic metals and other stresses (reviewed in Ye et al., 2017).
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For example, a hypersensitive response was observed in response
to salt and heat stress in Arabidopsis (Park et al., 2014). The
homolog of the gene HORVU5Hr1G071230, harboring QSP.5H-
1 on 5H at 532 Mbp, in Arabidopsis it is characterized as a cell
wall integrity/stress response component.

Additionally, in our previous study, an RNA-Sequencing
analysis was conducted to explore the mechanisms involved in
the responses of two barley genotypes with tolerant, Deder2, and
moderately-tolerant, Yerong, responses to waterlogging stress
(Borrego-Benjumea et al., 2020). One of the top highly expressed
differentially expressed genes (logFC ≥ ±4 and adjusted P <

0.05) in the roots of waterlogged Deder2 and Yerong, was the
upregulated gene Trichome birefringence-like 19 (8.47 logFC)
which is very close to the marker JHI-Hv50k-2016-276624.
This marker in the current study is associated with SP in the
waterlogging treatment conditions. The underlying function of
this gene is the ubiquitous modification of cell wall polymers
by acetylation and is known to play a structural role in plant
growth and microorganism and environmental stresses defenses
(Nafisi et al., 2015), such as salinity and cold (Anantharaman and
Aravind, 2010). The marker JHI-Hv50k-2016-249670, associated
with GP and KWP in the waterlogging treatment conditions, is in
the surroundings of the upregulated gene encoding the protein
very-long-chain3-oxoacyl-CoA reductase 1 (5.26 logFC). This
protein is required for the elongation of fatty acids precursors of
sphingolipids, triacylglycerols, cuticular waxes and suberin, and
play a role in the stress adaptation in rice. The downregulated
gene Copalyl diphosphate synthase 2 (−7.34 logFC) is located
very close to the marker JHI-Hv50k-2016-322288 associated
with KWP in the waterlogging treatment conditions. This gene
responds to arsenic detoxification in rice and it is involved
in the plant adaptive responses to arsenic stress (Singh et al.,
2017). The marker JHI-Hv50k-2016-3532, associated with SP
in the waterlogging treatment conditions, is positioned in the
surroundings of the downregulated gene encoding the protein
Dirigent protein 21 (−4.76 logFC). This protein is involved in the
defense response against salt and drought stress of pepper (Khan
et al., 2018).

Further analysis is necessary to validate the associated
candidate genes. However, this study represents the starting
point of the discovery of candidate genes associated with
waterlogging tolerance as well as the development of useful gene-
based functional markers for barley breeding to speed up the
development of waterlogging tolerant barley cultivars.

CONCLUSION

GWAS based on high-density SNP markers represents a
powerful approach for dissecting complex quantitative traits.
In this study, 247 worldwide spring barley genotypes were
evaluated for yield components-related traits under control
and waterlogging treatment conditions in the field, as well
as the relative difference between these two conditions, and
were genotyped using Barley 50K iSelect SNP Array. GWAS
analysis showed that a total of 92, 63, and 51 markers were
significantly associated with BIO, SP, GP, KWP, PH, and

WLS traits in the control, waterlogging treatment, and relative
datasets, respectively. Seventeen significant associations and
eight potential candidate genes were detected for the relative
dataset. Also, six novel QTL (QPH.2H-1, QSP.1H-1, QSP.5H-
1, QWLS.4H-1, QWLS.4H-2, and QWLS.6H) were detected
on genomic regions that have not been reported in previous
waterlogging-related QTL studies on barley and they probably
represent novel loci for waterlogging tolerance. These findings
provide useful information for waterlogging tolerance in barley
by marker-assisted selection in the future. For further research, it
will be necessary the validation of the associated candidate genes
and the development of markers based on associated SNPs.
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