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The aim of this study was to better understand the response of ex vitro acclimatized
plants grown to a set of mineral nutrient combinations based on Hoagland solution.
To reach that, two computer-based tools were used: the design of experiments (DOE)
and a hybrid artificial intelligence technology that combines artificial neural networks
with fuzzy logic. DOE was employed to create a five-dimensional IV-design space by
categorizing all macroelements and one microelement (copper) of Hoagland mineral
solution, reducing the experimental design space from 243 (35) to 19 treatments.
Typical growth parameters included hardening efficiency (Hard), newly formed shoot
length (SL), total leaf number (TLN), leaf chlorophyll content (LCC), and leaf area (LA).
Moreover, three physiological disorders, namely, leaf necrosis (LN), leaf spot (LS), and
curled leaf (CL), were evaluated for each treatment (mineral formulation). All the growth
parameters plus LN were successfully modeled using neuro-fuzzy logic with a high train
set R2 between experimental and predicted values (72.67 < R2 < 98.79). The model
deciphered new insights using different sets of “IF–THEN” rules, pinpointing the positive
role of Mg2+ and Ca2+ to improve Hard, SL, TLN, and LA and alleviate LN but with
opposite influences on LCC. On the contrary, TLN and LCC were negatively affected
by the addition of NO3

− into the media, while NH4
+ in complex interaction with Cu2+

or Mg2+ positively enhanced SL, TLN, LCC, and LA. In our opinion, the approach and
results achieved in this work are extremely fruitful to understand the effect of Hoagland
mineral nutrients on the healthy growth of ex vitro acclimatized plants, through identifying
key factors, which favor growth and limit physiological abnormalities.

Keywords: Actinidia arguta, artificial intelligence, ex vitro acclimatization, DOE, kiwiberry, machine learning,
healthy plants, physiological disorders
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INTRODUCTION

The first studies on the development of mineral nutrient solutions
for the cultivation of healthy plants date back to the mid-1800s.
They are mainly based on physiologically balanced formulations,
i.e., Knop formulation (Loew and Aso, 1907). This approach
was substituted by testing serial concentrations of elements of
Knop. In this case, a similar osmotic concentration for all the
media is tested, but each formulation differs from the others
in the proportions of nutrient salts (Tottingham, 1914; Shive,
1915; Jones and Shive, 1921). Subsequently, the variation in the
pH range of the formulated mineral solution was introduced
(Arnon and Johnson, 1942).

Hoagland and colleagues soon reported outstanding
improvements in mineral formulations for healthy commercial
plant growth (Hoagland, 1920, 1937; Hoagland and Broyer,
1936; Arnon, 1937; Arnon and Hoagland, 1939), but also some
associated physiological problems with those formulations
(Hoagland and Arnon, 1941, 1948). In 1950, they established the
most widely cited and used plant mineral nutrition formulation:
Hoagland solution (Hoagland and Arnon, 1950). The new
formulation was based on the quantification of the nutrients
absorbed by the plant roots followed mainly by the substation of
several mineral nutrients until satisfactory results were obtained
(Hoagland, 1920; Arnon, 1938). This procedure made the task
time-consuming, intensive, and laborious (Hoagland and Arnon,
1950 and references therein).

Although the Hoagland solution has been commonly used
for several crops with good results, ex vitro culture of plants
is still one of the most important challenges for researchers.
For each case, different strengths of Hoagland solution need
to be applied or its elements must be readjusted. For instance,
a different strength of Hoagland solution (0.125-2×) was
tested by Kang and Iersel (2004) for growing Salvia splendens,
pinpointing 1–2 × as optimum levels for healthy plant growth.
The half strength of Hoagland solution was determined as the
best level for the healthy growth of Citrus sp. (Zhou et al.,
2020). Also, the serial concentrations of Ca2+ and BO3

− were
tested based on the half strength of Hoagland to improve the
healthy growth of Actinidia deliciosa L. (Sotiropoulos et al.,
1999). However, finding an optimized solution of mineral
nutrients remains a time-consuming, costly, and tedious task
(Nezami-Alanagh et al., 2014).

Recently, computer-based tools for the design of experiments
(DOE) made it possible to drastically reduce the number of
combinations to be studied compared with traditional factorial
designs (Niedz and Evens, 2016). Although DOE has been widely
used to improve in vitro plant tissue culture (PTC) practice
(Niedz and Evens, 2007; Poothong and Reed, 2015; Ayuso et al.,
2017; Nezami-Alanagh et al., 2018, 2019; Chu et al., 2019;
Hameg et al., 2020; Pence et al., 2020), as far as we know,
there is no report regarding the application of the DOE to
ensure adequate sampling of the design space in plant mineral
solution formulations.

The next challenge of mineral nutrient studies is
understanding ion-specific effects in n-dimensional design
spaces. In this situation, the use of artificial intelligence (AI) tools
has been recommended as a suitable alternative computational

methodology to extract information from complex databases
(Gago et al., 2010a; Gallego et al., 2011). Neuro-fuzzy logic is
one of the powerful multiscale analysis systems of AI technology
with the ability to model non-linear complex systems by setting
simple “IF–THEN” rules together with the identification of
the key factors to improve a specific response (Landin et al.,
2009). In recent years, several studies have proved the efficacy
of neuro-fuzzy logic in in vitro culture media improvements
(Nezami-Alanagh et al., 2014, 2017; Ayuso et al., 2017), but
despite these advances, the development of an optimal mineral
formulation for plant growth continues to be a challenge.

Here, the commercially important kiwiberry or hardy kiwi
(Atkinson and Macrae, 2007) plants were selected to establish
the response of micropropagated plants to a set of mineral
formulations during the ex vitro acclimatization (hardening)
process. To that end, we implemented DOE to generate a
multifactor design space to simultaneously study the influence of
Hoagland mineral nutrients on a set of physiological responses,
followed by applying neuro-fuzzy logic to model and unveil the
key mineral nutrients to decipher hidden relationships between
mineral nutrients and the studied parameters.

MATERIALS AND METHODS

Plant Material and in vitro Culture
Conditions
Micropropagated plants of Actinidia arguta (Sieb. and
Zucc.) Planch. ex Miq. cv. “Issai” were obtained from the
Department of Plant Biology and Soil Sciences (University
of Vigo) as described in detail elsewhere (Hameg, 2019;
Hameg et al., 2020). Briefly, micro-shoots were proliferated
in Cheng medium (Cheng, 1975) containing 1 mg/L N6-
benzyladenine (BAP), 1 mg/L gibberellic acid (GA3), 30 g/L
sucrose, and 8 g/L agar. Medium pH was adjusted to 5.7
prior to autoclaving (121◦C, 1 kg/cm2/s for 20 min).
The cultures were kept under 16-h photoperiod (white
fluorescent tubes; irradiance of 40 µmol/m2/s) and
day/night temperature of 25 ± 1◦C and cultured for 50 days
(Hameg et al., 2018).

Direct ex vitro Simultaneous Rooting and
Acclimatization Culture Conditions
Micro-shoots (∼3 cm in height) obtained from in vitro
proliferation medium, after dipping the basal cut end of
the micro-shoots in 250 ppm indole-3-butyric acid (IBA)
solution for 10 min, were carefully planted into mini-pots
(5 × 5 cm2) containing perlite, covered with glass vessels.
The mini-pots were transferred into an automated growth
room (Sanyo SGC066.CFX.F) under 16-h photoperiod (white
fluorescent tubes; irradiance of 200 µmol/m2/s) and 18 ± 3◦C.
The initial value of relative humidity was set at 100% and
decreased gradually during 21 days until 60% was reached
(Gago et al., 2010b).

Thereafter, rooted plantlets were watered for 3 months with
a set of mineral formulations (Table 1), based on the Hoagland
solution (Hoagland and Arnon, 1950). Each replicate consisted of
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TABLE 1 | Composition of the mineral formulations established by the five-factor design (19 treatments) based on Hoagland mineral nutrients plus half strength of
Hoagland solution (as control) in mg/L.

Formulations NH4H2PO4 Ca(NO3)2.4H2O KNO3 MgSO4.7H2O CuSO4.5H2O

A 57.515 944.6 6.066 492.9 0.0008

B 115.03 472.3 303.3 246.45 0.08

C 1.1503 9.446 606.6 4.929 0.04

D 1.1503 944.6 303.3 246.45 0.04

E 57.515 9.446 6.066 4.929 0.08

F 115.03 472.3 606.6 492.9 0.0008

G 57.515 944.6 303.3 492.9 0.0008

H 1.1503 9.446 606.6 246.45 0.08

I 115.03 472.3 6.066 4.929 0.04

J 1.1503 9.446 606.6 492.9 0.08

K 115.03 944.6 6.066 246.45 0.0008

L 57.515 472.3 303.3 4.929 0.04

M 57.515 944.6 6.066 492.9 0.08

N 1.1503 472.3 606.6 246.45 0.04

O 1.1503 472.3 303.3 492.9 0.08

P 115.03 944.6 606.6 246.45 0.04

Q 115.03 472.3 6.066 246.45 0.0008

R 1.1503 9.446 606.6 492.9 0.04

S 57.515 944.6 303.3 4.929 0.08

Control 57.515 472.3 303.3 246.45 0.04

Three levels were selected for each factor (0.01, 0.5, and 1 × Hoagland solution).

two transplant plastic containers each containing 10 plants. The
experiments were carried out in duplicate.

Experimental Design and Data
Acquisition
An experimental design was established to study the effects of
the combination of six macronutrients (i.e., N, P, Ca, K, S,
and Mg) and one micronutrient (Cu) of the Hoagland solution
(Hoagland and Arnon, 1950) on the growth and development of
acclimatized plants. To this end, the Hoagland salts, namely, (i)
NH4H2PO4, (ii) KNO3, (iii) Ca(NO3)2.4H2O, (iv) MgSO4.7H2O,
and (v) CuSO4.5H2O, were considered as five independent
factors at three levels, expressed as × half-strength Hoagland
solution concentrations (Table 1) for ensuring optimal sampling
of the design space. In other words, here we select the space

TABLE 2 | Training parameters setting with neuro-fuzzy logic.

Critical factors for neuro-fuzzy logic model

Minimization parameters

Ridge regression factor: 1e−6

Model selection criteria

Structural risk minimization (SRM)

C1 = 0.75–0.95; C2 = 4.8

Number of set densities: 2

Set densities: 2, 3

Adapt nodes: True

Max. inputs per submodel: 4

Max. nodes per input: 15

delimited by three levels of Hoagland solution varied between
0.01, 0.5, and 1 (×level). This means that various formulations of
Hoagland solution were tested: some at a very low concentration
of all ions (0.01×); others at middle concentrations (0.5 × level)
similar to the control (1/2 strength), and the rest at full-strength
Hoagland solution (1× level).

The five-factor experimental design was a 19-point using
IV-optimal response surface and the software application
Design-Expert R©8 (Design-Expert, 2010), and another point
with half-strength Hoagland salt concentration as control
(Table 1). The other salts in the Hoagland solution, including
micronutrients and iron, were fixed based on the control medium
(Supplementary Table 1).

Samples of plants were irrigated with each mineral
formulation. After 3 months, five growth responses and
three physiological disorders were evaluated:

1. Hardening efficiency (Hard): percentage of successfully
acclimatized plants.

2. Shoot length (SL): length of shoots in cm.
3. Total leaf number (TLN): number of leaves.
4. Leaf chlorophyll content (LCC): measured by

SPAD chlorophyll meter (Opti-Sciences CCM-
200, United States), expressed as Chlorophyll
Content Index (CCI).

5. Leaf area (LA): measured by CI-202 Laser Leaf Area
Meter in cm2.

6. Leaf necrosis (LN): number of necrotic leaves per total
leaf numbers in %.

7. Curled leaf (CL): number of curled leaves per total
leaf numbers in %.
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8. Leaf spot (LS): number of spotted leaves per total
leaf numbers in %.

Artificial Neural Networks Modeling Tool
FormRules R© v4.03 (Intelligensys Ltd., United Kingdom), a neuro-
fuzzy logic software that combines artificial neural networks with
fuzzy logic, was used to model the results and analyze how the
solution components modulate its physiological effects through
the simple “IF–THEN” rules that generate with a membership
degree, as described in detail previously (Colbourn and Rowe,
2005; Gallego et al., 2011; Landin and Rowe, 2013; Nezami-
Alanagh et al., 2018).

Different statistical criteria of software fitting, namely, Cross
validation (CV), Leave One Out Cross Validation (LOOCV),
Minimum Description Length (MDL), Bayesian Information
Criterion (BIC), and the Structural Risk Minimization (SRM),
were tested to build the model. Among them, SRM was selected,
because it generated the most predictable models along with
the minimum generalization error and the simplest and more
intelligible rule sets avoiding overtraining (Vapnik, 1992; Shao
et al., 2006). All data were used for training since SRM is a
statistical significance method; the number of subsets ranged
from 1 to 3, and a maximum of 4 inputs per submodel and 15
maximum nodes per input were selected (Table 2) as described
elsewhere (García-Pérez et al., 2020; Hameg et al., 2020).

The model quality was assessed using the coefficient of
determination of the training set (train set R2), expressed in
percentage (for model predictability), and the analysis of variance
(ANOVA) parameters (for model accuracy). Train set R2 values
are calculated by the following equation (Shao et al., 2006):

R2
=

1−

n∑
i=1

(
yi − y

′

i

)2

n∑
i=1

(
yi − y"

i

)2

× 100%

where yi is the experimental value in the database, yi
′ is the

predicted value generated by the model, and yi
′′ is the mean of

the dependent variable.
Train set R2 values between 70 and 99.9% are indicative of

acceptable predictabilities, while values higher than 99.9% have
been rejected due to model over fitting (Colbourn and Rowe,
2005; Landin et al., 2009). To test model accuracy, the software
uses one-way ANOVA to evaluate statistical differences between
predicted and experimental data. Models, which computed ratio
f -value in the ANOVA greater than critical f -value for the
corresponding degrees of freedom (α = 0.01), show good accuracy
and no statistical differences among experimental and predicted
values (Colbourn and Rowe, 2009).

Modeling was built according to the methodology described
previously by Nezami-Alanagh et al. (2017) using the training
parameters shown in Table 2.

To avoid the ion confounding effect (Niedz and Evens, 2007),
the mineral composition of every formulation was expressed as
ion concentrations instead of salt concentrations and introduced
as inputs (NH4

+, Ca2+, K+, Mg2+, NO3
−, PO4

2−, SO4
2−, and TA

B
LE

3
|D

at
as

et
us

ed
to

bu
ild

th
e

ne
ur

o-
fu

zz
y

m
od

el
,i

nc
lu

di
ng

th
e

m
in

er
al

io
n

co
m

po
si

tio
n

as
in

pu
ts

an
d

th
e

ex
pe

rim
en

ta
ld

at
a

ob
ta

in
ed

fo
re

ac
h

gr
ow

th
re

sp
on

se
an

d
ph

ys
io

lo
gi

ca
ld

is
or

de
rp

ar
am

et
er

s
(e

xp
re

ss
ed

as
th

e
m

ea
n
±

st
an

da
rd

er
ro

r)
as

ou
tp

ut
s.

Fo
rm

ul
at

io
ns

Io
ns

(m
M

)
P

hy
si

o
lo

g
ic

al
d

is
o

rd
er

s

N
H

4
+

N
O

3
−

K
+

C
a2
+

M
g

2
+

C
u2
+

P
O

4
2
−

S
O

4
2
−

H
ar

d
(%

)
S

L
(c

m
)

T
LN

LC
C

LA
(c

m
2
)

LN
(%

)
C

L
(%

)
LS

(%
)

A
0.

50
8.

06
0.

06
4.

00
2.

00
0.

00
00

0.
50

2.
05

10
0

6.
28
±

0.
50

31
.4

5
±

2.
03

6
22

.3
9
±

1.
21

11
.1

4
±

1.
70

0.
00

2.
54
±

0.
98

0.
65
±

0.
38

B
1.

00
7.

00
3.

00
2.

00
1.

00
0.

00
03

1.
00

1.
05

10
0

7.
35
±

0.
26

56
.8

0
±

2.
40

34
.4

5
±

4.
85

8.
98
±

0.
75

13
.6

2
±

3.
69

6.
99
±

1.
10

0.
00

C
0.

01
6.

08
6.

00
0.

04
0.

02
0.

00
02

0.
01

0.
07

0.
00

N
/D

N
/D

N
/D

N
/D

10
0

N
/D

N
/D

D
0.

01
11

.0
0

3.
00

4.
00

1.
00

0.
00

02
0.

01
1.

05
60

.0
0
±

24
.5

0
2.

13
±

0.
07

12
.3

3
±

2.
60

3.
57
±

0.
41

0.
98
±

0.
15

0.
00

0.
00

10
0

E
0.

50
0.

14
0.

06
0.

04
0.

02
0.

00
03

0.
50

0.
07

25
.0

0
±

9.
00

2.
40
±

0.
23

11
.3

3
±

1.
20

14
.6

3
±

1.
20

3.
15
±

0.
25

0.
00

0.
00

36
.2

7
±

2.
56

F
1.

00
10

.0
0

6.
00

2.
00

2.
00

0.
00

00
1.

00
2.

05
0.

00
N

/D
N

/D
N

/D
N

/D
N

/D
N

/D
10

0
G

0.
50

11
.0

0
3.

00
4.

00
2.

00
0.

00
00

0.
50

2.
05

40
.0

0
±

16
.3

3
3.

83
±

0.
48

46
.5

0
±

4.
92

14
.8

0
±

1.
05

4.
41
±

0.
88

0.
00

6.
50
±

2.
28

0.
00

H
0.

01
6.

08
6.

00
0.

04
1.

00
0.

00
03

0.
01

1.
05

0.
00

N
/D

N
/D

N
/D

N
/D

10
0

N
/D

N
/D

I
1.

00
4.

06
0.

06
2.

00
0.

02
0.

00
02

1.
00

0.
07

83
.3

3
±

11
.2

4
2.

74
±

0.
38

19
.4

0
±

1.
59

10
.6

2
±

1.
24

1.
79
±

0.
37

0.
00

0.
00

68
.5

7
±

6.
80

J
0.

01
6.

08
6.

00
0.

04
2.

00
0.

00
03

0.
01

2.
05

0.
00

N
/D

N
/D

N
/D

N
/D

10
0

N
/D

N
/D

K
1.

00
8.

06
0.

06
4.

00
1.

00
0.

00
00

1.
00

1.
05

92
.3

1
±

7.
69

2.
97
±

0.
41

23
.5

8
±

2.
92

20
.9

1
±

0.
69

3.
83
±

1.
93

0.
00

0.
00

0.
00

L
0.

50
7.

00
3.

00
2.

00
0.

02
0.

00
02

0.
50

0.
07

66
.6

7
±

21
.0

8
1.

38
±

0.
43

19
.7

5
±

1.
60

9.
23
±

0.
99

2.
24
±

0.
67

0.
00

0.
00

80
.7

5
±

7.
26

M
0.

50
8.

06
0.

06
4.

00
2.

00
0.

00
03

0.
50

2.
05

75
.0

0
±

9.
93

6.
25
±

0.
82

33
.8

7
±

2.
52

16
.1

7
±

1.
35

8.
81
±

1.
19

0.
00

0.
00

20
.4

5
±

5.
96

N
0.

01
10

.0
0

6.
00

2.
00

1.
00

0.
00

02
0.

01
1.

05
87

.5
0
±

12
.5

1.
80
±

0.
31

17
.4

3
±

1.
63

7.
04
±

0.
30

1.
01
±

0.
12

0.
00

0.
00

25
.7

4
±

15
.6

5
O

0.
01

7.
00

3.
00

2.
00

2.
00

0.
00

03
0.

01
2.

05
71

.4
3
±

18
.4

4
2.

64
±

0.
69

11
.8

0
±

2.
35

6.
76
±

0.
65

1.
20
±

0.
25

0.
00

0.
00

62
.9

9
±

9.
73

P
1.

00
14

.0
0

6.
00

4.
00

1.
00

0.
00

02
1.

00
1.

05
42

.8
6
±

20
.2

0
3.

65
±

0.
49

34
.0

0
±

1.
15

11
.7

0
±

3.
40

5.
74
±

2.
87

16
.0

4
±

2.
00

0.
00

0.
00

Q
1.

00
4.

06
0.

06
2.

00
1.

00
0.

00
00

1.
00

1.
05

83
.3

3
±

16
.6

7
3.

90
±

0.
42

17
.6

0
±

1.
17

19
.9

8
±

2.
13

9.
20
±

3.
01

0.
00

0.
00

0.
00

R
0.

01
6.

08
6.

00
0.

04
2.

00
0.

00
02

0.
01

2.
05

0.
00

N
/D

N
/D

N
/D

N
/D

10
0

N
/D

N
/D

S
0.

50
11

.0
0

3.
00

4.
00

0.
02

0.
00

03
0.

50
0.

07
87

.5
0
±

12
.5

1.
75
±

0.
19

17
.4

3
±

0.
97

6.
63
±

0.
23

1.
48
±

0.
14

0.
00

0.
00

71
.8

1
±

6.
34

C
on

tr
ol

0.
50

7.
00

3.
00

2.
00

1.
00

0.
00

02
0.

50
1.

05
71

.1
1
±

6.
83

5.
19
±

0.
26

44
.4

4
±

1.
80

15
.3

3
±

0.
84

6.
12
±

0.
67

1.
90
±

0.
67

4.
37
±

1.
00

0.
00

N
/D

,n
ot

de
te

rm
in

ed
.

Frontiers in Plant Science | www.frontiersin.org 4 October 2021 | Volume 12 | Article 723992

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-723992 October 23, 2021 Time: 22:33 # 5

Maleki et al. Improving Hoagland’s Solutions Mineral Nutrients

y = 0.8553x + 7.8589
R² = 0.8553

0

20

40

60

80

100

0 20 40 60 80 100

)
%(

dra
H

detciderP

Experimental Hard (%)

y = 0.8124x + 0.6786
R² = 0.8124

0

2

4

6

8

0 2 4 6 8

)
mc(

LS
detciderP

Experimental SL(cm)

y = 0.7977x + 5.3645
R² = 0.79770

20

40

60

0 20 40 60

N
L

T
detciderP

Experimental TLN

y = 0.7886x + 0.9873
R² = 0.7887

0

2

4

6

8

10

0 2 4 6 8 10

(
A

L
detciderP

cm
2 )

Experimental LA (cm2)

y = 0.9284x + 1.022
R² = 0.9284

0

20

40

0 20 40

C
L

detciderP

Experimental LC 

y = 0.7267x + 6.2079
R² = 0.7267

0

20

40

60

80

100

0 20 40 60 80 100

)
%(

N
L

detciderP

Experimental LN (%)

A B

C D

E F

FIGURE 1 | Determination of coefficient (R2) of experimental vs. predicted values obtained by neuro-fuzzy logic models for the different parameters or outputs
studied: (A) Hard, (B) SL, (C) TLN, (D) LA, (E) LCC, and (F) LN.

Cu2+), while physiological parameters (Hard, SL, TLN, LCC, LA,
LN, LS, and CL) were selected as outputs.

RESULTS

The reduced experimental design allowed establishing just 19
treatments (mineral formulations) using different proportions of
the mineral nutrients of Hoagland solution in a well-sampled
design space. As it can be observed (Table 3), while some
formulations promoted the highest plant survival (100% Hard)
such as A and B, others such as C, F, H, J, and R were completely

unviable (0% Hard), all plants showing 100% of leaf necrosis (C,
H, J, and R) or 100% of spots (F) and dying during 3 months of
acclimatization. Moreover, some other formulations (e.g., B, G, I,
L, P, and S) and the control (1/2 Hoagland strength) also promoted
rates of physiological disorders such as leaf spots, curling, and/or
necrosis (Table 3). Thus, it is clear that the mineral composition
of each formulation assayed plays an essential role in plant
survival during the acclimatization procedure. However, these
data are not very informative about which component of each
formulation caused those positive or negative effects on plant
growth and health, thus not much valuable knowledge can be
drawn from these results.
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TABLE 4 | Neuro-fuzzy logic results for each output model.

Outputs Submodel Significant inputs R2 f ratio df1, df2 f critical

Hard (%) 1 Mg2+ × NO3
− 85.52 12.80 6, 19 2.91

2 Ca2+

SL (cm) 1 NH4
+ × Cu2+ 81.24 7.79 5, 14 3.84

2 Mg2+

TLN 1 NH4
+ × Cu2+ 79.77 7.10 5, 14 3.84

2 Mg2+

LCC 1 NH4
+ × Cu2+ 92.84 9.73 8, 14 4.15

2 Mg2+

3 Ca2+

LA (cm2) 1 NH4
+ × Mg2+ 78.87 6.72 5, 14 3.84

2 NO3
−

LN (%) 1 Ca2+ 72.67 13.29 3, 18 3.29

CL (%) - - 93.72 4.07 11, 14 8.76

LS (%) - - 98.79 5.81 14, 15 245.28

The number of submodels, significant inputs, predictability, and accuracy parameters: Train set R2 and ANOVA parameters for training [f ratio, degree of freedom (df1:
model and df2: total) and f critical value for α = 0.05]. The inputs with the strongest effect on each output are in bold.

The use of neuro-fuzzy logic models permitted the successful
modeling of six out of eight parameters (outputs): Hard, SL, TLN,
LCC, LA, and LN with high predictability (72.67≤ R2

≤ 92.84%)
and accuracy (f ratio > f critical). However, the reduced number
of degrees of freedom did not allow confirmation of the accuracy
of CL and LS models, despite their excellent predictability
R2 > 93.71% (Figure 1 and Table 4).

Neuro-fuzzy logic generated 1–3 submodels for each
parameter. Two submodels explain the variability of plant
survival (Hard): the interaction of NO3

− and Mg2+, highlighted
as the inputs with the strongest effect, and the independent effect
of Ca2+. The variance found for SL (81.24) TLN (79.77), and
LCC (92.84) was mainly due to the interaction of NH4

+ and
Cu2+ (stronger effect) and the independent influence of Mg2+.
For LCC, the independent influence of Ca2+ also played an
essential role. For LA, the strongest effect was caused by the
interaction of NH4

+ and Mg2+ and the independent influence
of NO3

− . Finally, LN variations are explained by variations in
Ca2+ ion concentrations (Table 4).

Neuro-fuzzy logic provides a set of useful “IF–THEN”
rules to explain those effects and facilitate their understanding
using words (linguistic tags), as well as to help researchers in
decision-making. Table 5 summarizes all the rules with their
membership degree. The rules showing the ion combination
with the strongest effect and highest membership (1.00) for each
parameter are in bold.

The “IF–THEN” rules for Hard indicate that the highest
survival of the acclimatized plants was obtained if a low
amount of NO3

− was supplied into the mineral formulation,
particularly if combined with high Mg2+ content (rules 4–
5; Table 5). Also, the model recommends supplementing the
formulation with mid to high amounts of Ca2+ (rules 2–3;
Table 5). The meaning of low, mid, or high concentrations for
the different inputs can be found elsewhere (García-Pérez et al.,
2020; Hameg et al., 2020).

The analysis of “IF–THEN” rules for SL, TLN, and
LCC revealed that only Cu2+ and NH4

+ supplied at high

concentration lead to the longest shoots, the highest leaf
number, and high chlorophyll content (rules 13, 17, and 25,
respectively; Table 5). As for Hard, only mineral solutions
supplemented with a high concentration of Mg2+ (rules 9, 19,
and 27; Table 5) promoted high values for SL, TLN, and LCC.
According to these rules, the hardy kiwi plants grown on mineral
formulation B containing high concentrations of NH4

+, Cu2+,
and Mg2+, corresponded to the longest SL (7.35 cm), the highest
TLN (56.8 cm), and the second highest (almost nine CCI)
LCC (Table 2).

Leaf area was essentially predicted by the interaction of NH4
+

and Mg2+: if high NH4
+ was combined with high Mg2+, then

high LA values (rule 33; Table 5) were achieved, but if high
NH4

+ was combined with low Mg2+, then low LA values were
obtained (rule 32; Table 5). Also, the model pinpointed the
negative independent influence of NO3

− , only promoting the
highest LA when low amount of NO3

− was supplied into the
mineral formulation (rule 34; Table 5; membership 1.00).

Physiological Disorders
In this study, different types of physiological disorders such
as LN, CL, and LS during plant acclimatization were observed
(Table 3 and Figure 2). However, only LN could be successfully
modeled with the neuro-fuzzy logic, due to insufficient
predictability of their models (f ratio < f critical, Table 4).

Leaf necrosis variability is explained by Ca2+ concentration.
The mid-high concentration of this ion (>1.03 mM) avoids leaf
necrosis (rules 37–38; Table 5).

DISCUSSION

Although Hoagland solution (Hoagland and Arnon, 1950) has
basically been set up using asparagus, lettuce, tomato, or wheat
(Hoagland, 1923; Arnon, 1937; Arnon and Stout, 1939; Hoagland
and Arnon, 1948), subsequently, it has been widely used to
irrigate almost all genotypes, including several Actinidia spp.
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TABLE 5 | Rules generated by neuro-fuzzy logic showing the best combination of inputs to obtain the highest and lowest physiological responses with their membership
degree for each output.

Rules NH4
+ NO3

− Ca2+ Mg2+ Cu2+ Hard SL TLN LCC LA LN Membership

1 IF Low THEN Low 1.00

2 Mid High 1.00

3 High High 1.00

4 Low Low High 0.96

5 Low High High 1.00

6 High Low Low 0.79

7 High High Low 1.00

8 IF Low THEN Low 1.00

9 High High 1.00

10 Low Low Low 0.85

11 Low High Low 1.00

12 High Low Low 0.92

13 High High High 1.00

14 IF Low Low THEN High 0.68

15 Low High Low 1.00

16 High Low Low 1.00

17 High High High 1.00

18 Low Low 1.00

19 High High 0.98

20 IF Low Low THEN Low 1.00

21 Low Mid Low 1.00

22 Low High Low 1.00

23 High Low High 0.84

24 High Mid Low 0.70

25 High High High 1.00

26 Low Low 1.00

27 High High 1.00

28 Low High 0.92

29 High Low 0.91

30 IF Low Low THEN Low 1.00

31 Low High Low 1.00

32 High Low Low 1.00

33 High High High 1.00

34 Low High 1.00

35 High Low 0.93

36 IF Low THEN High 0.80

37 Mid Low 0.99

38 High Low 0.98

The inputs with the strongest effect on each output are in bold.

(Sotiropoulos et al., 2005; Liang et al., 2018; Liu et al., 2019;
Purohit et al., 2020). In this study, we have used an IV-
optimal design space using DOE software through dividing
all macroelements plus copper of Hoagland solution into five
independent factors at three levels (Table 1) to get a better
understanding of the responses of acclimatized plants. This
approach allowed us to (i) establish a well-sampled design
space and (ii) reduce the number of mineral formulations
based on Hoagland levels used in the study from 243 to just
19 combinations.

Among the available machine learning algorithms
used in plant nutrition studies (García-Pérez et al., 2020;
Hameg et al., 2020; Niazian and Niedbała, 2020), here, the

commercial neuro-fuzzy logic (FormRules R©) that combines
artificial neural networks with fuzzy logic was used to build the
mathematical models.

Neuro-fuzzy logic has shown a sounding potential for data
mining and generates knowledge from complex datasets of plant
tissue culture studies (Gago et al., 2011; Nezami-Alanagh et al.,
2019). In this work, the efficiency of this tool can be briefly
summarized as (i) generating statistical mathematical models
with high predictability (train set R2 > 70%) and accuracy (f
ratio > f critical), which explain six out of the eight outputs
with the related significant inputs (Table 4) as described by Shao
et al. (2006) and (ii) constructing a set of “IF–THEN” rules to
elucidate the complex non-linear relationships between inputs
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FIGURE 2 | Growth quality of A. arguta plants watered with some mineral
formulations in addition to physiological disorders observed in suboptimal
media. (A–C) plants watered with (A,B), and control formulations,
respectively. Physiological disorders detected during plant acclimatization: (D)
leaf necrosis, (E) curling leaf, and (F) leaf spot symptoms.

and outputs expressed in words (Table 5). As an example, all
the plants irrigated with C, H, J, and R formulations did not
survive and died within the first 3 weeks of the acclimatization
process mainly due to the low Ca2+ content (Table 3), all of
them showing the highest (100%) leaf necrosis ratios (Table 5:
rules 1 and 36).

Nitrogen (N) is considered one of the essential mineral
nutrients for plant growth and development (Raven, 2003; Wang
et al., 2012; Liu et al., 2014). Among the N sources, NH4

+ and
NO3

− ions are considered the most important, but plant species
have different adaptabilities to uptake and utilize both (Crawford,
1995; Boudsocq et al., 2012; Gonçalves Fernandes, 2019; Asim
et al., 2020). All the growth parameters studied were critically
affected by one of the N sources or both, independently or in
complex interactions with other ions such as Cu2+ or Mg2+

(Table 4). NO3
− should be supplied at a low concentration

within the design space (6 mM) to improve both Hard and
LA, whereas NH4

+ should be supplied at high concentrations
(0.5 < × < 1.0 mM) in combination with high Cu2+ or
Mg2+ to improve SL, TLN, LCC, and LA (Table 5). Thus, the
results also suggest that the concentrations of NH4

+, Cu2+,
and Mg2+ in the Hoagland solution are optimal to irrigate
Actinidia spp., particularly kiwiberry (A. arguta). However, the
concentrations of salts containing NO3

− should be reduced.
In agreement with our findings, Clark et al. (2003) observed
the preference of cranberry plants to absorb NH4

+ compared
with NO3

− when testing different ratios of NO3
− :NH4

+

based on Hoagland solution. In their study, the plants receiving
NO3

− exhibited poorer growth and greater foliar chlorosis
compared with plants grown with NH4

+. In a recent study

(Gonçalves Fernandes, 2019), in which Actinidia sp. plants were
irrigated with two levels of these ions (0 and 3 mM) while keeping
other mineral nutrients of solution at a fixed concentration, an
increase in the lengths of shoots and roots was observed when
solutions supplemented with 3 mM NO3

− were used, while the
plants irrigated with 3 mM NH4

+ exhibited higher chlorophyll
and protein contents. These controversial results may have their
origin in the experimental design, which in our case allows us
to detect interactions between nitrogen suppliers and other ions,
which undoubtedly influence the preference of plants in the
absorption of certain nutrients.

Neuro-fuzzy logic also identified Mg2+ as an ion, which
positively affected five out of the six parameters (Hard,
SL, TLN, LCC, and LA) independently or in complex
interaction with other ions (Table 4). Mg2+ was widely
described as an essential divalent cation for plant growth
and development, being considered as a mobile element
(Tang et al., 2012; Blasco et al., 2015; Rehman et al.,
2018; Hauer-Jákli and Tränkner, 2019). It is a structural
constituent of chlorophyll molecules and the subsequent
transport of photo-assimilates, and it is involved in many
biochemical and physiological plant processes. It is also
required for the activity of many enzymes of respiration
and nucleic acid biosynthesis. The absence of magnesium
results in interveinal chlorosis and in premature leaf abscission
(Bhatla and Lal, 2018).

Recently, it has been shown that Mg2+ uptake by Actinidia
sp. is significantly affected by N-sources available in the
solutions, thus plants, whose source of N is exclusively NH4

+,
present lower Mg values in shoots and roots compared
with plants irrigated with NO3

− (Gonçalves Fernandes,
2019). The antagonistic effect between Mg2+ and NH4

+

may have its origin in uptake competition of these cations
through the mechanism of charge balance in ion uptake,
since N is a dominant macronutrient and its ionic form
controls cation and anion uptake (Borgognone et al., 2013;
Gonçalves Fernandes, 2019).

Ca2+ significantly affected three out of the six parameters.
Despite the inclusion of a mid-high amount of this cation
improving Hard and alleviating LN, the LCC was negatively
influenced by high Ca2+ concentrations (Table 5). The dual
function of calcium in plants, as the divalent cation, can
be summarized in (i) contributing to the cell wall structure
and strength and (ii) being a second messenger in many
physiological and developmental processes (Thor, 2019). On
the contrary, the visual symptoms of Ca2+ deficiency vary
among species (de Freitas et al., 2016). In grapevine, it has
been related to the appearance of necrosis at the margin of
young leaves and the development of necrotic dots, rolling
up, leaden, and yellow color in adult leaves (Bavaresco et al.,
2010). We have observed leaf tip burning along with the
development of necrosis in whole leaves when low amounts
of Ca2+ were included in the formulations (Figure 2D).
Recently, Teixeira da Silva et al. (2020) reviewed the effect
of different ions on shoot tip necrosis (STN) in terms of
morphological, biochemical, and molecular aspects, revealing
that of all the ions, supply of sufficient Ca2+ in vitro cultures
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can prevent STN by inhibiting the accumulation of phenolic
compounds and thus programmed cell death. Furthermore,
the excessive synthesis and transport of auxin and ethylene in
undesirable conditions were shown to decrease the mobility
of Ca2+within a plant, resulting in Ca2+ deficiency and
STN. They finally concluded that STN of in vitro shoots
and/or plantlets can be hindered or reversed by altering
the basal medium, mainly the concentration of Ca2+,
adjusting the levels of auxins or cytokinins, or modifying
culture conditions.

The copper ion (Cu2+) is considered an essential
micronutrient that governs several important physiological
roles during plant growth and development, mainly through
its catalytic role in photosynthesis, respiration, and formation
of lignin in the cell wall (Cuypers et al., 2000; Borghi et al.,
2008; Printz et al., 2016). Our results pinpointed that this ion
played an essential role in three out of the eight parameters (SL,
TLN, and LCC) in interaction with NH4

+. Both ions supplied
at high concentration always (membership = 1) lead to long
shoots, many leaves, and high chlorophyll contents. However,
high Cu2+ concentrations combined with low NH4

+ contents
promote the opposite effect: short shoots, low leaf number,
and chlorophyll content. These results suggest that the effect
described on those growth and physiological parameters was
more related to the level of NH4

+ than the effect per se of the
Cu2+.

In conclusion, the use of a reduced experimental design
together with artificial intelligence tools has allowed us to
study the simple or combined effect of nutrients in complex
mineral formulations. Moreover, it has allowed us to establish
the suitability of the full-strength Hoagland solution or propose
its adjustment for better growth of the A. arguta plant during its
acclimatization.

The nitrogen ions (NH4
+ and NO3

−) are essential
to maintain plant growth and development. While the
mathematical model obtained recommends maintaining the
level of NH4

+, Ca2+, Mg2+, and Cu2+ established in the
full-strength Hoagland solution for irrigating kiwiberry plants,
the NO3

− concentration should be reduced for improving
plant hardening (e.g., at half the KNO3

− salt content of
Hoagland solution).
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