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Tricin (3',5'-dimethoxyflavone) is a specialized metabolite which not only confers stress 
tolerance and involves in defense responses in plants but also represents a promising 
nutraceutical. Tricin-type metabolites are widely present as soluble tricin O-glycosides 
and tricin-oligolignols in all grass species examined, but only show patchy occurrences 
in unrelated lineages in dicots. More strikingly, tricin is a lignin monomer in grasses and 
several other angiosperm species, representing one of the “non-monolignol” lignin 
monomers identified in nature. The unique biological functions of tricin especially as a 
lignin monomer have driven the identification and characterization of tricin biosynthetic 
enzymes in the past decade. This review summarizes the current understanding of tricin 
biosynthetic pathway in grasses and tricin-accumulating dicots. The characterized and 
potential enzymes involved in tricin biosynthesis are highlighted along with discussion on 
the debatable and uncharacterized steps. Finally, current developments of bioengineering 
on manipulating tricin biosynthesis toward the generation of functional food as well as 
modifications of lignin for improving biorefinery applications are summarized.

Keywords: tricin, biosynthetic pathways, flavonoids, lignin, bioengineering, biorefinery

INTRODUCTION

Flavonoids are a large group of plant-specialized metabolites that are ubiquitous in vascular 
plants and are also found in non-vascular plant lineages except hornworts (Yonekura-Sakakibara 
et al., 2019). Structurally, they are featured by a basic diphenylpropane (C6–C3–C6) backbone, 
which is usually made up of two benzene rings (A-ring and B-ring) and a middle pyrone 
ring (C-ring; Alseekh et  al., 2020). Flavonoids are assigned to different classes according to 
the oxidation states in the C-rings (Schijlen et  al., 2004). At least nine major classes, namely, 
flavanones, flavones, dihydroflavonols, flavonols, flavan-3-ols, leucoanthocyanidins, 
anthocyanidins, isoflavones, and aurones, have been described (Figure  1A; Yang et  al., 2018; 
Nakayama et  al., 2019).

In grasses, flavones are the predominant class of flavonoids accumulated in stems and leaves 
(Harborne and Hall, 1964; Tohge et  al., 2017), whereas 3-hydroxylated flavonoids, such as 
flavonols and anthocyanidins, which are widely distributed in other plant lineages, are usually 
not accumulated due to the absence of flavanone 3-hydroxylase (F3H) expression (Deboo et al., 1995; 
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Shih et al., 2008; Wang et al., 2020b). Grass flavones are present 
in the forms of flavone O-conjugates and flavone C-glycosides 
(Figure  1B; Harborne and Hall, 1964; Brazier-Hicks et  al., 
2009; Dong et  al., 2014). Flavone O-conjugates harbor sugar 
or monolignol moieties linked to flavone aglycones through 
glycosidic or ether bonds (Li et  al., 2016; Lan et  al., 2019). 
3',5'-Substituted flavone O-conjugates, in particular, tricin 
O-conjugates, are widely present (Dong et  al., 2014; Li et  al., 
2016). On the other hand, flavone C-glycosides contain sugar 
moieties directly attached to C6 and/or C8 of the flavone 
backbones via C–C linkages (Besson et  al., 1985; Cummins 
et al., 2006; Brazier-Hicks et al., 2009). Such flavone C-glycosides 
could be  3'-substituted but are rarely 3',5'-substituted (Dong 
et  al., 2014). Unlike flavone O-conjugates, flavone C-glycosides 
are resistant to enzymatic or acid hydrolysis.

The flavone tricin has been drawing attention due to its 
widespread and abundant occurrence as soluble O-conjugates 
in grasses, and more remarkably, its unique incorporation 
in lignin polymers in cell walls of grasses and some other 
species. Soluble tricin was first isolated as an aglycone from 
leaves of a rust-resistant wheat cultivar (Triticum dicoccum; 
cv. Khapli; Anderson and Perkin, 1931). It was later found 
to be widely distributed in grasses and could also be detected 
in other monocots (e.g., Cyperaceae members), some dicots 
(e.g., Medicago species), and lycophytes (e.g., Lycopodium 
japonicum) [reviewed by Wollenweber and Dörr, (2008); Zhou 
and Ibrahim, (2010); Li et  al. (2016)]. Soluble tricin-type 
metabolites usually exist as aglycone or tricin O-glycosides 
(predominately 5-O-, 7-O- and/or 4'-O-glucosides), tricin-
oligolignols (predominately 4'-O-oligolignols and their 
derivatives), and their O-glycosides [reviewed by Zhou and 
Ibrahim, (2010); Li et  al. (2016); Lan et  al., (2019)]. Tricin 
C-glycosides (Theodor et  al., 1981; Markham et  al., 1987; 
Peterson and Rieseberg, 1987; Sun et al., 2013b), tricin sulfate, 
and tricin O-glycoside-O-sulfates (Harborne, 1975; Harborne 
and Williams, 1976; Barron et  al., 1988; Galland et  al., 2014) 
were also identified. In plants, soluble tricin-type metabolites 

were reported to function as defensive compounds against 
fungal pathogens (Kong et  al., 2010), weeds (Kong et  al., 
2004), and insects (Adjei-Afriyie et al., 2000; Bing et al., 2007).

In the last decade, tricin was discovered to be  incorporated 
into lignins (del Río et al., 2012), which are abundant structural 
polymers deposited together with cellulose and hemicelluloses 
in secondary cell walls of vascular plants. Tricin-integrated 
lignin (tricin-lignin; predominately 4'-O-conjugated to the 
β-position of the monolignol-derived phenylpropane units) is 
extensively distributed in grasses and is also detected in some 
non-grass monocot species [e.g., coconut (Cocos nucifera), 
curaua (Ananas erectifolius), and vanilla (Vanilla planifolia and 
V. phalaenopsis)] and the dicot alfalfa (Medicago sativa; Mao 
et  al., 2013; You et  al., 2013; Lan et  al., 2016b). Tricin is the 
first lignin monomer known to be  generated outside the 
monolignol biosynthetic pathways (del Río et  al., 2012, 2020; 
Lan et  al., 2015, 2016a, 2019). Currently, the physiological 
functions of tricin in cell wall lignins remain largely unknown.

To humans, tricin is considered promising nutraceutical due 
to its anticancer (Hudson et  al., 2000; Yue et  al., 2020), 
antioxidant (Ajitha et  al., 2012), anti-inflammatory (Shalini 
et  al., 2012, 2016), antiviral (Yazawa et  al., 2010; Akuzawa 
et  al., 2011), and antihistaminic activities [reviewed by Zhou 
and Ibrahim, (2010); Lan et al. (2016, 2019); Jiang et al. (2020)]. 
The potential use of tricin as a chemopreventive agent was 
notably well investigated (Hudson et  al., 2000; Cai et  al., 2004, 
2005, 2009; Oyama et  al., 2009; Chung et  al., 2018; Tanaka 
et  al., 2019; Wu and Tian, 2019; Yue et  al., 2020). Tricin has 
been shown to be  suitable for clinical development because 
of its excellent pharmacological efficacy (Cai et  al., 2009) and 
low toxicity (Verschoyle et  al., 2006), whereas its low 
bioavailability could be  overcome by prodrug modifications 
(Ninomiya et  al., 2011).

Elucidating the biosynthetic pathway for tricin is the 
pre-requisite for genetic manipulation of soluble and lignin-
integrated tricin in different biotechnological applications. Here, 
we  delineate the current understandings on tricin biosynthesis 

A B

FIGURE 1 | Flavonoids in plants. (A) Structures of the major classes of flavonoids in plants. (B) Structures of tricin and flavone C-glycosides as the major flavone-
derived metabolites in grasses. A-, B- and C-rings as well as the numbering system used for flavonoid molecules are indicated. R, R1, R2: H, OH, or OCH3.
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and discuss the present development and future prospects 
regarding the biotechnological aspects of engineering the 
biosynthetic pathway.

TRICIN BIOSYNTHESIS

Early Biosynthesis – The General 
Phenylpropanoid Pathway
Same as other flavonoids, tricin is a downstream metabolite 
of the general phenylpropanoid pathway (Figure  2) in which 
ʟ-phenylalanine is first deaminated into cinnamate by 
phenylalanine ammonia-lyase (PAL; Camm and Towers, 1973; 
Elkind et  al., 1990), followed by cinnamate 4-hydroxylase 
(C4H)-catalyzed para-hydroxylation of the aromatic ring to 
form p-coumarate (Russell and Conn, 1967; Russell, 1971; 
Schilmiller et  al., 2009). Afterward, 4-coumarate:coenzymeA 
ligase (4CL) catalyzes the conversion of p-coumarate into 
p-coumaroyl-CoA, which serves as the precursor for the 
biosynthesis of different specialized metabolites, including 
flavonoids and lignin (Gui et  al., 2011; Li et  al., 2015). It is 
long believed that certain 4CL isoforms are specific for flavonoid 
biosynthesis (Hu et  al., 1998; Ehlting et  al., 1999; Sun et  al., 
2013a; Li et  al., 2015).

An alternative pathway using ʟ-tyrosine as a substrate to 
produce phenylpropanoids is also present in grasses (Figure 2; 
Barros et  al., 2016). Bifunctional phenylalanine/tyrosine 
ammonia-lyases (PTAL) in maize and Brachypodium distachyon 
catalyze the deamination of ʟ-tyrosine to form p-coumarate, 
while at the same time, these enzymes also harbor PAL 

activities (Rosler et  al., 1997; Barros et  al., 2016). PALs and 
PTALs are highly conserved in grasses, suggesting the 
co-existence of two parallel pathways for phenylpropanoid 
production in Poaceae (Barros et al., 2016). In addition, results 
from feeding experiments using 13C-labelled ʟ-phenylalanine 
and ʟ-tyrosine in B. distachyon have suggested that PTAL is 
likely to be  associated with the generation of grass-specific 
cell-wall-bound p-coumarate units (Barros et  al., 2016). It is 
unknown whether tricin (soluble and lignin-bound) is derived 
from the PAL and/or PTAL pathway.

Early Biosynthesis – Flavonoid Skeleton 
Formation
The initial biosynthetic steps and enzymes for flavonoid 
skeleton formation are highly conserved in the plant kingdom. 
Chalcone synthase (CHS), a prototype in the type III polyketide 
synthase superfamily, catalyzes sequential condensation of 
three malonyl-CoAs with p-coumaroyl-CoA to form naringenin 
chalcone (Figure  2). Chalcone isomerase (CHI)-catalyzed or 
occasionally spontaneous isomerization further converts 
naringenin chalcone into naringenin (a flavanone), which is 
the first flavonoid structure formed in the biosynthetic pathway. 
Naringenin is the precursor for all other flavonoids, including 
tricin. It was shown that deficiency of CHSs in maize and 
rice resulted in depletion in the accumulation of soluble and/
or lignin-integrated tricin (Eloy et  al., 2017; Wang et  al., 
2020a). Although it was not examined previously, CHIs are 
expected to be  involved in tricin biosynthesis based on their 
conserved catalytic functions in the generation of all classes 
of flavonoids in plants.

FIGURE 2 | General phenylpropanoid pathway and early flavonoid biosynthetic pathway. PAL, ʟ-phenylalanine ammonia-lyase; PTAL, ʟ-phenylalanine/ʟ-tyrosine 
ammonia-lyase; C4H, cinnamate 4-hydroxylase; 4CL, 4-hydroxycinnamate:CoA ligase; CHS, chalcone synthase; and CHI, chalcone isomerase. In green: general 
phenylpropanoid pathway. In purple: flavonoid biosynthetic pathway. In blue: monolignol biosynthetic pathway.
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Early Speculation and Recent 
Demonstration of Separate Pathways for 
the Biosynthesis of Flavone O-Conjugates 
and Flavone C-Glycosides
Flavone O-conjugates and flavone C-glycosides are biosynthesized 
in separate pathways. Early radiotracer experiments on Lamnaceae 
plants revealed that 14C-labelled flavanone aglycones could 
be  simultaneously converted into flavone O-glycosides and 
C-glycosides (Wallace and Grisebach, 1973), whereas 14C-labelled 
flavone aglycones could only be  O-glycosylated but could not 
be  C-glycosylated (Wallace et  al., 1969). Accordingly, it was 
proposed that O-glycosylation occurs at the terminal step after 
the flavone aglycone is generated, whereas C-glycosylation takes 
place before flavone skeleton formation. Subsequently, crude 
enzyme extracts prepared from Fagopyrum esculentum cotyledons 
were shown to utilize 2-hydroxyflavanones, instead of flavanones 
or flavones, as substrates for C-glycosylation (Kerscher and 
Franz, 1987, 1988). These early speculations were substantiated 
by the characterization of flavone C-glycoside biosynthetic 
pathway in grasses a few decades later. To synthesize flavone 
C-glycosides, flavanones are first converted into 
2-hydroxyflavanones by flavanone 2-hydroxylases (F2H; 
Figure 3), which are cytochrome P450 (CYP) monooxygenases 
belonging to the subfamily CYP93G (Du et al., 2010; Morohashi 
et  al., 2012). Afterward, 2-hydroxyflavanones or their open 
ring isomers are C-glycosylated by C-glucosyltransferase, followed 
by dehydration to generate the flavone skeletons (Brazier-Hicks 
et  al., 2009; Du et  al., 2010; Ferreyra et  al., 2013). Meanwhile, 
it was demonstrated that a rice mutant deficient in OsF2H 
was depleted in the accumulation of various flavone C-glycosides, 
but the production of tricin O-conjugates was not affected 
(Du et al., 2010). Evidently, flavone O-conjugates are synthesized 
in a separate pathway independent from flavone C-glycosides.

Originally Proposed Tricin Biosynthetic 
Pathway
Structural changes required for converting naringenin into 
tricin involve desaturation of the C2–C3 bond in the C-ring 
to generate the flavone nucleus, 3'- and 5'-hydroxylations in 

the B-ring, and subsequently 3'- and 5'-O-methylations. Two 
different types of enzymes, flavone synthase I  (FNSI) and 
flavone synthase II (FNSII), were expected to convert flavanones 
into flavones by direct introduction of the C2〓C3 double 
bond (Figure  4). FNSIs are Fe2+- and 2-oxoglutarate-requiring 
soluble enzymes, whereas FNSIIs are CYP enzymes bound to 
endoplasmic reticulum membranes (Martens and Mithöfer, 
2005). Meanwhile, tricetin, a 3',5'-dihydroxylated flavone, was 
long proposed to be an intermediate along the tricin biosynthetic 
pathway (Cummins et  al., 2006; Zhou and Ibrahim, 2010; 
Galland et  al., 2014). Accordingly, sequential B-ring 
hydroxylations were expected to be  catalyzed by flavonoid 
3',5'-hydroxylases (F3'5'Hs). As all known F3'5'Hs accept different 
classes of flavonoids as substrates, 3',5'-hydroxylations might 
take place before and/or after flavone formation. Afterward, 
sequential 3',5'-O-methylations of tricetin presumably catalyzed 
by flavonoid O-methyltransferases would occur to produce 
tricin (Kim et  al., 2006; Lin et  al., 2006; Zhou et  al., 2006, 
2008, 2009). Collectively, the reaction steps for tricin biosynthesis 
were initially proposed to be: naringenin → apigenin → luteolin 
→ tricetin → selgin → tricin (Galland et  al., 2014) and/or 
naringenin → eriodictyol → dihydrotricetin → tricetin → selgin 
→ tricin (Figure  4; Cummins et  al., 2006; Zhou and 
Ibrahim, 2010).

Current Understanding on Tricin 
Biosynthesis in Grasses
Flavone Nucleus Formation
Using rice (Oryza sativa) as a model system, FNSII was identified 
to be  the primary enzyme generating the flavone nucleus for 
tricin biosynthesis in grasses (Figure  5; Lam et  al., 2014). 
Recombinant OsFNSII catalyzes direct conversions of flavanones, 
i.e., naringenin and eriodictyol, into apigenin and luteolin, 
respectively, in vitro (Brazier-Hicks and Edwards, 2013; Lam 
et  al., 2014). In addition, over-expression of OsFNSII in 
Arabidopsis resulted in the accumulation of flavones (apigenin, 
luteolin, and chrysoeriol) O-glycosides which are normally not 
present in wild-type plants (Lam et al., 2014). Further analyses 
of the rice OsFNSII knockout mutant revealed substantial 

FIGURE 3 | Flavone C-glycoside biosynthetic pathway. F2H, flavanone 2-hydroxylase; F3'H, flavonoid 3'-hydroxylase; FOMT, flavonoid O-methyltransferase; CGT, 
C-glycosyltransferase; DHT, dehydratase; and Glc, glucose. R: H, OH, or OCH3. In green: general phenylpropanoid pathway. In purple: flavonoid biosynthetic 
pathway.
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depletion of soluble tricin O-conjugates as well as tricin-lignin 
in cell walls, demonstrating the direct and predominant 
involvement of OsFNSII in the generation of both soluble and 
lignin-integrated tricin in rice (Lam et al., 2014, 2017). Moreover, 
the OsFNSII mutant accumulated soluble naringenin but not 
the other flavanones, e.g., eriodictyol (Lam et  al., 2014), and 
generated altered lignins incorporated with naringenin (Lam 
et  al., 2017), indicating that the in planta substrate of OsFNSII 
is primarily naringenin.

OsFNSII, or CYP93G1, is a P450 enzyme belonging to the 
same CYP93G subfamily as OsF2H, or CYP93G2. Using 
naringenin as a common substrate, OsFNSII and OsF2H 
are  the  branch-point enzymes for the biosynthesis of tricin 
O-conjugates and flavone C-glycosides, respectively (Figures 3, 5). 

Phylogenetic analysis revealed that OsFNSII and OsF2H form 
two separate clades, each containing highly conserved sequences 
from the grass family (Figure  6A; Lam et  al., 2017). Hence, 
sub-functionalization of CYP93G members probably preceded 
lineage divergence within Poaceae, resulting in the widespread 
distribution of the two classes of flavone-derived metabolites 
in grasses today. It is noteworthy that grass FNSIIs and F2Hs 
have a different phylogenetic origin from dicot FNSIIs and 
F2Hs, all of which exclusively belong to the CYP93B subfamily 
(Figure  6A; Kitada et  al., 2001; Martens and Mithöfer, 2005; 
Zhang et  al., 2007; Fliegmann et  al., 2010; Wu et  al., 2016; 
Zhao et al., 2016; Jiang et al., 2019). Noteworthily, grass species 
do not contain any CYP93B members and dicots do not have 
CYP93G members (Du et  al., 2016).

FIGURE 4 | Originally proposed tricin biosynthetic pathway. FNSI, flavone synthase I; FNSII, flavone synthase II; F3'H, flavonoid 3'-hydroxylase; F3'5'H, flavonoid 
3',5'-hydroxylase; and FOMT, flavonoid O-methyltransferase. In green: general phenylpropanoid pathway. In purple: flavonoid biosynthetic pathway. Dotted arrows: 
originally proposed tricin biosynthetic pathway.
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Functionally, redundant enzymes other than FNSII are likely 
to be  involved in tricin biosynthesis in grasses. For example, 
the rice OsFNSII mutant still accumulated soluble tricin and 
other flavones in anthers albeit at reduced levels compared 

with wild type (Wang et  al., 2020a), while it shows substantial 
depletion of soluble tricin O-conjugates and tricin-lignin in 
vegetative tissues (Lam et  al., 2014, 2017). In fact, two rice 
FNSIs were shown to catalyze the conversion of naringenin 

FIGURE 5 | Current understanding on tricin biosynthetic pathway in grasses. FNSII, flavone synthase II; A3'H/C5'H, apigenin 3'-hydroxylase/chrysoeriol 
5'-hydroxylase; F3'H, flavonoid 3'-hydroxylase; FOMT, flavonoid O-methyltransferase; COMT, caffeic acid O-methyltransferases; and CAldOMT, 
5-hydroxyconiferaldehyde O-methyltransferase. In green: general phenylpropanoid pathway. In purple: flavonoid biosynthetic pathways. Dotted arrows: originally 
proposed tricin biosynthetic pathway.
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into apigenin in vitro (Kim et  al., 2008; Lee et  al., 2008b). In 
addition, maize possesses an FNSI (ZmFNSI-1) which shows 
in vitro FNS activities and results in the accumulation of flavones 
when over-expressed in Arabidopsis (Ferreyra et  al., 2015; 
Righini  et  al., 2019).

B-Ring Hydroxylations
In the plant kingdom, 3',5'-substituted flavonoids are patchily 
distributed, because F3'5'Hs, the enzymes responsible for catalyzing 
5'-hydroxylation, are only present in isolated plant lineages 
(Tanaka and Brugliera, 2013). This is in contrast to the ubiquitous 
nature of flavonoid 3'-hydroxylases (F3'H; exclusively members 
of the CYP75B subfamily) that gives rise to the prevalence of 
3'-substituted flavonoids (Tanaka and Brugliera, 2013). There 
have been strong interests for the investigation of F3'5'Hs as 
they are the key enzymes for the generation of delphinidin-
derived anthocyanins, which confer blue or violet coloration 

in plant tissues, such as flowers and fruits (Tanaka and Brugliera, 
2013). For ornamental purposes, transgenic expression of foreign 
F3'5'Hs has been employed to engineer novel blue or violet 
color in roses (Rosa hybrida), chrysanthemums (chrysanthemum 
morifolium), and carnations (Dianthus caryophyllus), all of which 
naturally lack delphinidin-derived anthocyanins (Katsumoto 
et al., 2007; Brugliera et al., 2013; Noda et al., 2013; Tanaka and 
Brugliera, 2013).

The canonical F3'5'Hs are CYP enzymes belonging to the 
CYP75A subfamily (Tanaka and Brugliera, 2013). Apparently, 
CYP75A-encoding genes have been lost repeatedly or became 
non-functional in many lineages during evolution (Tanaka and 
Brugliera, 2013). In rice, the only CYP75A member (CYP75A11) 
did not show any F3'5'H functions in in vitro enzyme assays or 
in CYP75A11 over-expressing transgenic Arabidopsis plants (Lam 
et al., 2015). On the other hand, a rice CYP75B member (CYP75B4) 
solely contributes to the 5'-hydroxylation activity during tricin 
biosynthesis, as evidenced by in planta metabolite  analysis. 

A

C

B

FIGURE 6 | Phylogeny of tricin biosynthetic enzymes. Phylogenetic trees of (A) FNSIIs and F2Hs; (B) A3'H/C5'Hs, F3'Hs, and F3'5'Hs; and (C) COMT/CAldOMTs 
in grasses and dicots, constructed based on previously published studies (Lam et al., 2017, 2019b; Lui et al., 2020). The unrooted phylogenetic trees were built by 
neighbor-joining method using MEGAX (Kumar et al., 2018). Bootstrapping with 1,000 replicates was performed. Scale bar denotes 0.1 substitutions per site.
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For example, the CYP75B4 T-DNA knockout mutant is completely 
devoid of soluble selgin and tricin O-conjugates in vegetative 
tissues (Lam et  al., 2015) and tricin-lignin in cell walls (Lam 
et al., 2019a). In addition, transgenic Arabidopsis co-expressing 
CYP75B4 and OsFNSII accumulates O-conjugates of selgin and 
tricin (Lam et  al., 2015). Meanwhile, apigenin produced by 
OsFNSII using naringenin as a preferred in planta substrate 
was initially expected to undergo sequential B-ring hydroxylations 
to form tricetin as a tricin precursor. However, while CYP75B4 
3'-hydroxylates apigenin to luteolin, it fails to 5'-hydroxylate 
luteolin to tricetin (Lam et al., 2015). Instead, CYP75B4 catalyzes 
5'-hydroxylation of chrysoeriol to produce selgin (Lam et  al., 
2015). Chrysoeriol could be  generated by 3'-O-methylation of 
luteolin, whereas selgin could undergo 5'-O-methylation to 
generate tricin. The flavonoid B-ring O-methylation reactions 
are known to be  catalyzed by several O-methyltransferases in 
rice (see B-ring O-methylations below). Collectively, tricin 
biosynthetic pathway in rice has been re-established as: naringenin 
→ apigenin → luteolin → chrysoeriol → selgin → tricin 
(Figure  5; Lam et  al., 2015, 2019a). Meanwhile, chrysoeriol 
O-linked derivatives accumulates in rice vegetative tissues 
(Galland et  al., 2014; Lam et  al., 2015, 2019a; Eloy et  al., 
2017), whereas tricetin and its O-linked derivatives (e.g., 
O-conjugates) are rarely detected in grasses (Galland et  al., 
2014; Lam et  al., 2015, 2019a; Eloy et  al., 2017), supporting 
that chrysoeriol, instead of tricetin, is an intermediate along 
the tricin biosynthetic pathway.

CYP75B4 is a flavone-specific bifunctional B-ring hydroxylase 
in rice. It displays very weak 3'-hydroxylase activity toward 
naringenin while converting apigenin to luteolin readily (Lam 
et  al., 2015; Park et  al., 2016). In addition, its 5'-hydroxylation 
activity was restricted to chrysoeriol, but not any other 
3'-methoxylated or 3'-hydroxylated flavonoids (Lam et al., 2015). 
Hence, the enzyme is now dedicated as apigenin 3'-hydroxylase/
chrysoeriol 5'-hydroxylase (A3'H/C5'H). The dual catalytic 
activities have also been demonstrated in the highly conserved 
orthologs in sorghum (CYP75B97) and switchgrass (CYP75B11; 
Figure 6B), indicating that similar enzymology and intermediates 
were recruited for tricin biosynthesis in the grass family (Lam 
et al., 2019a). Further evidence indicated that the 3'-hydroxylation 
reaction (apigenin → luteolin) for tricin biosynthesis is also 
predominantly contributed by A3'H/C5'H. Thus, the rice 
CYP75B4 mutant accumulates elevated amounts of soluble 
apigenin metabolites along with the incorporation of apigenin 
into cell wall lignins (Lam et  al., 2015, 2019a). On the other 
hand, CYP75B3, the only other CYP75B member in rice, is 
a canonical F3'H which catalyzes in vitro 3'-hydroxylation of 
a wide range of flavonoids including apigenin (Shih et  al., 
2008; Lam et  al., 2015, 2019a; Park et  al., 2016). However, 
CYP75B3 loss-of-function mutants are preferentially deficient 
in 3'-substituted flavone (luteolin and chrysoeriol) C-glycosides, 
while their production of soluble and lignin-integrated tricin 
remains unaffected (Lam et  al., 2019a). Apparently, CYP75B3 
primarily functions together with OsF2H along the separate 
biosynthetic pathway for flavone C-glycosides (Figure  3).

The highly conserved A3'H/C5'Hs in grasses are distinctive 
from other F3'5'Hs with regard to their phylogeny and catalytic 

properties. They are phylogenetically distant from CYP75A 
F3'5'Hs and were likely recruited through neofunctionalization 
of an ancestral CYP75B F3'H protein (Figure  6B). Similarly, 
several Asteraceae species had acquired CYP75B F3'5'Hs 
independently through convergent evolution, leading to 
delphinidin-derived anthocyanin pigmentation (Seitz et  al., 
2006; Seitz et  al., 2015). In addition, the grass A3'H/C5'Hs 
are substrate specific for both 3'-hydroxylation (apigenin) and 
5'-hydroxylation (chrysoeriol), while CYP75A and Asteraceae 
CYP75B F3'5'Hs could utilize a variety of non-substituted, 
3'-hydroxylated and 3'-methoxylated flavonoids as substrates. 
Intriguingly, the unique catalytic properties of A3'H/C5'Hs are 
reminiscent of the bifunctional phenylpropanoid meta-
hydroxylase (CYP788A1) required for syringyl (S)-lignin 
biosynthesis in the spikemoss Selaginella moellendorffii. 
CYP788A1 is involved in both 3- and 5-hydroxylations of 
phenylpropanoids, but it could only catalyze 5-hydroxylation 
after 3-O-methylation (Weng et  al., 2008, 2010).

B-Ring O-Methylations
Several cation-independent OMTs in grasses were found to 
catalyze in vitro O-methylation of flavones in grasses (Kim 
et  al., 2006; Lin et  al., 2006; Zhou et  al., 2006, 2008, 2009). 
Interestingly, these enzymes have been annotated as caffeic 
acid O-methyltransferases (COMT) or 5-hydroxyconiferaldehyde 
O-methyltransferases (CAldOMT) as they also show in vitro 
O-methylation activities toward 5-hydroxyconiferaldehyde, 
5-hydroxyferulic acid, and caffeic acid, which are intermediates 
in the monolignol pathway; hence, they are also involved in 
S-lignin biosynthesis (Figure  7A; Collazo et  al., 1992; 
Piquemal  et  al., 2002; Ma and Xu, 2008; Sattler et  al., 2012; 
Koshiba et  al., 2013).

Recently, knockout and knockdown mutant analyses have 
demonstrated that grass COMT/CAldOMTs are actually 
bifunctional enzymes required for both tricin and S-lignin 
biosynthesis (Fornalé et  al., 2016; Eudes et  al., 2017; Daly 
et  al., 2019; Lam et  al., 2019b). Rice and sorghum deficient 
in COMT/CAldOMT accumulated reduced levels of soluble 
tricin but increased levels of selgin (mono-methoxylated) and 
luteolin (non-methoxylated) when compared with wild-type 
controls (Lam et  al., 2015; Eudes et  al., 2017). In addition, 
maize, rice, and sorghum plants deficient in COMT/CAldOMT 
were depleted in both tricin-lignin and S-lignin (Fornalé et al., 
2016; Eudes et  al., 2017; Lam et  al., 2019b). Apparently, the 
highly conserved grass COMT/CAldOMT orthologs (Figure 6C) 
have likely evolved dual catalytic functions for the two parallel 
biosynthetic pathways of flavonoids and monolignols, contributing 
to the widespread occurrence of soluble and lignin-integrated 
tricin metabolites in the grass family nowadays.

Based on the revised tricin biosynthetic pathways and the 
new findings in the COMT/CAldOMT-deficient grass plants, 
the catalytic activities of COMT/CAldOMTs were re-examined. 
Recombinant COMT/CAldOMTs in rice and sorghum were 
found to catalyze 3'-O-methylation of luteolin and 
5'-O-methylation of selgin (Kim et  al., 2006; Lin et  al., 2006; 
Zhou et  al., 2006; Eudes et  al., 2017; Lam et  al., 2019b), which 
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are the substrates of COMT/CAldOMTs in the tricin biosynthetic 
pathway (Figure  5). Meanwhile, rice OsCAldOMT1 shows 
comparable catalytic efficiencies toward selgin and 
5-hydroxyconiferaldehyde, which are the substrates of COMT/
CAldOMTs in tricin and monolignol biosynthetic pathway, 
respectively (Figures 5, 7A), further suggesting the bifunctional 
roles of COMT/CAldOMTs in tricin and monolignol biosynthesis 
in grasses (Lam et  al., 2019b).

Functionally redundant OMTs other than COMT/CAldOMTs 
appear to be  present for the biosynthesis of tricin in grasses 
as tricin-derived metabolites, including tricin-lignin, are not 
completed depleted in the COMT/CAldOMT loss-of-function 
mutants in maize, sorghum, and rice (Lam et  al., 2015, 2019b; 
Fornalé et  al., 2016; Eudes et  al., 2017). In fact, several cation-

dependent caffeoyl-CoA O-methyltransferase (CCoAOMT)- 
related enzymes could catalyze 3',5'-O-methylation using various 
flavone substrates (Lee et  al., 2008a), but their involvement 
in tricin biosynthesis in planta requires further investigations.

Further O-Conjugations After Tricin Formation
Based on the types of soluble tricin metabolites detected in 
grasses, O-glycosylations and O-conjugations with monolignols 
and their acylated derivatives represent the predominant 
structural modifications of tricin (Dong et  al., 2014; Lan et  al., 
2016a; Eloy et al., 2017; Peng et al., 2017). These modifications 
occur after the formation of tricin aglycone (Hong et al., 2007; 
Jiang et  al., 2016; Lan et  al., 2016a).

A

B

FIGURE 7 | Current understanding on lignin biosynthesis in grasses. (A) Monolignol biosynthetic pathways. Major activity of COMT/CAldOMT in monolignol 
biosynthetic pathways is indicated. (B) Radical coupling of tricin and monolignols to produce tricin-lignin polymers. 4CL, 4-hydroxycinnamate:CoA ligase; C3H, 
p-coumarate 3-hydroxylase; HCT, p-hydroxycinnamoyl-CoA:quinate/shikimate esterase; APX, ascorbate peroxidase; C3'H, p-coumaroyl ester 3-hydroxylase; CSE, 
caffeoyl shikimate esterase; CCoAOMT, caffeoyl-CoA O-methyltransferase; CAld5H, coniferaldehyde 5-hydroxylase; COMT, caffeic acid O-methyltransferases; 
CAldOMT, 5-hydroxyconiferaldehyde O-methyltransferase; CCR, cinnamoyl-CoA reductase; CAD, cinnamyl alcohol dehydrogenase; PMT, p-coumaroyl-
CoA:monolignol transferase; LAC, laccase; and PRX, peroxidase. In green: general phenylpropanoid pathway. In purple: flavonoid biosynthetic pathways. In blue: 
monolignol biosynthetic pathways. T, tricin; M, monolignols and their derivatives; pCA, p-coumarate; and Ac, acetate.
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O-Glycosylations of flavonoids are usually catalyzed by uridine 
diphosphate (UDP)-dependent glycosyltransferases (UGT; family 
1 glycosyltransferases 1; GT1; Ko et al., 2006; Yonekura-Sakakibara 
and Hanada, 2011; Kim et al., 2015), which utilize UDP sugars 
as sugar donors (Yang et  al., 2018). A number of UGTs from 
rice (Ko et  al., 2006, 2008; Hong et  al., 2007; Luang et  al., 
2013; Chen et  al., 2014; Peng et  al., 2017) and wheat (Shi 
et al., 2020) are capable of catalyzing the conjugation of sugars, 
usually glucose, to one or multiple hydroxyl groups of tricin 
in vitro and/or when over-expressed in transgenic plants. Single-
nucleotide polymorphisms (SNPs) in several putative UGTs 
were also found to be  directly associated with the variations 
of flavone O-glycoside accumulation in different natural cultivars 
and/or recombinant inbred lines of rice (Chen et  al., 2014; 
Dong et  al., 2014; Peng et  al., 2017; Li et  al., 2019) and wheat 
(Shi et  al., 2020). The different O-glycosylations could enhance 
solubility and stability, and might be  involved in regulating 
storage, transport, and detoxification of tricin (Yonekura-
Sakakibara and Hanada, 2011).

In addition to sugars, tricin conjugates with monolignols 
and their derivatives, leading to the formation of soluble 
tricin-oligolignols along with insoluble tricin-lignin in the 
cell walls. The soluble tricin-oligolignols in grasses have been 
found to be either optically active (Wenzig et al., 2005; Xiong 
et  al., 2011) or inactive (racemic; Lan et  al., 2016a). The 
optically active tricin-oligolignols, which have been often 
referred to as “flavonolignans” (Begum et al., 2010; Chambers 
et  al., 2015; Csupor et  al., 2016), may be  formed by oxidative 
radical coupling of tricin with monolignols or their derivatives 
with the assistance of dirigent proteins, similar to the 
biosynthesis of lignans (Davin and Lewis, 2003; Umezawa, 
2003; Paniagua et  al., 2017), in which dirigent proteins serve 
as auxiliary proteins for guiding the regioselective and 
stereoselective coupling of phenoxy radicals from monolignols 
and their analogs. For example, the absolute configuration 
of a diastereomeric pair of β–O–4 neolignan-type flavonolignans, 
threo-(−)-guaiacylglycerol-β-tricin ether [(−)-salcolin A], and 
erythro-(−)-guaiacylglycerol-β-tricin ether [(−)-salcolin B] 
isolated from Sinocalamus affinis (Poaceae) were determined 
as 7''S,8''S and 7''R,8''S, respectively (Xiong et  al., 2011). This 
strongly suggests that the coupling between tricin and coniferyl 
alcohol radicals to form 4'–O–8'' bond proceeds 
enantioselectively, probably mediated by a dirigent protein, 
giving rise to the optically active quinonemetide, which are 
then attacked by water non-stereoselectively, giving rise to 
both (−)-(7''S,8''S)-salcolin A and (−)-(7''R,8''S)-salcolin B 
(Figure  8). This is in line with the recent findings that a 
dirigent protein, AtDIR12/AtDP1, was involved in the formation 
of arylglycerol-β-aryl ether (β–O–4) type neolignans in 
Arabidopsis (Yonekura-Sakakibara et al., 2021). However, from 
Avena sativa, (−)-salcolin A and (+)-salcolin B were isolated 
(Wenzig et  al., 2005). In this case, the diastereomers should 
have opposite absolute configuration at 8'' position, forming 
(−)-(7''S,8''S)-salcolin A and (+)-(7''S,8''R)-salcolin B (Figure 8). 
During their formation, the radical coupling should afford 
racemic quinonemethide in terms of 8'' position, and 
the  following water addition at 7'' position should be 

diastereoselective to give rise to the optically active 
diastereomers (Wenzig et  al., 2005). On the other hand, 
optically inactive tricin-oligolignols are generated solely by 
radical coupling (Figure  7B) and are considered to exist at 
least partially as the precursors for the generation of tricin-
lignin polymers (see Tricin-lignin formation below; 
Lan et  al., 2016a).

Tricin-Lignin Formation
Tricin is incorporated into lignin polymers in grass cell walls 
by radical coupling (Lan et  al., 2015), essentially the same 
way lignification takes place solely with monolignols (coniferyl 
alcohol, sinapyl alcohol, and p-coumaryl alcohol) in typical 
non-grass vascular plants (i.e., gymnosperms, dicots, and 
non-grass monocots). The compatibility of tricin with radical 
coupling was demonstrated by biomimetic oxidations of tricin 
with monolignols using peroxidase/hydrogen peroxide and silver 
(I) oxide as oxidants (Lan et  al., 2015). Tricin was found to 
cross-couple to monolignols exclusively via the 4'–O–β-coupling 
mode (Figure  7B; del Río et  al., 2012; Lan et  al., 2015), 
probably because the radical from the 4'-hydroxyl group of 
tricin is more stabilized than the other possible radicals as 
supported by a density functional theory study (Elder et  al., 
2020). Thus, in plant cell walls, it is expected that tricin is 
first oxidized by phenol oxidases, presumably laccases (LAC) 
and/or peroxidases (PRX; Figure  7A; Tobimatsu and Schuetz, 
2019), and then coupled with monolignol radicals or 
acylated  monolignol radicals to form tricin-(4'–O–β)-linked 
phenylpropane units in the lignin polymers (Figure  7B). As 
tricin is unable to undergo dehydrodimerization, and it does 
not cross-couple directly with growing lignin polymers, tricin 
predominantly incorporates into the starting ends of the final 
lignin polymer chains (Lan et al., 2015). Thus, tricin is expected 
to serve as a nucleation site for lignification (Lan et  al., 2015; 
Berstis et  al., 2021).

Lignin-integrated tricin content in grasses was estimated to 
be  around 0.5–7 mg/g whole cell wall or 2–33 mg/g lignin by 
thioacidolysis (Lan et  al., 2016b). These contents are several 
folds higher than extractable tricin content (Lan et  al., 2016b), 
suggesting that the majority of tricin synthesized in grasses 
is incorporated into lignin polymers in cell walls.

Current Understanding on Tricin 
Biosynthesis in Dicots
Overview
In contrast to their prevalence in grasses and other monocot 
lineages, tricin-derived metabolites are only sporadically 
distributed in dicots. Metabolomics studies have reported their 
occurrences in several dicot lineages, spanning from basal 
dicots, like individual Ranunculus spp. (Li et  al., 2005; Aslam 
et  al., 2012), to two core dicot lineages: rosids [e.g., Agelaea 
pentagyna (family: Connaraceae), Medicago legumes and 
Trigonella foenum-graecum (family: Fabaceae); Kuwabara et al., 
2003], and asterids [e.g., Artemisia vulgaris (family: Asteraceae), 
Leucas cephalotes (family: Lamiaceae), and Lonicera 
japonica  (family: Caprifoliaceae)] (Miyaichi et  al., 2006). 
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Meanwhile,  tricin-lignin is only detected in leaves of alfalfa, 
albeit at much lower quantity than those in grasses (Lan 
et  al., 2016b). Intriguingly, although tricin is restricted to 
certain dicot lineages, its flavone precursors, including apigenin, 
luteolin, and/or chrysoeriol, are widely distributed in non-tricin-
accumulating dicots (Harborne, 1974). Hence, the occurrences 
of tricin derivatives are probably resulting from independent 
and convergent recruitment of novel enzyme activities in 
those isolated tricin-accumulating dicot lineages.

Flavone Nucleus Formation
Three possible types of dicot enzymes, FNSIs, FNSIIs, and F2Hs, 
have been described for flavone nucleus formation (Martens et al., 
2001; Martens and Mithöfer, 2005; Zhang et  al., 2007; Ferreyra 
et  al., 2015; Li et  al., 2020a), but their contribution to tricin 
biosynthesis remains elusive in tricin-producing dicots. Both FNSIs 
(Britsch, 1990; Martens et  al., 2001; Miyahisa et  al., 2006; Yun 
et al., 2008) and FNSIIs (Kitada et al., 2001; Fliegmann et al., 2010; 
Wu et  al., 2016; Zhao et  al., 2016; Jiang et  al., 2019) 

FIGURE 8 | A possible mechanism for the formation of optically active salcolin A and salcolin B through radical coupling of tricin and coniferyl alcohol. Different 
possible stereoisomers of salcolin A and salcolin B are shown.
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catalyze  direct  desaturation of flavanones into flavones, whereas 
F2Hs converts flavanones to 2-hydroxyflavanones which were 
proposed to be  intermediates for generating the flavone skeleton 
(Akashi  et  al.,  1998; Zhang  et  al., 2007).

Initially identified in parsley (Petroselinum crispum), FNSIs 
were long presumed to be confined to Apiaceae (Britsch, 1990; 
Martens et  al., 2001; Yun et  al., 2008). However, they were 
subsequently isolated from other dicots, including Arabidopsis 
(Ferreyra et  al., 2015) and Morus notabilis (Li et  al., 2020). 
Interestingly, angiosperm FNSIs outside Apiaceae are apparently 
phylogenetically unrelated to FNSIs in Apiaceae and non-vascular 
plants; thus, FNSIs were probably evolved convergently in 
distant plant lineages (Li et al., 2020). Meanwhile, all the known  
dicot FNSIIs and F2Hs are CYP enzymes belonging to the 
CYP93B subfamily (Kitada et  al., 2001; Martens and Mithöfer, 
2005; Zhang et  al., 2007; Fliegmann et  al., 2010; Wu et  al., 
2016; Zhao et  al., 2016; Jiang et  al., 2019). FNSIIs are present 
in most flavone-accumulating dicots, such as Gerbera hybrids 
(Martens and Forkmann, 1999), Lonicera japonica, L. 
macranthoides (Wu et al., 2016), Glycine max (Fliegmann et al., 
2010; Jiang et  al., 2010), Glycyrrhiza echinate (Akashi et  al., 
1999), Salvia miltiorrhiza (Deng et  al., 2018), and Scutellaria 
baicalensis (Zhao et  al., 2016). On the other hand, F2Hs were 
only reported in a few dicot species, including G. echinata 
(Akashi et  al., 1998), Chrysanthemum indicum (Jiang et  al., 
2019), and M. truncatula (Zhang et  al., 2007). It remains to 
be  investigated whether FNSI, FNSII, and/or F2H are required 
for tricin biosynthesis which is restricted to isolated dicot 
lineages, such as the Medicago legumes.

B-Ring Hydroxylations
Considerable knowledge about the 3'- and 5'-hydroxylation 
reactions required for tricin biosynthesis in Medicago legumes 
has come to light recently (Lui et al., 2020). Canonical CYP75A 
F3'5'Hs are not involved in the B-ring modifications, but instead, 
a group of Medicago-unique CYP75B proteins, including M. 
truncatula MtFBH-4 as well as alfalfa (M. sativa) MsFBH-4 
and MsFBH-10, are utilized. In in vitro enzyme assays, these 
CYP proteins catalyze 3'-hydroxylation of different flavonoid 
classes (flavanone, flavone, and flavonol) and 5'-hydroxylation 
of their 3'-methoxylated derivatives which include chrysoeriol. 
Furthermore, apigenin is converted to 3'- and 5'-substituted 
flavones (i.e., luteolin, chrysoeriol, selgin, and tricin) when 
these CYP75B proteins are transiently expressed in Nicotiana 
benthamiana leaves. Consistent with these findings, M. truncatula 
MtFBH-4 knockout mutants are completely depleted in tricin 
O-glycosides, hence establishing an indispensable role of 
MtFBH-4  in tricin biosynthesis. Basically, the same reaction 
steps that occur in grasses (Figure  5) have been acquired 
independently by the Medicago legumes to produce tricin.

The Medicago-unique CYP75B enzymes required for tricin 
biosynthesis are distinct from the grass A3'H/C5'Hs with regard 
to their catalytic properties and phylogenetic origins (Lam et al., 
2015; Lui et  al., 2020). For example, the 5'-hydroxylase activity 
is restricted to chrysoeriol for the grass enzymes but is extended 
to other 3'-methoxylated flavonoids for the Medicago enzymes. 

Interestingly, the Thr-to-Gly substitution in the substrate 
recognition site 6 domain is critical for these Medicago enzymes 
to catalyze the 5'-hydroxylation reactions (Lui et  al., 2020). On 
the other hand, the equivalent position is replaced by a Leu 
residue in the grass A3'H/C5'Hs (Lui et  al., 2020), but it is 
unknown whether this could account for their more specific 
substrate preference for 5'-hydroxylation. Meanwhile, the Medicago-
unique CYP enzymes have likely acquired the novel 5'-hydroxylase 
activities through neofunctionalization of redundant CYP75B 
F3'Hs following the divergence of the Medicago genus from 
other lineages in the legume family (Lui et al., 2020). Convergent 
evolution of CYP75B F3'5'H had also occurred independently 
in several Asteraceae lineages for the generation of delphinidin-
derived blue/violet pigments (Seitz et  al., 2006, 2015). By sharp 
contrast, A3'H/C5'Hs are highly conserved amongst grasses, 
consistent with prevalence of tricin in the grass family (Lam 
et al., 2019a). It would be intriguing to decipher the enzymology 
and evolution of B-ring hydroxylations for tricin biosynthesis 
in other isolated dicot lineages.

B-Ring O-Methylations
The enzymes responsible for the 3'- and 5'-O-methylation 
reactions remain elusive for tricin biosynthesis in dicots. It is 
possible that they are also COMT/CAldOMT enzymes, as in 
the case for the grass bifunctional OMTs. In fact, Arabidopsis 
knockout mutant analyses demonstrated the dual roles of 
COMT/CAldOMT in the production of monolignols and 
flavonoids (Do et al., 2007; Tohge et al., 2007; Nakatsubo et al., 
2008). However, there is no tricin accumulation in Arabidopsis, 
presumably due to the absence of F3'5'H enzymes. Meanwhile, 
the expression of an endogenous COMT gene is upregulated 
in transgenic alfalfa over-expressing the gene encoding 
N-acetylserotonin O-methyltransferase (MsASMT1), which 
catalyzes the final step in melatonin biosynthesis (Cen et  al., 
2020). In addition to increased melatonin formation, the 
transgenic alfalfa plants produced elevated amounts of various 
soluble chrysoeriol- and tricin-derived metabolites (Cen et  al., 
2020), which might be resulting from increased COMT activities. 
However, FgCOMT1 isolated from the tricin-accumulating 
legume fenugreek (Trigonella foenum-graecum; Kuwabara et al., 
2003) could O-methylate 5-hydroxyferulic acid but not quercetin 
(a 3'-hydroxylated flavonol) or tricetin in vitro (Qin et  al., 
2012). Over-expression of FgCOMT1 in Arabidopsis atomt1 
knockout mutant only partially restored the accumulation of 
sinapoyl aldehyde and sinapic acid (intermediates of the 
monolignol biosynthetic pathway) but not isorhamnetin 
(a  3'-methoxylated flavonol; Qin et  al., 2012).

FUTURE PERSPECTIVE: 
BIOENGINEERING ON MANIPULATING 
TRICIN BIOSYNTHETIC PATHWAY

Bioengineering for Functional Food
Cereals contribute to more than half of the world population’s 
daily caloric intake, but the commonly consumed polished grains, 
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which are mainly consisting of endosperms, are poor in 
phytochemicals and minerals (Awika, 2011). Their consumption 
as staple food in developing countries is associated with 
micronutrient malnutrition due to the lack of dietary diversity 
(Bhullar and Gruissem, 2013). To overcome this problem, 
biofortification through metabolic engineering has been pursued 
to introduce different phytochemicals and minerals in endosperms 
of cereal grains (Bhullar and Gruissem, 2013; Saltzman et  al., 
2013). As a prime example, golden rice engineered with the 
β-carotene biosynthetic pathway in endosperm was developed 
to combat vitamin A deficiency (Ye et  al., 2000; Paine et  al., 
2005; Owens, 2018). Following the success of golden rice, cereal 
crops that accumulate high contents of iron, zinc, and various 
carotenoids in the edible endosperm have been developed using 
genetic engineering (Wirth et  al., 2009; Johnson et  al., 2011; 
Saltzman et  al., 2013; Blancquaert et  al., 2015; Singh et  al., 
2017; Zhu et al., 2018). Recently, transgenic rice with endosperms 
fortified with flavonoids, anthocyanins, or stilbenoids was also 
successfully engineered (Baek et  al., 2013; Ogo et  al., 2013; Zhu 
et al., 2017), representing potential functional staple food containing 
different health-beneficial phenolics.

Although tricin and its derivatives have been characterized 
with many different health-promoting properties (Cai et  al., 
2004; Duarte-Almeida et al., 2007; Yazawa et al., 2011; Murayama 
et  al., 2012; Jung et  al., 2014, 2015; Lee et  al., 2015; Shalini 
et  al., 2016), they are rarely present in human diets. Tricin is 
abundant in vegetative tissues of grasses but is not present in 
cereal endosperm due to the absence of expression of genes 
required for tricin biosynthesis (Ogo et  al., 2013). Primary 
dietary sources of tricin include whole cereal grains such as 
rice, wheat, oat, and barley, in which small amounts of tricin 
are preserved in the bran (pericarp, testa, aleurone, and embryo; 
Poulev et  al., 2018, 2019), as well as some grass-derived food 
products, such as sugarcane juice (Duarte-Almeida et al., 2007) 
and barley leaf powders (Zeng et  al., 2018).

Functional food crops that are fortified with tricin could 
be  generated by engineering the entire biosynthetic pathway 
in edible tissues. Previously, transgenic rice seeds that accumulate 
tricin were generated by expression of genes from multiple 
species encoding rice PAL, rice CHS, parsley FNSI, soybean 
FNSII, blue viola F3'5'H, and rice COMT/CAldOMT (Ogo 
et al., 2013). Recent establishment of the endogenous biosynthetic 
pathways in grasses (Lam et al., 2014, 2015, 2019a) and Medicago 
legumes (Lui et  al., 2020) as well as further elucidation of the 
regulatory mechanism should facilitate more effective metabolic 
engineering in plants or edible tissues that do not naturally 
produce tricin-type metabolites.

Bioengineering for Biorefinery
Grasses show great potential as a source of lignocellulosic 
biomass. A large amount of lignocellulose is produced annually 
as agricultural residues from worldwide cultivation of grass 
grain crops, including maize, wheat, rice, barley, and sorghum, 
as well as grass sugar crops, such as sugarcane and sweet 
sorghum. In addition, grass energy crops, such as Miscanthus, 
Erianthus, switchgrass, and bamboo, which show notably high 

biomass productivity, are attractive lignocellulose feedstocks 
for various biorefinery applications (Tye et  al., 2016; Bhatia 
et  al., 2017; Umezawa, 2018; Umezawa et  al., 2020). Because 
of the prominent impacts of lignin on the usability of 
lignocellulose in both polysaccharide- and lignin-oriented 
biorefinery applications, bioengineering approaches to control 
lignin content and structure in grass cell walls have been 
actively investigated (Umezawa, 2018, 2020; Halpin, 2019; 
Coomey et  al., 2020). However, due to our limited knowledge 
regarding the biological functions and physicochemical properties 
of tricin-lignin, it is still uncertain how tricin-lignin influences 
the usability of grass biomass. Thus far, not much has been 
examined on the effects of manipulating tricin biosynthesis 
on the utilization properties of grass biomass for different 
biorefinery applications.

As tricin could serve as a nucleation site for lignification, 
reducing the content of tricin used for lignification may result 
in reduction of lignin content and biomass recalcitrance, which 
may in turn improve the production of fermentable sugars 
from biomass in the polysaccharide-oriented biorefinery processes 
(Halpin, 2019). Indeed, tricin-depleted rice mutants deficient 
in FNSII (Lam et  al., 2017) or A3'H/C5'H (Lam et  al., 2017, 
2019a) displayed reduced lignin content and improved cell 
wall digestibility. In contrast, however, tricin-depleted maize 
mutant deficient in CHS showed increased lignin level and 
reduced cell wall digestibility in leaves albeit no alteration in 
either lignin content or cell wall digestibility in stems (Eloy 
et  al., 2017). The altered lignin content in the CHS-deficient 
maize leaf cell walls was attributed at least partially to the 
consequence of the increased carbon flux toward the branching 
monolignol biosynthesis pathway upon the blockage of the 
entry of the flavonoid pathway where CHS plays the major 
role (Eloy et  al., 2017). These studies on tricin-depleted grass 
mutants implicated that disrupting tricin biosynthetic genes 
not only impedes the formation of tricin-lignin but also affects 
the formation of the core lignin polymer units derived from 
monolignols, although the mechanisms underlying this 
phenomenon remain unclear. Further manipulations of different 
tricin biosynthetic genes in different grass species are imperative 
to determine the precise relationships between tricin, lignin 
content and composition, and cell wall digestibility in tricin-
depleted grasses.

On the other hand, increasing the levels of tricin serving 
as initiation sites for lignin polymerization would theoretically 
reduce the molecular weight of the lignin polymers, which 
may potentially improve the efficiency of lignin deconstruction 
in the polysaccharide-oriented biorefinery processes (Berstis 
et  al., 2021). A recent computational study determined that 
the bond strengths of the 4'–O–β linkages between the tricin- 
and monolignol-derived lignin polymer units are comparable 
to the major β–O–4 linkages connecting the internal monolignol-
derived lignin polymer units, suggesting that introduction of 
more tricin units in lignin polymers is unlikely to increase 
the energy for lignin depolymerization (Berstis et  al., 2021). 
Nonetheless, whether such tricin bioengineering strategy to 
attenuate lignin molecular weight and depolymerization efficiency 
requires further exploration.
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Meanwhile, grass crops bioengineered toward high tricin-
lignin content could bring benefits in the lignin-oriented 
biorefinery approaches by amplifying the supply of tricin or 
tricin-derived aromatic chemicals. It has been estimated that 
large quantity of tricin could be  released from grass lignins 
(Ralph, 2020; del Río et al., 2020). However, challenges ahead 
include developing technologies for efficient extraction and 
isolation of tricin from grass lignins to meet the stringent 
purity specifications as well as industrializing the production 
with maximized cost effectiveness and minimized environmental 
impacts. As the most abundant aromatic polymers on Earth, 
lignin has a great potential to serve as starting materials for 
sustainable production of bulk or functionalized aromatic 
chemicals (Ragauskas et al., 2014; Rinaldi et al., 2016; Umezawa 
et al., 2020). Accordingly, chemical and biochemical approaches 
to depolymerize lignin into useful low molecular weight 
aromatic compounds have been extensively pursued (Schutyser 
et  al., 2018; Sun et  al., 2018; Renders et  al., 2019; Abu-Omar 
et  al., 2021). As these studies have mostly focused on the 
conversions of the major monolignol-derived phenylpropane 
units in lignin, the consequences of lignin-integrated tricin 

units in various catalytic and bio-catalytic lignin 
depolymerization strategies remain an intriguing subject for 
further investigations.
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