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The goal of a plant breeding program is to develop new cultivars of a crop kind with

improved yield and quality for a target region and end-use. Improved yield across

locations and years means better adaptation to the climatic, soil, and management

conditions in the target region. Improved or maintained quality renders and adds

value to the improved yield. Both yield and quality must be considered simultaneously,

which constitutes the greatest challenge to successful cultivar development. Cultivar

development consists of two stages: the development of a promising breeding

population and the selection of the best genotypes out of it. A complete breeder’s

equation was presented to cover both stages, which consists of three key parameters

for a trait of interest: the population mean (µ), the population variability (σG), and the

achieved heritability (h2 or H), under the multi-location, multi-year framework. Population

development is to maximize µσG and progeny selection is to improve H. Approaches

to improve H include identifying and utilizing repeatable genotype by environment

interaction (GE) through mega-environment analysis, accommodating unrepeatable GE

through adequate testing, and reducing experimental error via replication and spatial

analysis. Related concepts and procedures were critically reviewed, including GGE

(genotypic main effect plus genotype by environment interaction) biplot analysis, GGE

+ GGL (genotypic main effect plus genotype by location interaction) biplot analysis, LG

(location-grouping) biplot analysis, stability analysis, spatial analysis, adequate testing,

and optimum replication. Selection on multiple traits includes independent culling

and index selection, for the latter GYT (genotype by yield∗trait) biplot analysis was

recommended. Genomic selection may provide an alternative and potentially more

effective approach in all these aspects. Efforts were made to organize and comment

on these concepts and procedures in a systematic manner.

Keywords: heritability, genotype by environment interaction, optimum testing, optimum replication, multi-trait

selection, biplot analysis, mega-environment analysis, breeder’s equation
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INTRODUCTION

Plant breeding plays a key role in meeting the human needs
for more food, nutrition, and fiber under a changing climate.
The goal of a plant breeding program is to develop new
cultivars of a crop kind with improved yield and quality for
its target region and end-use. All theories, concepts, processes,
procedures, and analyses related to plant breeding are developed
and implemented around this goal. A target region is the target
population of environments, which is the sum of soil, climatic,
biotic, and abiotic conditions plus common management
practices that are likely to be encountered in the region. Improved
yield means improved adaptation to the target region, which
is reflected in improved mean performance and stability of
performance across locations and years in the target region.
Improved quality means improved adaptation to the end-uses
that bring value and income to the growers in the target region.
Both the target environments and the target end-usesmay change
over time, in a predictable or unpredictable manner. Yield is the
result from integrating numerous traits including various yield
components, agronomic traits, disease resistances, and tolerance
to various abiotic stresses characteristic of the target region.
Consequently, yield in different regions may mean different ways
of packaging these traits and underlying gene alleles. Likewise,
quality is a collective term of many parameters for a specific
end-use. Thus, dealing with many traits simultaneously is an
essential task of cultivar development, although most breeding-
related publications deal with only a single trait, typically yield.
The relation between yield and other traits is analogous to that
between the skin and the hair of a fur or that between the
trunk and the branches of a tree; other traits gain importance
only when attached to (i.e., combined with) high yield (Yan
and Frégeau-Reid, 2008; Yan et al., 2019a). Plant breeding is
a mature discipline of applied sciences, with well-developed
concepts and procedures. Nevertheless, a systematic combing
and narration of the numerous, sometimes confusing, concepts
and procedures should help both new and experienced breeders
in their work toward developing superior cultivars. The concepts
and procedures in plant breeding are indeedmuch easier to tackle
for a single trait. So, much of the discussion will be on a single
trait while keep in mind that multi-trait selection is essential to
cultivar development, which is discussed in the last section. In
addition, genomic selection (Goddard and Hayes, 2007; Heffner
et al., 2009; Jannink et al., 2010) has become a growing point
or integral part in most plant breeding programs. Its role will
be briefly mentioned when the various concepts and procedures
are discussed.

THE COMPLETE BREEDER’S EQUATION

The cultivar development process includes two stages: the
development of a promising breeding population and
the identification of the best progeny out of it. Breeding
success can be measured by the following equation, referred
to as the Complete Breeder’s Equation (modified from
Yan et al., 2019b),

B = (µ + ihσG)/(YC
)

, (1)

in comparison with the well-known Breeder’s Equation of
Eberhart (1970),

1G = ihσG/Y. (2)

Here B stands for breeding success per unit time and cost and
1G stands for selection gain over the population mean per unit
time, for a trait of interest (typically yield). µ is the mean of
the breeding population, σG is the square root of the genotypic
variance of the population, i is the selection intensity in the
unit of σG, h is the square root of achieved heritability (h2 or
H), Y is the length of the breeding cycle in years, and C is the
operation cost per year. µ , σG and h are to be estimated from
environments representing the target region. A target region may
consist of multiple mega-environments, as will be discussed later.
For the time being the target region is assumed to be a single
mega-environment. A mega-environment is defined as a group
of environments that share the same best cultivar(s) (Gauch and
Zobel, 1997; Yan et al., 2000).

Relative to Equation 2, Equation 1 emphasizes the importance
of population mean in cultivar development and serves as a
reminder that any selection progress is on the basis of the
population mean. The inclusion of C emphasizes that cultivar
development is an enterprise that must consider the cost for the
achieved genetic gain.

Cultivar development consists of two stages: population
development and progeny selection. Practical breeders would
agree that developing a promising breeding population, i.e.,
making a promising cross or crosses, is the crucial first step
toward cultivar development. A promising breeding population
is the basis for any meaningful selection effort. This point may
be implied in Eberhart (1970) and by later researchers (e.g.,
Cobb et al., 2019; Rutkoski, 2019) when discussing the Breeder’s
Equation but its importance to cultivar development can never
be overemphasized, thus implicitly indicated in Equation 1. The
potential of a breeding population for cultivar development,
shorted as population potential (P), depends on both the
population mean (µ) and the population variability (σG):

P =
√

µσG. (3)

Apparently, if there is no genetic variability, there would be no
selection progress; if the population mean is low, it is unlikely
to lead to any superior cultivars regardless of selection strategies.
Practical plant breeders are well aware of the importance of
the population mean. They cross best with best and look for
recombinants better than both parents (Duvick, 1996). A high µ

is usually achieved by using currently the most popular, usually
the highest yielding, cultivars as parent(s), while a high level
of σG is achieved by choosing parents that are different and
complementary in yield components, agronomic traits, disease
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resistances, and quality traits, and by use of a large enough
breeding population. Crossing an adapted local cultivar with a
geographically distant cultivar with desired traits led to some of
the most important wheat cultivars in China (Zhao et al., 1981).
In the era of genomic selection, µ and σG and therefore P can
be predicted for any pair or set of potential parents for a trait
of interest if reliable genomic models are available (Wang et al.,
2018).

Usually, the genetic variability in a breeding population is
created by crossing different parents, but it can also be created
through induced mutations by treating a superior cultivar with
γ radiation, chemical mutagen treatment, transposons, genetic
transformation, or gene editing (e.g., van Harten, 1998; Kharkwal
et al., 2004; Shu et al., 2012).

To maximize µσG may suggest that µ and σG are equally
important. In cultivar development, however, µ may be more
important than σG although both are essential. The use of
backcross, recurrent selection, and crosses between closely
related breeding lines (e.g., Rasmusson and Phillips, 1997) are
examples to ensure a high µ at the expense of σG. On the
contrary, wide crosses (e.g., Baum et al., 1992) can bring much
variability to the population at the expense of reduced population
mean. Wide crosses are essential to introduce novel genes and
traits from wild species (e.g., Ma et al., 2018; numerous research
done worldwide for various crops), which are crucial to long-
term crop improvement; however, they are unlikely to directly
lead to superior cultivars.

SELECTION GAIN, SELECTION
EFFICIENCY, SELECTION INTENSITY,
CULLING RATE, AND HERITABILITY

Equation 2 or the second part Equation 1 consists of factors
determining the selection gain and is known as the Breeder’s
Equation. It may be more accurately referred as the breeder’s
equation for progeny selection. Here σG is fixed for a given
breeding population, i is a parameter artificially set, and h is
the square root of achieved heritability. In fact, while i is the
artificially set selection intensity, ih is the realized selection
intensity. Cobb et al. (2019) discussed approaches to improving
breeding efficiency in the framework of Equation 2, with the
emphasis on reducing Y . Rutkoski (2019) reviewed the basis and
approaches to achieve genetic gain.

Equation 1 can be better understood from Figure 1. Assume
that the breeding population is normally distributed with a mean
µ and a variability σG. The X-axis is the range of the phenotypic
values and the Y-axis is the frequency density. The area under the
curve is unity (1 or 100%).With a selection intensity ih, genotypes
to be culled lie on the left side of the vertical line defined by
x = µ + ihσG, and genotypes to be retained lie on the right
side of the line. The area α is the proportion of the population
to be retained and 1 − α is proportion to be culled. α is also
the probability for ihσG < 0, while 1 − α is the probability for
ihσG > 0. In other words, α is the probability for a genotype
with a phenotypic value of µ + ihσG to be no better than the
population mean.

FIGURE 1 | A chart of normal distribution to show the relationships among

various parameters in the Complete Breeder’s Equation. µ is the mean of the

breeding population; σG is the square root of the genotypic variance of the

population; i is the artificially set selection intensity in the unit of σG; h is the

square root of achieved heritability (h2 or H); α is the portion of the population

to be selected; it is also the probability that the best genotypes are not

included in the selected portion.

An extended interpretation is that α is the risk that the
best genotype in the population is not retained at the selection
intensity ih. Apparently, the risk is reduced as ih is increased
while h is the only objective variable. If h = 0, then ih = 0, and
α = 50%. As h approaches unity, α approaches 0. This provides
a clue for the choice of i. According to the normal distribution
table, if α is set to 0.0001, then z = ih = 3.7. Therefore, it
is rational to set i = 3.7 at α = 0.0001. The relationships
between heritability, ih, and α at i = 3.7 for some selected
heritability values are listed in Table 1, assuming a population
size of n = 10, 000.

If α is interpreted as the percentage of the population that
must be retained to ensure that the best genotype(s) is included,
then the number of genotypes must be selected, N, will be:

N = nα, (4)

where n is the effective population size, i.e., the number of unique
genotypes in the breeding population. The inverse of N may be
defined as the rate of selection success (Yan et al., 2019b):

S = 1/N. (5)

For example, for n = 10, 000, H = 0.9, and i = 3.7, we
have α = 0.02% and N = 2 (Table 1). That is, for a population
of 10,000 unique genotypes, an achieved heritability of 0.9 would
guarantee that the best genotype is between the top two. A
smaller N means less time (in years) and cost that are needed to
single out the best genotype. In the extreme case, if a selection
method (genomic prediction or any other approach) is accurate
enough to identify the best genotype (i.e., N = 1) out of a
breeding population, then all the time and cost associated with
subsequent testing would be saved. In contrast, in the Ottawa oat
breeding program, it takes about seven years of visual selection
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TABLE 1 | The realized selection intensity (z = ih), the proportion of the population to be retained (α), and the number of genotypes to be retained (N) at different levels of

heritability (H or h2) assuming a population of n = 10, 000 and a selection intensity of i=3.7.

H = h2 h z = 3.7h (1-α) α (%) N (n = 10,000) Corresponding breeding stages in Yan et al. (2019b)

0.0 0.00 0.00 0.5000 50.00 5000

0.1 0.32 1.17 0.8790 12.10 1210 Stage 3.1 (yr1)

0.2 0.45 1.65 0.9505 4.95 495

0.3 0.55 2.03 0.9788 2.12 212 Stage 3.2 (yr2)

0.4 0.63 2.34 0.9904 0.96 96

0.5 0.71 2.62 0.9959 0.41 41 Stage 4.1 (yr3)

0.6 0.77 2.87 0.9980 0.21 21 Stage 4.2 (yr4)

0.7 0.84 3.10 0.9990 0.10 10 State 4.3 (yr5)

0.8 0.89 3.31 0.9995 0.05 5 Stage 4.4 (yr6)

0.9 0.95 3.51 0.9998 0.02 2 Stage 4.5 (yr7)

1.0 1.00 3.70 0.9999 0.01 1 Cultivar release

and yield trials to identify the best genotypes out of a breeding
population (Yan et al., 2019b; last column of Table 1, this paper).
Each year ∼10,000 F2 derived breeding lines are planted in a
hill nursery and 1,000 are visually selected in the field and the
seed lab. Assuming that the best genotype is included in these
selected lines, the rate of selection success for this stage (the “Hill
Nursery” stage or Stage 3.1) is ∼1/1000, roughly corresponding

to assuming an H = 0.1 (Table 1). The 1,000 selected lines are
then planted in yield plots and ∼200 lines are visually selected

(the “Observation Plot” stage or Stage 3.2). The accumulative
rate of selection success for these two years of visual selection
is, therefore, ∼1/200, corresponding to H = 0.3 (Table 1). It

takes four to five additional years of multi-location test to single
out the best few genotypes as potential new cultivars (Stages 4.1

to 4.5 in Table 1). Experience indicates that the top genotypes

at the Stage 4.3 are usually the ones to be released as cultivars;

this corresponds to H = 0.7 (Table 1). Trials in Stages 4.4

and 4.5 (years 2 and 3 of the Registration Test) are conducted
mainly to verify the results and to obtain data required for official
variety registration.

Genomic selection applied at the Hill Nursery stage (Stage
3.1) is expected to dramatically improve the rate of selection
success so as to reduce the number of years spent in visual
selection and yield trials (Y , Equations 1 and 2). A minimum
requirement for a viable genomic selection procedure is to
improve the selection efficiency to an extent that covers
the extra cost spent in genotyping, phenotyping, and model
development. Alternatively, genomic selection is justified if it
can identify the best genotypes that may be discarded by the
breeder’s eye.

The parameter i should be set according to the population
size such that α = 1/n. This reflects the idea that a larger
population allows a higher selection intensity at the same level
of heritability and that the top genotype is the best genotype
(N = 1) when h = 1. According to the normal distribution
table, i should be set at 2.05, 2.33, 3.00, and 3.71 when
n = 50, 100, 1,000, and 10,000, respectively. The relationship
among heritability, selection intensity, and probability of false
culling (α) is displayed in Figure 2. Incidentally, Singh and

FIGURE 2 | The relationship between heritability (H or h2) and probability of

false culling (α) at four levels of selection intensity (i). It is suggested that the

probability of false culling that can be tolerated be set according to the

population size (n) such that α = 1/n; i can then be determined by α by

consulting the normal distribution table. The vertical line of H = 0.75 indicates

the target heritability to be achieved for reliable selection.

Chaudhary (1977) suggested setting i = 2.063 at α = 0.05, in line
with this idea.

Alternatively, the achieved heritability may be used as
the culling rate when the population is small; the number
of genotypes that must be retained can then be roughly
estimated by:

N = n
(

1− h2
)

. (6)

When h2 = 0, no genotype would be discarded because the
selection is completely unreliable; and when h2 = 1, all but
the top performing genotype can be discarded because any
observed difference is genetic and heritable. For example, if n
= 40 and h2 = 0.95, then 95% or 38 of the 40 entries can be
discarded and the top two performing genotypes can be selected
or recommended.
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To summarize, for a given breeding population and a given
target environment, the allowable culling rate, the allowable
selection intensity, the achievable rate of selection success,
and the expected selection gain are all determined solely by
the achieved heritability, in a curvilinear fashion (Figure 2).
Therefore, heritability is the single most important concept in
progeny selection.

HERITABILITY UNDER THE
MULTI-LOCATION, MULTI-YEAR
FRAMEWORK

Cultivars are developed to adapt to a specific target region, i.e., to
the environments that may be encountered across locations and
years in a target region. Therefore, the heritability discussed so
far must be defined in the multi-location, multi-year framework
(Comstock and Moll, 1963; DeLacy et al., 1996; Atlin et al.,
2000). According to the general linear model, a phenotype, i.e.,
an observed value, is a mixed effect of environmental main
effect (E), genotypic main effect (G), genotype by environment
interaction (GE), and experimental error (ε), where E is the
sum of location main effect (L), year main effect (Y), and their
interaction (LY). Assuming orthogonal experimental design i.e.,
the same set of genotypes are tested at the same set of locations
each year with the same number of replicates, the phenotypic

variance is σ 2
P = σ 2

G + σ 2
GL
l

+ σ 2
GY
y + σ 2

GLY
ly

+ σ 2
ε

lyr
. The entry-mean

heritability, i.e., the proportion of phenotypic variance that can
be explained by the genetic variance at the entry mean level, is
estimated by (Fehr, 1991; DeLacy et al., 1996):

Hrly =
σ 2
G

σ 2
P

=
σ 2
G

σ 2
G + σ 2

GL
l

+ σ 2
GY
y + σ 2

GLY
ly

+ σ 2
ε

rly

, (7)

where Hrly stands for heritability across l locations in y years

with r replicates; σ 2
GL, σ 2

GY , and σ 2
GLY are the variances for

the genotype by location interaction (GL), genotype by year
interaction (GY), and genotype by location by year interaction
(GLY), respectively; and σ 2

ε is the variance for experimental error.
When trials are not conducted orthogonally regarding

genotypes, location, years, or replicates, which is usually the case,
each trial (location-year combination) may be considered as an
environment, and the heritability can be estimated by

Hrly =
σ 2
G

σ 2
G + σ 2

GE
∑y

i=1 li
+ σ 2

ε
∑y

i=1

∑li
j=1 rij

, (8)

where σ 2
GE is the variance for genotype by environment

interaction. For convenience, Equation 7 will be used in
further discussions. Restricted maximum likelihood (REML)
is the preferred method for estimating the various variances,
particularly when the data are unbalanced (e.g., Gilmour et al.,
1995). REML is implemented in all software packages with a
mixed model procedure.

Heritability for a single trial can be estimated by

Hr =
σ 2
G

σ 2
G + σ 2

ε

r

, (9)

However, Hr can be used to assess the data quality of a trial but
not for making final selections. For making section decisions,
Equation 7a below should be used instead:

Hrly =
σ 2
G

σ 2
G + σ 2

GL
1 + σ 2

GY
1 + σ 2

GLY
1 + σ 2

ε

r

. [7a]

That is, although the interaction terms cannot be estimated from
a single trial, they must be factored in when making selection
decisions. It can be seen that Hr is an inflated estimation of Hrly

for a trial because the denominator in Equation 7a should be
much larger than that in Equation 9.

Likewise, a heritability can be estimated for multi-location
trials conducted in a year,

Hrl =
σ 2
G

σ 2
G + σ 2

GL
l

+ σ 2
ε

rl

, (10)

but it is not to be used to make final selection decisions. Instead,
equation 7b should be used,

Hrly =
σ 2
G

σ 2
G + σ 2

GL
l

+ σ 2
GY
1 + σ 2

GLY
l

+ σ 2
ε

rl

. [7b]

Hrl is an inflated estimation of Hrly for a single-year test. The
definition of heritability in the form of Equation 7 is the only
valid definition to be used in Equation 1; Figure 1, and Table 1,
with h =

√

Hrly, even though Hrly cannot be directly estimated
in some stages of the breeding cycle. It should be noted that
the definition of heritability is in line with the concept of mixed
models. It consists of variances for G, GE (= GL + GY +
GLY), and experimental error but excludes that for E (= L +
Y + LY), implying a mixed model. It implies that G, GE, and
experimental error are considered as random effects but E as fixed
effects (DeLacy et al., 1996). Researchers are often puzzled on
which effects should be treated as random and which fixed when
analyzing multi-environment trials data using mixed models
(Piepho et al., 2003); for the purpose of genotype evaluation,
this is clear from the definition of heritability. The definition
of heritability is also consistent with the concept of GGE biplot
analysis, which excludes E and focuses on G and GE for cultivar
and test environment evaluation (Yan et al., 2000; Yan and Kang,
2002; Yan and Tinker, 2006; Yan, 2014).

All efforts made to improve selection efficiency are also
efforts to improve the heritability as defined in Equation 7
or Equation 8. Put it differently, all possible approaches to
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improve selection efficiency reside in the definition of heritability.
These include approaches to deal with GE and approaches to
minimize experimental error. Dealing with GE include two
steps: (1) identifying and utilizing repeatable GE, a process
often referred to as mega-environment analysis (Yan, 2014, 2015,
2016, 2019), and (2) accommodating unrepeatable GE through
adequate testing (Yan et al., 2015; Yan, 2016, 2021). Dealing with
experimental error includes adequate replication (Yan et al., 2015;
Yan, 2021) and spatial variation adjustment (Cullis and Gleeson,
1991; Gilmour et al., 1997; Cullis et al., 1998; Burgueño et al.,
2000; Qiao et al., 2000; Yang et al., 2004; Yan, 2014).

MEGA-ENVIRONMENT ANALYSIS AND
UTILIZATION OF REPEATABLE GE

Repeatable GE vs. Unrepeatable GE
Mega-environment analysis is analysis of the G+GE patterns
aiming at dividing a target region into meaningful subregions
or mega-environments (subregions and mega-environments are
used interchangeably in this article). Among the components
of GE, GY and GLY are obviously unrepeatable because it is
impossible to predict the environments of next year. It is possible,
though, that some of the GL is repeatable as the soil and
daylength at a location are fixed. Some management factors such
as irrigation, fertilizer application, and fungicide application may
also lead to repeatable GE (Cooper et al., 2021), which are lumped
as “common management practices in the target region or mage-
environment” for simplicity. Assuming that the test locations can
be divided into two or more groups (subregions), the variance
for GL will be divided into variance for genotype by subregion
interaction (σ 2

GS), which is the repeatable part, and genotype
by location interaction within subregions (σ 2

GL(s)
), which is the

unrepeatable part, of GL (Atlin et al., 2000; Yan, 2016):

σ 2
GL = σ 2

GS + σ 2
GL(s) (11)

and the number of test locations l will also be divided among
the subregions:

l =
s

∑

k=1

lk (12)

where lk is the number of test locations within subregion k.
Subdivision of the target region into subregions will improve the
overall heritability if the genotype by subregion interaction is
sufficiently large, because the genotype by subregion interaction
is converted into genotypic main effect within subregions when
genotype evaluation is conducted by subregion:

H
′

rly =
σ 2
G + σ 2

GS

(σ 2
G + σ 2

GS)+
σ 2
GL(S)

l
+ σ 2

GY
y + σ 2

GLY
ly

+ σ2ε
rly

(13)

where H
′

rly
is the entry-mean heritability when genotype

evaluation is conducted by subregion. On the other hand,

dividing a region into subregions may lead to reduced heritability
within a subregion due to the smaller number of test locations
(Equation 12). Thus, Atlin et al. (2000, 2011) warned that
subdivision of a target region should be avoided if genotype by
subregion interaction is small relative to G. They used the genetic
correlation between divided subregions and the undivided whole
region (rG) as a measure to decide whether the target region
should be divided, which is defined as:

rG =

√

σ 2
G

σ 2
G + σ 2

GS

(14)

They suggested that subdivision should be avoided if rG is
high, although an explicit criterion was not given. In fact, the
correlation between candidate subregions should be a more
meaningful measure.

Nevertheless, if a subregion is found to be distinct from
other subregions, it should be treated as such; if a subregion
is economically important, it is justifiable to increase the
number of test locations within it to achieve a sufficiently
high heritability or selection reliability. The merit of dividing a
target region into meaningful subregions is to allow selection
and deployment of subregion-specific cultivars to achieve a
higher genetic gain within each subregion and thereby the
whole region. Annicchiarico (2021) presented a recent example
that selection for mega-environment specific cultivars increased
genetic gains, in addition to a good review on the subject
matter. An essential condition for dividing a target region into
subregions is the presence of substantial crossover genotype by
subregion interactions (discussed below).

How to Reveal Repeatable GE
To investigate whether heritability can be improved by dividing
a target region into subregions, the prerequisite is a good
hypothesis on how to divide the target region. Various
approaches have been used in dividing a jurisdictional region
into agroclimatic regions as reviewed in Yan et al. (2011). A poor
hypothesis will lead to the false conclusion that the target region
cannot be divided and thereby miss the opportunity to utilize
the repeatable GE. For example, Atlin et al. (2000) hypothesized
that western Canada (including Alberta, Saskatchewan, and
Manitoba) and eastern Canada (including Ontario, Quebec, and
Maritime provinces) were two barley mega-environments and
rejected the hypothesis. Based on the same dataset, however, Yan
and Tinker (2005) showed two clear mega-environments, with
locations in Alberta and Saskatchewan as one mega-environment
and locations in Manitoba and the eastern Canadian provinces
as the other. For another example, in analyzing the data of a
set of maize hybrids tested at 24 sites in six African countries
in 2009, Atlin et al. (2011) hypothesized that each country was
a mega-environment and concluded that there was no mega-
environment differentiation. However, a country is a political
entity rather than an ecoclimatic region, so the hypothesis per
se is questionable. A good hypothesis on mega-environment
differentiation must be based on the G+GE patterns. Two
methods have been developed to reveal repeatable GE patterns:
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GGE + GGL biplot analysis (Yan, 2014, 2015, 2016) and LG
(location-grouping) biplot analysis (Yan, 2019; Yan et al., 2019b,
2021).

GGE + GGL Biplot Analysis
As the definition of heritability in Equation 7 or Equation
8 suggested, data from multi-location, multi-year trials are
required to conduct GGE + GGL biplot analysis, where GGE
stands for G + GE (meaning fitting G + GE by principal
components), and GGL for G + GL. In variety trials, usually the
same set of genotypes are tested at all locations in a year but
different sets of genotypes are tested in different years, because
poor genotypes are dropped and new genotypes added each
year. Consequently, multi-location, multi-year data are typically
unbalanced. Nevertheless, usually a sizable number of common
genotypes are tested in two or more consecutive years; this allows
missing values in the genotype by environment two-way table to
be imputed based on certain procedures (e.g., Yan, 2013). Data
from such trials can be investigated using a GGE + GGL biplot
(Yan, 2014, 2015, 2016), as shown in the example below.

The yield data from the 2013 to 2019 Quebec Oat Registration
and Recommendation trials are used here as an example (data
available from the author upon request). Each year 41 to 46
registered oat cultivars or breeding lines were tested at eight to
10 locations. The locations represent three ecoclimatic zones of
Quebec (Yan et al., 2011; Yan, 2015). Zone 1 was represented
by NDHY1 (St Hyacinthus) and STHU1 (St. Huber), Zone 2 by
PRIN2 (Princeville), PINT2 (Pintendre), STAU2 (St. Augusta),
and STET2 (St. Etienne), and Zone 3 by NORM3 (Normandin),
HEBE3 (Hebertville), CAUS3 (Causapscal), and LAPO3 (La
Pocatière); the number at the end of each location code indicates
the zone it belongs. In addition, the trials were also conducted at
OTT (Ottawa in Ontario), which is geographically close to Zone
1 of Quebec. A total of 118 genotypes and 67 trials (location by
year combinations) were involved in these seven years, forming
a 118-genotype by 67-trial two-way table, with 63% missing
values. The first step of the analysis was to generate a GGE
biplot containing the 118 genotypes and the 67 trials (Figure 3).
The GGE biplot was constructed by the first two principal
components from subjecting the trial-standardized genotype by

FIGURE 3 | GGE biplot to show the relative yield of 116 oat genotypes in 67 trials from the 2013–2019 Quebec provincial oat trials. The genotypes are displayed in

blue and the trials in red. Each trial is displayed as a location-year combination. The Quebec locations are: NDHY1 (St Hyacinthus) and STHU1 (St. Huber) in Zone 1,

PINT2 (Pintendre), PRIN2 (Princeville), STAU2 (St. Augusta), and STET2 (St. Etienne) in Zone 2, and NORM3 (Normandin), CAUS3 (Causapscal), HEBE3 (Hebertville),

and LAPO3 (La Pocatière) in Zone 3. OTT (Ottawa) is a location in Ontario. PC1 and PC2 are the first two principal components from singular value decomposition of

the trial-standardized yield data (“Scaling = 1,” “Centering = 2”), with the singular values fully partitioned to the trial scores (“SVP = 2”) for proper visualization of the

correlations among trials.
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trial two-way table to singular value decomposition, after proper
singular value partition (Yan, 2002). The most obvious message
from this fairly crowed biplot is that the trials placed on the
upper portion of the biplot and those on the lower portion were
negatively correlated, as indicated by the obtuse angles between
them. This indicates existence of strong GE. The second step is
to summarize the trials conducted at a location by a location
marker, the placement of which is determined by the mean
coordination of the trials (Figure 4). For example, the placement
of the location LAPO3 (in red) was determined by the seven
trials conducted at LAPO3, namely LAPO3_13, LAPO3_14,
LAPO3_15, LAPO3_16, LAPO3_17, LAPO3_18, and LAPO3_19
(in black). The genotypes are represented by “+” for clarity. The
biplot in Figure 4 is both a GGE biplot and a GGL biplot, thus
the term GGE+GGL biplot.

In Figure 4 the 10 locations are clearly separated into two
groups: group 1 include locations NORM3, HEBE3, CAUS3,
PRIN2, PINT2, and STAU2 on the upper quadrant, and group
2 include locations NDHY1, STHU1, LAPO3, and OTT on

the lower quadrant. Thereby the GE is divided into repeatable
GE and unrepeatable GE. The genotype by location group
interaction, i.e., the difference in the placement between the
two location groups, is the repeatable GE; the genotype by trial
interaction within groups, i.e., the variation in the placement
among the trials within each of the two location groups, is the
unrepeatable GE. The two location groups suggests two different
mega-environments. All locations in mega-environment 1
(ME1) belong to Zone 2 or Zone 3 of Quebec; locations in mega-
environment 2 (ME2) consists of two Zone 1 locations, a Zone 3
location, and OTT. Thus, the mega-environment differentiation
was largely, but not completely, consistent with the
agroclimatic zones.

LG Biplot Analysis
Presented in Figure 5 is the LG biplot based on the same dataset
that was used to generate the GGE + GGL biplot (Figure 4).
The steps to construct the LG biplot follows. First, a genetic
correlation matrix among locations was calculated for each year.

FIGURE 4 | GGE + GGL biplot modified from Figure 3 to show two groups of locations or oat mega-environments (ME) in Quebec. Mega-environment 1 (ME1)

consists of Zone 2 and Zone 3 locations PINT2, PRIN2, STAU2, STET2, CAUS3, HEBE3, and NORM3, and mega-environment 2 (ME2) includes locations NDHY1,

STHU1, LAPO3, and OTT. The trials conducted at each location are presented as a cluster of trials, with the location name placed at the center and the individual

trials, indicated by the last two digits of the year, placed around it, and the trials are connected to the center with straight lines. Two locations are regarded as

belonging to the same mega-environment if their clusters overlap; they are regarded as belonging to different mega-environments otherwise. The variation in the

placement of the locations between mega-environments represents repeatable GE and the variation in the placement of the trials within mega-environments

represents unrepeatable GE. The genotypes are displayed as “+” in blue for clarity.
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FIGURE 5 | LG biplot to show two oat mega-environments in Quebec. PC1

and PC2 are the first two principal components from singular value

decomposition of the location by trial two-way table of correlations, without

centering (“Centering = 0”) or scaling (“Scaling = 0”). The LG biplot is a

location by trial biplot, with the locations presented in blue and the trials in red.

The trials conducted at each location are presented as a cluster of trials, with

the location name placed at the center and the individual trials, indicated by

the last two digits of the year, placed around it. The trials are connected to the

location with straight lines. Two locations are regarded as belonging to the

same mega-environment (ME) if their clusters overlap; they are regarded as

belonging to different mega-environments otherwise. The same two MEs (ME1

and ME2) shown in Figure 4 are shown in this LG biplot. The variation in the

placement of the locations between mega-environments represents

repeatable GE and the variation in the placement of the trials within

mega-environments represents unrepeatable GE.

Second, the yearly correlation matrices were stacked to form a
location by trial two-way table of correlations, each trial being
a location-year combination. Third, the location by trial table
was submitted to singular value decomposition, without entering
or scaling (“centering = 0, scaling = 0”). Fourth, the resulting
first two principal components were used to construct a location
by trial biplot. Fifth, as in the GGE + GGL biplot, the trials
conducted at a location in different years were summarized by a
location marker defined by the mean coordination of the trials.
Finally, the trials at a location are displayed as a cluster, with
the location marker as the center and the trials in different
years as members; the trials and the location are connected
with straight lines. If the clusters of two locations overlap,

they are regarded as belonging to the same mega-environment;
if they do not overlap, they are considered as belonging to
different mega-environments. In the LG biplot, the variation
among trials and locations within a mega-environment, i.e.,
the variation among trials at overlapping locations, represents
unrepeatable GE; the variation between two mega-environments
represents repeatable GE. It can be seen that the same two
mega-environments shown in the GGE+GGL biplot (Figure 4)
are clearly separated in the LG biplot (Figure 5); thus, the two
approaches are functionally equivalent or similar. Importantly,
the LG biplot has the advantage that it does not require any
common genotypes to be tested in different years. Therefore,
it can be used to reveal repeatable GE and delineating mega-
environments using multi-year trial data in which completely
different sets of genotypes are tested in different years (Yan et al.,
2021).

A general comment on the use of biplots follows. A 2-D biplot
is usually used for data visualization for convenience and on the
understanding that the most important patterns in the data are
captured by the first two principal components. However, there
may be cases where some important patterns exist in higher order
principal components. This is usually indicated by the presence
of vectors that are obviously shorter than others. When this is
the case, variation not displayed in the biplot can be explored by
biplots displaying a subset of the data. A recent example can be
found in Yan et al. (2021).

Utilization of Repeatable GE by Selecting
Mega-Environment Specific Cultivars
The approach to utilizing repeatable GE is to select separately
for each mega-environment, preferably using the mean vs.
stability view of the GGE biplot (Figure 6). The red line with
a single arrow passes through the biplot origin and the mean
environment (which has mean coordination of all environments)
and is referred to as the average environment axis (AEA) or
GGE-Mean axis; the arrow points to higher mean yield. The
blue line with arrows at both ends points to greater instability
in either direction; it can be referred as the GGE-stability axis
(Yan, 2001; Yan and Kang, 2002; Yan and Tinker, 2006). This is
an extended application of the inner-product property of a biplot
(Gabriel, 1971). Thus, the three highest yielding cultivars in ME1
across 2013–2019 were Akina>Nicolas>Nice (Figure 6A), and
those for ME2 were Nicolas > Akina > Richmond (Figure 6B).
Therefore, the repeatable GE can be utilized by recommending
different sets of cultivars in ME1 and ME2.

The similarity/dissimilarity in cultivar ranking between ME1
and ME2, along with that in the undivided whole region, are
further presented in the which-won-where view of the GGE
biplot in Figure 7. The polygon or which-won-where view of
the GGE biplot (Yan et al., 2000) is also an extended application
of the inner-product property of a biplot (Gabriel, 1971). The
polygon was formed by connecting the genotypes that are placed
away from the biplot origin in all directions. For each polygon
side a line perpendicular to it was drawn from the biplot origin.
These lines dissect the biplot into sectors. For each sector, the
genotype at the vertex is the nominal highest yielder for the
environments or mega-environments fell in it. In this case, Akina
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FIGURE 6 | GGE biplots to show the mean yield and instability of 13 oat cultivars in (A) mega-environment 1 (ME1) and (B) mega-environment 2 (ME2), across

2013–2019. See Figure 4 and associated text for the definitions of ME1 and ME2. PC1 and PC2 are the first two principal components from singular value

decomposition of trial-standardized yield data (“Centering = 2,” “Scaling = 1”). The singular values were entirely partitioned to the genotypic scores (“SVP = 1”) for

proper genotype evaluation. The trials are represented by “o” for clarity. The red line with a single arrow is the average environment axis (AEA), the arrow pointing to

higher mean yield. The blue line with arrows on both ends is the instability axis, the arrows pointing to greater instability in either direction.

was the highest yielder in ME1 while Nicolas was the highest
yielder in ME2 and “ALL,” indicating crossover genotype by
subregion interaction. On the other hand, ME1 was placed close
to the radiate line labeled “1,” which separates ME1 from ME2;
this means that Akina had higher yield than Nicolas in ME1
but not by much. The two mega-environments were moderately
correlated (r = 0.652; Figure 7) and shared Akina and Nicolas
as the top two yielding cultivars, though in a reversed order.
Thus, the two oat mega-environments in Quebec were classified
as sub mega-environments within one of the three major oat
mega-environments in Canada (Yan et al., 2021).

ACCOMMODATION OF UNREPEATABLE
GE THROUGH ADEQUATE TESTING

The solution to accommodating unrepeatable GE is to test
adequately within a target mega-environment, i.e., to test at
a sufficiently large number of locations in a sufficiently large
number of years with sufficiently large number of replicates
so as to sufficiently sample the environments and to achieve a
sufficiently high heritability as defined in Equation 7 or Equation
8. It is obvious that more replicates, more locations, and more
years will lead to a higher heritability. The solution to identify
widely adapted cultivars (within a meg-environment) is to
“test widely” (Troyer, 1996). However, each additional replicate,
location, or year involves considerable cost. As a compromise
between selection reliability and test cost, the concept “adequate
test” was proposed and defined (Yan et al., 2015; Yan, 2016).

The terms “adequate testing,” “optimum testing,” and “minimum
testing” are used interchangeably in this article to indicate that
a minimum level of testing in terms of years, locations, and
replicates must be conducted to achieve sufficiently reliable
selection. When tested inadequately, the selection intensity
must be lowered according to the achieved heritability, to
prevent superior genotypes from being mistakenly discarded.
The “optimum” level of replicates, locations, or years was defined
as one to achieve a heritability of 0.75, based on examining a
heritability response curve (Yan et al., 2015; Figure 2 this article).
However, Cobb et al. (2019) suggested that a heritability of 0.5
was sufficient for reliable selection of the best 10 individuals to be
used to start the next breeding cycle.

Optimum Number of Years
Based on Equation 7 and assuming neglectable GL and
experimental error or unlimited number of locations and
replicates, the minimum number of years required to achieve a
heritability of 0.75 can be estimated by

ymin = max[1, 3(
σ 2
GY

σ 2
G

)] (15)

For example, based on the yield data from three-year spans of
Quebec provincial oat tests, the estimated minimum number
of years to achieve a heritability of 0.75 was from 1.2 to 6.3
and averaged 3.2 (Table 2), while the officially required number
of years to register a cultivar is three. So, the requirement for
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FIGURE 7 | The which-won-where view of the GGE biplot to show the relative yield of 13 oat cultivars in mega-environment 1 (ME1), mega-environment 2 (ME2), and

the undivided Quebec oat growing regions (ALL). The polygon was formed by connecting the genotypes that are placed away from the biplot origin in all directions.

For each polygon side a line perpendicular to it was drawn from the biplot origin. These lines dissect the biplot into sectors. For each sector, the genotype at the

vertex is the nominal highest yielder for the environments or mega-environments fell in it. In this case, Akina was the highest yielder in ME1 while Nicolas was the

highest yielder in both ME2 and “ALL.”

three years of testing was adequate and appropriate in general.
More years of testing were required for the 2016–2018 and the
2018–2020 (Table 2) spans due to reduced genetic variability and
therefore achieved heritability.

Optimum Number of Locations
Yearly multi-location trials are usually balanced as the same set
of genotypes are tested at all locations. Therefore, it is convenient
to use yearly data to estimate the number of locations required
for adequate testing. Assuming an infinite number of replicates
or negligible experimental error, the heritability within a year
(Equation 10) can be reduced to

Hrl,max =
σ 2
G

σ 2
G + σ 2

GL
l

(16)

whereHrl,max is the maximum achievable within-year heritability
(Yan, 2021). Based on this equation, the minimum number
of locations required to achieve a heritability of 0.75 can be
estimated by (Yan et al., 2015; Yan, 2021)

lmin = max[1, 3(
σ 2
GL

σ 2
G

)] (17)

The minimum number of locations so estimated is expected
to differ with the year. Therefore, it should be estimated for
a number of years to achieve a good understanding on the
required number of test locations for a target mega-environment
(Yan et al., 2015). Presented in Table 2 are the estimated yearly
minimum number of locations based on the 2013–2019 Quebec
provincial oat trial data for the two mega-environments as
well as for the undivided Quebec oat growing region. When
estimated for the undivided region, the mean number was 8.4,
in comparison to the actual number of locations of 9.6. Thus, the
number of locations used was more than adequate in most years.

Interestingly, when estimated for each mega-environment,
the estimated minimum number was ∼one location more than
that actually used (7.3 vs. 5.9 for ME1 and 4.6 vs. 3.7 for
ME2). Thus, even though there is a clear mega-environment
differentiation, the trials in one mega-environment still provided
useful information to selection for the other, because the two
mega-environments were positively correlated (Figure 7). In
contrast, the southern vs. northern oat mega-environments in
eastern Canada were uncorrelated, and as a result, the total
required number of locations was smaller when estimated
separately for each mega-environment than that when estimated
for the undivided region (Yan et al., 2015). In a Canada-wide
study, the southern vs. northern mega-environments in eastern
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TABLE 2 | The minimum number of years (ymin) required to achieve a heritability (H) of 0.75 estimated on the yield data of three-year spans from the Quebec provincial oat

registration trials.

Three-year span No. of genotypes σ
2
G σ

2
GY σ

2
GLY σ

2
P H ymin

2013–2015 26 0.63 0.25 0.50 0.71 0.88 1.2

2014–2016 23 0.70 0.34 0.58 0.81 0.86 1.5

2015–2017 27 0.48 0.53 0.73 0.65 0.73 3.3

2016–2018 27 0.30 0.64 0.80 0.52 0.59 6.3

2017–2019 27 0.52 0.49 0.70 0.68 0.76 2.8

2019–2020 30 0.29 0.42 0.64 0.43 0.68 4.3

Mean 3.2

TABLE 3 | The estimated minimum number of locations in comparison to that actually used for the Quebec provincial oat trials.

The whole region ME1a ME2a ME1 + ME2

Year Actual Estimated Actual Estimated Actual Estimated Estimatedb

2013 8 11.2 5 5.7 3 4.6 10.3

2014 9 6.8 6 4.6 3 2.4 7.0

2015 10 6.8 6 9.6 4 1.5 11.1

2016 10 5.9 6 3.4 4 8.3 11.7

2017 10 8.2 6 8.8 4 1.4 10.2

2018 10 7.4 6 6.9 4 6.1 13.0

2019 10 12.5 6 12.4 4 7.7 20.1

Mean 9.6 8.4 5.9 7.3 3.7 4.6 11.9

aSee Figure 4 or Figure 5 for the definition of mega-environment 1 (ME1) and mega-environment 2 (ME2); bThe estimated number for ME1 +ME2 is the sum of the estimated number

for ME1 and that for ME2.

Canada were designated as ME1 and ME2, respectively, while
the twoQuebecmage-environments in Figure 4 or Figure 5were
designated asME2a andME2b (Yan et al., 2021). Given the results
in Table 3, cultivar recommendation for each of the two Quebec
mega-environments should consider performance both within
the mega-environment and across the whole region, as shown in
Figure 7.

Optimum Number of Replicates
Several classic studies investigated the optimum numbers of
years, seasons, test locations, and replicates for the allocation
of a fixed number of plots or fund according to the relative
magnitudes of various variance components (Sprague and
Federer, 1951; Hanson and Brim, 1963; Wricke andWeber, 1986;
Swallow and Wehner, 1989). Conclusions from this “resource
allocation” approach inevitably led to the suggestion to maximize
the number of locations and/or years and to minimize the
number of replicates (i.e., to use a single replicate) (McCann
et al., 2012; Schmidt et al., 2018). However, this conclusion
applies only when it is possible to increase the number of
locations and/or years. For a breeding program or a regional crop
recommendation committee, yield trials are conducted every year
at a more or less fixed number of locations. Researchers need to
know the minimum or optimum number of replicates under this
scenario. To answer this question, an equation was derived from

the definition of heritability on the single trial basis, in the form
of Equations 15 and 17 (Yan et al., 2015). More recently, another
equation was developed for estimating the optimum number of
replicates in a multi-location context (Yan, 2021):

rl = max[1, 3

(

σ 2
ε

σ 2
G

) (

Hrl, max

l

)

] (18)

where rl is the optimum number of replicates given the number
of locations l, and Hrl, max is as defined in Equation 16. Equation
18 shows that the required number of replicates is determined by

the relative magnitude of experimental error variance,
σ 2

ε

σ 2
G

, and

is modified by the number of locations in a non-linear manner,

because an increase in the number of locations also improves

Hrl, max (Equation 16). Applying this equation to the yield data

of some oat trials conducted across Canada, it was determined

that two replicates would suffice to identify the highest yielding

oat cultivars (Yan, 2021). Applying this equation to the 2015–
2019 yield data of barley, oat, spring wheat, and winter wheat
trials conducted in Ontario also led to the conclusion that two

replicates would suffice (Yan et al., 2000). It is recommended

that similar analysis be conducted for other crops and regions.
Regional variety trials are usually conducted with three or four

replicates. Reducing the number of replicates to two, if supported,
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can substantially reduce the evaluation cost or allow more
genotypes to be evaluated with the same cost.

Importantly, reliable estimation of the various variances are
a prerequisite to accurate estimation of the optimum number of
years, optimum number of locations, and optimum number of
replicates for adequate testing (Arief et al., 2015).

Adjust for Spatial Variation
The discussions on optimum testing and optimum replication
above assumed that the field and management are uniform
within each trial. However, spatial variation within trials has been
recognized as a major source of experimental error. Traditionally
it is controlled by blocking, i.e., dividing a replicate into blocks,
such as the so-called incomplete blocks design (R.A. Fisher, from
Street, 1990). This is referred to “dealing with spatial variation by
design.” In the last three decades, spatial analysis and adjustment
becomes an increasingly popular research subject and a routine
practice in the analysis of crop variety trials. The use of spatial
analysis makes experimental design more flexible.

In a variety evaluation trial, g genotypes are usually allocated
into a rectangular field of b rows (blocks) and c column (plots).
The observed value in a plot, Yij, is, therefore, combined effects of
the row, the column, the genotype, and the experimental error:

Yij = µ + rowi + colj + gk+εij, (19)

µ being the mean of the trial. The effects of rows and columns
can be modeled by various spatial analysis techniques (Cullis and
Gleeson, 1991; Gilmour et al., 1997; Cullis et al., 1998; Burgueño
et al., 2000; Qiao et al., 2000; Yang et al., 2004). Spatial analysis
is a within-trial analysis so it is also referred to “local analysis”
(Kempton et al., 1994; Grondona et al., 1996). A straightforward
and intuitive approach is to use a polynomial regression to model
any trend across the plots within each block (Yan, 2014), which
is routinely used in the Ottawa oat breeding program. The order
of the polynomial regression can be set according to the block
size of the block. An iterative procedure can be used to adjust
the Yij values so as to minimize the experimental error. Adjusted
genotypic values are then calculated from the adjusted plot values
at the final iteration. Spatial adjustment based on polynomial
regression usually leads to reduced trial coefficient of variation
and increased trial heritability (Yan, 2014). The plot values, and
thus the genotypic values, will not be altered if no spatial trend is
found. An example of spatial trend adjustment for a block of 36
plots in an oat trial conducted in Ontario in 2019 is presented
in Figure 8. This procedure can also be used to fill missing
plot values.

Genomic Selection: To Replace
Multi-Environment Evaluation With
Multi-Model Prediction
Some researchers believe that genomic selection will eventually
replace breeders’ visual selection and even alter the role of
yield trials in making selection and recommendation decisions
(Heffner et al., 2009; Jannink et al., 2010). Indeed, encouraging
results of genomic selection have started to emerge as advanced
genotyping, bioinformatics, and genomic modeling procedures

have become available (e.g., Tinker et al., 2016; Bekele et al.,
2018). The confidence on genomic selection comes from two
aspects. First, genome-wide markers can sufficiently capture the
genotypic variability of a relevant breeding population tested in
a relevant environment (i.e., a trial at a location in a year). That
is, the genetic variability of the breeding population observed in
the trial can be accurately captured by a genomic model. Second,
genomic models can be developed for a large number of trials
that sufficiently to fully represent the target mega-environment.
Assumingmmodels have been developed fromm trials covering
multiple locations and years, then predicting the performance
of a breeding population using m models would be equivalent
to testing the breeding population in m trials. This represents a
great advantage of genomic selection over conventional selection
because in a practical breeding program, it is impossible to test a
large breeding population in replicated trials, let alone at multiple
locations in multiple years. Assuming a genotype by model two-
way table of predictions for a breeding population, the achievable
heritability with genomic selection, Hm, can be estimated by

Hm =
σ 2
G

σ 2
G +

σ 2
GM
m

(20)

where σ 2
GM is the variance for genotype by model interaction. As

m increases, the achievable heritability with genomic selection
and hence selection reliability can become much higher than
what is achievable by conventional selection (Yan et al., 2019b).
From this viewpoint, genomic selection is potentially a much
more effective approach to dealing with unrepeatable GE.

On the other hand, yield trials aiming at genomic model
development are large and expensive; it remains a question as
to when model development can be considered complete and
such trials are no longer needed (Yan et al., 2019b). If the year
factor is completely random, then genomic model development
may be considered complete at some point when sufficient data
(years and locations) have been obtained. However, if there is a
trend in climatic change, data from recent years would be more
relevant for predicting future-year performances, and the trials
must continue. It is also a question whether routinely conducted
yield trials with a limited number of entries can be used to
replace the large-scale trials for genomic model development or
refinement, although it was so suggested (Heffner et al., 2009).
Cost efficiency will continue to be a determinant factor to the
application of genomic selection in plant breeding.

SELECTING FOR MEAN PERFORMANCE
AND SELECTING AGAINST INSTABILITY

Superior cultivars must demonstrate high and stable yield cross
the target mega-environment. Cultivars yielded well in some
environments but poorly in others, relative to other cultivars, are
said to be unstable and undesirable as they can cause unbearable
losses to growers. Various stability indices have been developed
in order to quantify instability. Lin et al. (1986) reviewed nine
stability or instability parameters and classified them into four
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groups. More parameters were proposed after that (e.g., Huehn,
1990). The initial idea of stability analysis was to select against
unstable genotypes rather than to select for stable genotypes.
This idea was somehow twisted to treating a stability index as
a positive trait, which caused confusion among researchers. It
would be less confusing to call these stability indices as instability
indices. The large number of indices are also confusing to
practical breeders. The purpose of this section is to reinstall the
original idea of stability analysis and to clear up the confusions.

First, a stability index should reflect a genotype’s susceptibility
to GE, because it is GE that caused its unstable performance
across environments. The numerous stability parameters may
be classified according to its composition in terms of G, E,
and GE. In the classification of Lin et al. (1986), stability
indices in Group B involve GE only; they are suitable instability
parameters. Indices in group A involve both E and GE; they are
not suitable parameters because GE is confounded with E. The
linear regression coefficient b against E in Eberhart and Russell
(1966) (Group C) is a genotype’s response to E; its usefulness
depends on how well the linear regression fits the data (Lin
et al., 1986), which is usually poor (Zobel et al., 1988). When
the fit is sufficiently good, b = 1 means stable, b > 1
means good performance in high-yielding environments, and
b < 1 means good performance in low-yielding environments
(Ceccarelli, 1989). Deviation from the linear regression (Group
D) is merely a measure of the goodness of fit of the linear
regression and is not a useful measure of stability.

Second, stability analysis is a concept of selection within a
mega-environment. So, it should be conducted within mega-
environments rather than across mega-environments, unless

the mega-environments are highly correlated. In such cases,
the mega-environments should be merged and treated as a
single mega-environment.

Third, a stability index representing GE must be used in
combination with the mean performance (G), thus the term
G+GE or GGE (Yan et al., 2000, 2007). High stability (less GE)
is desirable only when combined with high mean performance.
High stability is least desirable when combined with low mean
yield because it means consistently low yielding (Yan et al., 2007).
Parameters or procedures combining both G and GE include the
superiority index of Lin and Binns (1988, 1994) and the stability
index of Kang (1993). In addition, several graphical methods also
combines G and GE. These include the AMMI1 biplot (Zobel
et al., 1988) and the AEA view of the GGE biplot (Figure 6;
Yan, 2001). Zobel et al. (1988) showed that AMMI analysis was
superior to the joint regression of Eberhart and Russell (1966)
and Alwala et al. (2010) concluded GGE biplot analysis to be a
better platform than the joint regression. There is some debate
on whether AMMI or GGE is a better approach in analyzing yield
trial data (Gauch, 2006; Yan et al., 2007; Gauch et al., 2008; Yan,
2011). Many studies compared AMMI and GGE biplot analysis
and concluded that GGE biplot analysis was superior (e.g., Badu-
Apraku et al., 2012; Amira et al., 2013; Hoyos-Villegas et al., 2016;
Oliveira et al., 2019). AMMI analysis was advocated as a means
to separate “signal” (true GE) from “noise” (error) in GE and a
means to use the GE-signal to adjust the genotypic means (Gauch
and Zobel, 1988; Gauch, 2013). AMMI1 or AMMI2 (i.e., main
effects plus the first one or two principal components of GE) is
often found the best AMMI model, and the AMMI1 biplot is
often used as a visual tool for genotype evaluation (Gauch, 2006).

FIGURE 8 | An example to show the plot values within a block as adjusted according to the field trend modeled by a polynomial regression.
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Unfortunately, the AMMI1 biplot is not an effective graphical
presentation of G + GE because G is often masked by the
much larger E in it, because its G and GE axes are in different
units, and because it does not have the inner-product property
of a true biplot (Yan, 2011). Similar to AMMI analysis, GGE
biplot analysis can also be viewed as a means to separate signal
from noise. In a two-dimensional GGE biplot such as that in
Figure 6, the first two principal components are considered as
signals and the higher dimensions as noise. This GGE biplot
displays the amount of G+GE in between that of AMMI1
and AMMI2; so, it should be close to the best model in most
cases. In the AEA view of the GGE biplot (Figure 6), the GGE-
mean axis represents the GE-adjusted genotypic means, while
the GGE-stability axis represents the genotypes’ susceptibility to
unrepeatable GE (instability). Both axes pass through the biplot
origin and are perpendicular to each other, meaning that they are
independent parameters. Thus, the AEA view of the GGE biplot is
a convenient tool for visual analysis of genotype-by-environment
data and for visual selection for mean performance and
against instability.

Finally, “test adequately” is much more important than any
stability analysis. When tested adequately, genotypes with high
mean performance should also be genotypes that are relatively
stable, because it is not possible for a highly unstable genotype to
achieve very high mean performance. However, when not tested
adequately, as indicated by a low heritability across locations
and years, neither the estimated mean nor the estimated stability
is reliable, and a low selection intensity or culling rate must
be applied. In such cases, selection should be mainly on mean
performance, rather than on stability. Instead, effort should be
made to understand the causes of the instability for a high-
yielding genotype. For example, severe lodgingmay be the reason
for its low yield in a severely lodged trial. If severe lodging rarely
occurs in the target region, then the genotype is expected to
show good mean yield and stability when tested adequately; if
lodging is a common yield-limiting factor in the target region,
then the genotype is expected to have low mean yield when
tested adequately.

SELECTION FOR MULTIPLE TRAITS

While geneticists can focus on a single trait and ignore others,
breeders must deal with multiple traits. In addition to high
yield, which is always the most important breeding objective,
a cultivar must meet a minimum requirement for each and
every trait that is important to the relevant growers, processors,
and end-users. In fact, the greatest challenge in plant breeding
is to combine all desirable traits in a single genotype, because
key breeding objectives are often adversely associated, due to
either genetic linkage or pleiotropy (e.g., Tanksley, 1983; Yan and
Wallace, 1995; Asins, 2002; Cooper et al., 2009; Hao et al., 2014;
Crespo-Herrera et al., 2016). Strategies for multi-trait selection
include independent culling and index selection (Simmonds
and Smartt, 1999; Yan and Frégeau-Reid, 2008; Yan, 2014).
Independent culling is to cull all genotypes that fail to meet the

minimum requirement for any breeding objective, because such
genotypes will not be accepted as cultivars. Index selection is to
rank genotypes based on an index that is composed to reflect
the perceived economic values of the genotypes. Independent
culling can be implemented at all stages in the breeding cycle
but it is more important in the early breeding stages when
multi-location yield trials are not possible. Index selection
is mainly implemented in the yield trial stage, at which all
important traits can be determined. For cultivar development-
oriented genomic selection, both independent culling and index
selection should be conducted.

Independent Culling
Independent culling is important to ensure that selected high
yielding genotypes will be accepted by growers and end-users; it is
also an effective approach to reduce the breeding population size
safely and speedily. Assume that t is the number of independently
inherited breeding objectives, each with a heritability h2

k
, with

k = 1, . . . t. If h2
k
is used as the culling rate for trait k, then

the joint culling rate would be:

h2t = 1−
t

∏

1

(1− h2k) (21)

and the number of genotypes must be retained to ensure that the
best genotype is selected is:

N = n(1− h2t ), or (22)

N/n = 1− h2t ,

N/n being the proportion of the breeding population that must
be retained. For example, assume the culling rate for each of
five traits is 0.3, then, according to Equation 21, the joint culling
rate would be 0.83, and the retaining rate would be 0.17 or 17%.
Therefore, a large proportion of the population can be safely
culled by independent culling if multiple traits are considered,
even though the heritability or culling rate is low for each trait.
This explains the effectiveness of visual selection (culling) by
an experienced breeder, who can visualize and select on many
traits simultaneously.

Genomic selection for oat yield in eastern Canada proves
effective (Bekele, Tinker, and Yan, unpublished results); it should
also be effective for other traits that are more simply inherited
than yield. Therefore, independent culling based on genomic
models is expected to be more accurate than visual selection
by even the most experienced breeder. If the traits under
consideration are positively correlated, the overall culling rate
would be lower than when they are independent; the overall
culling rate would be higher if the traits are negatively correlated,
which is often the case. The overall culling rate can be much
higher if some of the target traits are simply inherited and less
affected by GE and experimental error, for example, oil content
in oat (Hizbai et al., 2012; Yan et al., 2016).
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GYT (Genotype by Yield∗trait) Analysis
A large portion of the genotypes that survived independent
culling should be qualified as a cultivar if they are sufficiently high
yielding. Therefore, the focus of selection following independent
culling should be on yield although other target traits should
also be considered. Selection based on a selection index is the
common method for selection on multiple breeding objectives
(note but: not any traits). Here, the GYT (genotype by yield∗trait)
analysis (Yan and Frégeau-Reid, 2018; Yan et al., 2019a) is
recommended over the traditional index selection.

In traditional index selection, the superiority of genotype i, Pi,
is calculated as

Pi = w0yi +
t

∑

j=1

(wjxij), (23)

where t is the number of breeding objectives that are to be
selected in addition to yield, yi is the standardized yield for
genotype i, w0 is the weight assigned for yield, wj is the weight
assigned for trait j, and xij is the standardized value of genotype i
for trait j.

In the GYT approach, the superiority of a genotype may be
presented as

Pi = yi

t
∑

j=1

(wjxij). (24)

The selection index for a genotype is usually presented as the
standardized value of Pi. The difference between the traditional
selection index (Equation 23) and the GYT approach (Equation
24) follows. In traditional index selection, the weight for a trait
other than yield is a fixed value for all genotypes, while in the
GYT approach it varies with the yield level of each genotype.
In traditional index selection the emphasis is on the levels of

the traits; in the GYT approach it is on the levels of yield-
trait combinations. The GYT concept is better in reflecting
the economic value of a trait. For example, superior lodging
resistance (or high protein) has little value in a low yielding
genotype but it is highly valuable in a high yielding genotype.
Consequently, based on the traditional selection index, a low
yielding genotype may be ranked the highest due to its superior
levels in other traits; such genotypes will not be accepted as
cultivars by growers, however (Yan et al., 2019a). This problem
can be prevented with the GYT approach, as the genotypes
ranked highest will always have high yield levels.

Another advantage of the GYT approach is that the superiority
and the trait profiles of the genotypes can be visually investigated
in a biplot, referred to as GYT biplot (Yan and Frégeau-Reid,
2018; Yan et al., 2019a,b). As an example, the mean values of
the 13 oat cultivars for eight important traits from the 2013–

2019 Quebec oat trials are presented in Table 4, ranked by
their GYT index. The steps to construct a GYT biplot follow.

First, standardize the genotype by trait table for each trait.
Second, multiply yield with each trait to form a genotype
by yield-trait combination two-way table. Third, subject the

weighted genotype by yield-trait two-way able to singular value
decomposition to obtain the principal components (PC). Fourth,
multiply each of the yield-trait combination PC scores with
the assigned weight. And finally, construct a biplot using the
genotypic and trait combination scores of the first two principal
components based on the yield-trait combination preserving
singular value partition. Note that for milling oat a higher
value is more desirable for all the traits listed in Table 4 except
lodging and oil content. For these two traits a smaller value
is more desirable; they were therefore given a weight of “−1.”
The information contained in Table 4 can be visualized in a
GYT biplot (Figure 9). The biplot clearly shows the rank of
the genotypes in their GYT index, i.e., Nicolas > Akina >

Kara > Richmond >. . .> Avatar. Thus, Nicolas and Akina

TABLE 4 | Mean trait values of 13 oat cultivars tested in the 2013–2019 Quebec provincial oat trials and their GYT (Genotype by Yield*Trait) index.

Genotype Traits and weights

Yield (kg ha−1) β-glucan(%) Groat (%) Oil(%) Protein (%) Test weight

(kg hl−1)

1000-Kernel

Weight (g)

Lodging(0–9) GYT Index

1 1 −1 1 1 1 −1

Nicolas 5,948 4.3 73.9 6.1 13.2 53.4 35.8 2.9 1.3

Akina 5,853 4.8 72.7 7.1 13.4 52.3 38.0 2.4 1.2

Kara 5,680 4.7 71.9 8.0 14.0 54.0 38.1 2.0 0.9

Richmond 5,631 3.8 71.7 5.4 12.6 55.1 39.2 3.0 0.5

Canmore 5,447 4.6 71.6 7.6 14.2 54.9 39.5 3.3 0.3

Nice 5,559 4.4 72.6 8.4 13.5 53.3 38.5 3.9 0.1

Orrin 5,468 4.4 71.1 6.9 13.3 54.2 38.5 3.5 0.1

Adele 5,354 4.6 75.3 8.4 12.8 54.0 38.7 4.5 −0.3

Dieter 5,183 4.1 73.4 5.7 14.0 54.3 38.9 3.6 −0.4

Synextra 5,171 4.3 72.0 7.3 14.9 56.0 37.3 3.7 −0.4

Vitality 5,049 4.0 75.7 7.9 13.6 53.9 40.3 3.9 −0.9

Hidalgo 5,158 4.7 74.3 8.0 13.1 53.1 34.5 4.0 −0.9

Avatar 5,060 3.9 74.8 7.9 12.2 56.6 36.2 4.9 −1.3
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FIGURE 9 | GYT biplot to display the yield-trait combinations of 13 oat cultivars tested in the 2013–2019 Quebec provincial oat trials. The biplot was based on

singular value decomposition of yield-trait combination standardized data (“Centering = 2, Scaling = 1”). The red line with a single arrow is the average yield-trait axis,

the arrow pointing to higher GYT index. The blue line with arrows on both ends indicate contrasting trait profiles of the genotypes. For example, it showed Richmond

to be strong yield-oil combination but weak in yield-β-glucan combination, while Kara had the opposite trait profile to that of Richmond.

should be selected and recommended to the Quebec oat growers
without hesitation; they are in fact the most important two
cultivars in Quebec. The biplot also shows the trait profiles of
the genotypes. For example, it shows that Richmond is superior
in having a low oil content but inferior in having a low β-
glucan content. In fact, all cultivars placed above the red line
(the GYT index axis) have relatively low oil and low β-glucan
whereas the opposite is true for cultivars placed below the GYT
index axis. “Y∗Oil(−1)” and “Y∗Lodging(−1)” indicate that oil
content and lodging score were given a weight of “−1” because
high oil content and high lodging are undesirable for milling
oat (Figure 9).

The GYT biplot approach has been adopted in multi-trait
selection for various crops (Boureima and Abdoua, 2019; de
Oliveira et al., 2019; Hamid et al., 2019; Mohammadi, 2019;
Gouveia et al., 2020; Mahmoud et al., 2020; Merrick et al., 2020;
Badu-Apraku et al., 2021; Sofi et al., 2021; Tsenov et al., 2021; Xu
et al., 2021).

CONCLUSIONS

Plant breeding plays a key role in meeting the increasing need
for food, fiber, health, and comfort and in combating the
adverse impacts of the changing climate. Plant breeding consists

of two stages: breeding population development and progeny
selection. For cultivar development, population development
is more important than progeny selection but has largely
been neglected in the literature. Hence, a “complete breeder’s
equation” was presented, which contains three key parameters:
the populationmean, the population variability, and the achieved

heritability under the multi-location, multi-year framework.
The value of a breeding population is measured by both

the population mean and the population variability. For
progeny selection, the key is to improve the heritability, i.e.,
selection reliability. Three aspects were identified to improve

heritability: utilizing repeatable GE through mega-environment
analysis, accommodating unrepeatable GE by adequate testing,
and adequate replication and adjusting for spatial variation.

Procedures for mega-environment analysis include GGE +
GGL biplot analysis and LG biplot analysis. Adequate testing
includes estimation and use of an optimum number of
years, locations, and replicates. Cultivar evaluation within a
mega-environment should select for mean performance and
select against instability, with GGE biplot analysis being a
preferred graphical method. A stability index is meaningful
only when combined with high mean yield. Adequate testing
is more important than any stability analysis. Last but not
least, cultivar development must consider multiple traits; both
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independent culling and index selection are essential. GYT
biplot analysis is a preferred method for index selection. In
addition, genomic selection is an alternative and potentially
more effective approach in all stages and aspects of cultivar
development if reliable models are developed and if it can be
done cost-efficiently.
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