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Soil and water salinization has global impact on the sustainability of agricultural 
production, affecting the health and condition of staple crops and reducing 
potential yields. Identifying or developing salt-tolerant varieties of commercial crops is a 
potential pathway to enhance food and water security and deliver on the global 
demand for an increase in food supplies. Our study focuses on a phenotyping 
experiment that was designed to establish the influence of salinity stress on a 
diversity panel of the wild tomato species, Solanum pimpinellifolium. Here, 
we explore how unoccupied aerial vehicles (UAVs) equipped with both an optical and 
thermal infrared camera can be used to map and monitor plant temperature (Tp) 
changes in response to applied salinity stress. An object-based image analysis 
approach was developed to delineate individual tomato plants, while a green–
red vegetation index derived from calibrated red, green, and blue (RGB) optical 
data allowed the discrimination of vegetation from the soil background. Tp 
was retrieved simultaneously from the co-mounted thermal camera, with Tp 
deviation from the ambient temperature and its change across time used as a 
potential indication of stress. Results showed that Tp differences between salt-
treated and control plants were detectable across the five separate UAV 
campaigns undertaken during the field experiment. Using a simple statistical 
approach, we show that crop water stress index values greater than 0.36 
indicated conditions of plant stress. The optimum period to collect UAV-based Tp 
for identifying plant stress was found between fruit formation and ripening. 
Preliminary results also indicate that UAV-based Tp may be used to detect plant 
stress before it is visually apparent, although further research with more frequent 
image collections and field observations is required. Our findings provide a tool to 
accelerate field phenotyping to identify salt-resistant germplasm and may allow 
farmers to alleviate yield losses through early detection of plant stress via 
management interventions.

Keywords: unoccupied aerial vehicle, unmanned aerial vehicle, thermal infrared, salt tolerance, phenotyping, 
tomato, plant stress, accessions
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INTRODUCTION

The area of agricultural land impacted by salinization and 
sodification is increasing globally, with more than 50% of arable 
land predicted to be  affected by 2050 (Wang et  al., 2003; Jamil 
et al., 2011). Concurrently, it is anticipated that crop production 
will need to more than double to meet the demands of a 
projected 10 billion people by 2050 (Ray et  al., 2013). 
Furthermore, increasing affluence and shifting diets toward 
greater meat consumption mean that without improvements 
in productivity, water consumption in agriculture will increase 
by a further 70–90% over the same period (Molden, 2013; 
Pittock et  al., 2016). Global freshwater supplies are under 
extreme pressure, with agricultural production already accounting 
for more than two-thirds of freshwater use (Famiglietti, 2014; 
Brauman et  al., 2016; Pastor et  al., 2019). Therefore, irrigation 
with brackish water presents as an enticing option, as the 
targeted application of water is an effective way to close the 
yield gap (Licker et  al., 2010; Mueller et  al., 2012). The 
identification and breeding of cultivars with increased resilience 
to salt stress would provide an effective twofold solution to 
ensuring future food security by enabling production on marginal 
land and the potential to irrigate with brackish water (Morton 
et  al., 2018).

Salt stress in plants results in complex physiology and 
morphometric changes that occur in two distinct phases (Munns 
and Tester, 2008). The first phase occurs rapidly (minutes to 
days) as the plant responds to the buildup of salt in the roots, 
which leads to reduced osmotic potential and hence water 
uptake. This phase is referred to as ion-independent and causes 
stomatal closure and a reduction in new shoot growth. The 
second ionic phase occurs more slowly (days to weeks) once 
salt concentration in the leaves reaches cytotoxic levels, resulting 
in senescence of mature leaves (Munns and Tester, 2008; 
Isayenkov and Maathuis, 2019). A plant’s response to salt stress 
also varies with the growing environment (Maas, 1993), making 
field trials necessary to assess stress in agronomically important 
traits such as yield quantity and quality. Despite focused research 
efforts, there has been little progress in identifying salt-tolerant 
genes. Researchers attribute this lack of progress to the genetic 
complexity of salt tolerance (Morton et  al., 2018) and the 
limitations of manual field phenotyping (Araus and Cairns, 
2014). New tools and approaches are required to bridge this 
phenotype-to-genotype divide (McCabe and Tester, 2021).

Recent advances in remote sensing technologies offer a 
means to overcome some of the limitations of traditional field 
phenotyping. Unpiloted aerial vehicles (UAVs) mounted with 
multispectral, hyperspectral, and thermal sensors have proven 
particularly useful for phenotyping due to their ability to capture 
plant data at unprecedented spatial (sub-cm), temporal 
(on-demand), and spectral resolutions. Laborious and often 
subjective manual measurements of plant phenotypic traits can 
now be  augmented by consistent information derived for an 
entire field in a single flight and with repeatability across the 
growth cycle (Araus and Cairns, 2014; Holman et  al., 2016). 
For example, UAV-captured data can provide insights on plant 
nitrogen status (Perry et al., 2018), height (Ziliani et al., 2018), 

biomass (Bendig et  al., 2014; Johansen et  al., 2020), and 
temperature (Deery et  al., 2016; Malbéteau et  al., 2018) at the 
field scale and on demand, which is accelerating field screening 
and selection of germplasm for agronomically important traits 
to guide breeding programs and optimize commercial cultivars 
(Hickey et  al., 2019).

The last decade has seen a rapid expansion in the application 
of UAVs for field phenotyping (Yang et  al., 2017; Xie and 
Yang, 2020). However, applications of UAV-based sensing in 
salinized environments for rapid identification of salt-tolerant 
germplasm are relatively unexplored, despite research showing 
that wild-growing relatives (e.g., Solanum pimpinellifolium) of 
cultivated crops (e.g., Solanum lycopersicum) have increased 
salt tolerance (Zuriaga et  al., 2009; Rao et  al., 2013; Bolger 
et  al., 2014; Razali et  al., 2018). Johansen et  al. (2019, 2020) 
addressed this gap by assessing phenotypic traits, including 
tomato plant area, plant cover, growth rate, condition, biomass, 
and yield from UAV-based multispectral imagery to discriminate 
plant performance under salt stress and control conditions. 
They identified distinct differences in phenotypic traits between 
control and salt-treated plants and found the traits suitable 
for identifying most of the highest yield-producing plant 
accessions. They also incorporated these traits into a random 
forest approach to predicting yield before harvest. Overall, their 
results indicated that salt tolerance is evident in many phenotypic 
expressions and is best discriminated from other abiotic and 
biotic stresses by incorporating UAV measurements of 
multiple traits.

Extending on these prior studies, we investigate the collection 
of plant temperature measurements (Tp) derived from UAV-based 
thermal infrared (TIR) cameras to screen for salt stress. Tp is 
commonly used as a surrogate for stomatal conductance, as 
stomatal closure results in reduced transpiration, which in turn 
leads to an increase in Tp (Tanner, 1963; Jones, 2013). However, 
TIR-based Tp is also influenced by environmental factors such 
as net radiation, vapor pressure deficit (VPD), and wind speed 
(Jackson et  al., 1988). Therefore, researchers commonly use Tp 
measurements in combination with air temperature (Ta) for 
TIR indices such as the crop water stress index (CWSI) (Idso 
et al., 1981; Jackson et al., 1981) to normalize data and compare 
plant stress across multiple days. Tp and its use via the CWSI 
have been explored in broad-acre crops (Bian et  al., 2019; 
Gracia-Romero et  al., 2019; Zhang et  al., 2019), tree crops 
(Gonzalez-Dugo et  al., 2012, 2014; Park et  al., 2017), and 
vineyards (Baluja et  al., 2012; Bellvert et  al., 2016; Sepúlveda-
Reyes et  al., 2016; Kustas et  al., 2018). From an analysis of 
the recent literature, an examination of Tp retrievals in annual 
vegetable crops seems to be  limited to potato plants (Rud 
et  al., 2014). The ability to detect salinity-induced stress in 
tomato plants via remotely sensed Tp in the initial 
ion-independent phase would be particularly helpful in providing 
an early detection method of stress before changes in plant 
color or shape occur.

Using remotely sensed Tp as an indicator of stress requires 
its accurate retrieval from UAV TIR imagery, which remains 
challenging (Aragon et  al., 2020; Döpper et  al., 2020; Perich 
et  al., 2020). First, UAV TIR cameras use lightweight uncooled 
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microbolometers, making them prone to thermal drift (Gómez-
Candón et  al., 2016; Mesas-Carrascosa et  al., 2018; Döpper 
et  al., 2020). Second, the impact of vignetting and dead pixels 
in the focal plane array needs to be  accounted for (Kelly 
et  al., 2019; Aragon et  al., 2020). Third, the methods used to 
generate the orthomosaic from which Tp is retrieved will also 
influence the apparent temperature (Perich et al., 2020). Fourth, 
shadowing within the plant canopy can lead to large temperature 
differences between sunlit and shaded components, which may 
require consideration (Jones et  al., 2002). Fifth, the soil 
background temperature integration can bias the retrieved Tp 
(Jones and Sirault, 2014). Finally, the sensitivity of Tp to 
environmental variation means that weather changes such as 
wind speed, wind direction, or cloud cover across a flight can 
introduce uncertainty (Maes et  al., 2017).

Overcoming the low radiometric accuracy of UAV-based 
TIR cameras has led to the development of laboratory-based 
and vicarious calibration procedures to improve temperature 
retrievals (see Jensen et  al., 2014; Khanal et  al., 2017; Maes 
et  al., 2017; Ribeiro-Gomes et  al., 2017; Torres-Rua, 2017; 
Aragon et  al., 2020). Even though calibration procedures are 
employed, research to date demonstrates the need to carefully 
consider how data are captured, processed, and ultimately used 
to retrieve Tp. Researchers have employed many methods to 
identify vegetation pixels from which to retrieve Tp in coarse 
TIR imagery. Researchers interested in bulk canopy temperature 
have previously used simple polygons to delineate plots (Deery 
et  al., 2016; Gracia-Romero et  al., 2019; Perich et  al., 2020). 
However, this method only works for crops with canopy closure, 
which precludes the impact of the background soil temperature 
on Tp retrievals. Therefore, TIR imagery is commonly 
co-registered to red, green, and blue (RGB), multispectral, or 
hyperspectral imagery so that vegetation indices or classification 
algorithms can be  applied to identify pixels representing 
vegetation (Rud et  al., 2014; Zhang et  al., 2019; Maimaitijiang 
et  al., 2020). To prevent reliance on other data sources, a 
number of approaches have been developed based solely on 
TIR imagery for Tp retrieval (Meron et  al., 2010, 2013; Cohen 
et  al., 2017; Park et  al., 2017; Bian et  al., 2019). Often, such 
approaches delineate canopy extent using edge detection methods, 
from which they can then retrieve Tp from pixels.

For a method to be adopted in precision agriculture workflows, 
it needs to be farmer-friendly and as straightforward as possible 
(Cohen et  al., 2017). Based on the reviewed literature, there 
is currently a significant knowledge gap and disconnect between 
obtaining and extracting UAV-based TIR information and then 
ensuring this information can be  translated into meaningful 
biological understanding at the individual plant scale (Kellner 
et  al., 2019). Our research presents an approach for retrieving 
Tp from UAV-based TIR and RGB imagery, with an experimental 
focus on a diversity panel of tomato plants undergoing drip-
irrigation in both control and salt water conditions. The retrieved 
Tp is interrogated to understand its response to plants experiencing 
salt stress and establish if TIR-based indices can identify: 
differences in plant stress between control and salt-treated 
plants, and the optimum time during the growing season to 
detect plant stress using multi-temporal UAV-based TIR data.

MATERIALS AND METHODS

Description of Study Site
The study took place during the 2017–2018 growing season 
(November–January) at a field located within the King Abdulaziz 
University Agricultural Research Station in Hada Al-Sham, 
Saudi  Arabia (21° 47ʹ48ʺN, 39° 43ʹ35ʺE, Figure  1). The field 
was divided into four separate plots, each approximately 40 m 
x 40 m, with 15 rows of 20 tomato plants. Two plots were 
established as controls, with freshwater irrigation (approx. 
900–1,000 ppm NaCl). The other two plots were irrigated twice 
daily (except Fridays) with saline water of increasing 
concentrations (Figure  1). In developing the diversity panel, 
200 accessions (199 wild Solanum pimpinellifolium and one 
commercial S. lycopersicum) were screened for salt tolerance 
via randomized planting of three replications of each accession 
for each treatment (i.e., three salt-treated and three control 
plants per accession, producing a total of 1,200 plants). At 
the beginning of November, 1,200 seedlings were transplanted 
into the field (after 1 month of greenhouse growth), with 
harvesting taking place between 16 and 26 January (Figure  1). 
Additional details of the site and trial design information can 
be  found in Aragon et  al. (2020)) and Johansen et  al. (2019). 
The focus of this study was to understand whether TIR data 
can identify differences in plant stress between control and 
salt-treated Solanum pimpinellifolium plants.

A weather station was installed toward the middle of the 
field (Figure  1) to collect meteorological data throughout the 
growing season. Ta and relative humidity (RH) were recorded 
every minute at 2.3 m above ground level (AGL) using an 
HMP155 humidity and temperature probe (Vaisala, Helsinki, 
Finland), from which the VPD was calculated (May et  al., 
2008). Wind speed and direction were also recorded every 
minute at 2.2 m AGL with a WindSonic anemometer (Gill, 
Hampshire, United  Kingdom). Meteorological data were 
augmented by four distributed stations in each of the plots 
that measured point-scale thermal infrared temperature via an 
Apogee radiometer (SI-111, Apogee, Logan, United  States), 
which facilitates interpretation of the UAV-collected TIR data 
(see locations in Figure  1). The Apogee sensors were installed 
in each plot approximately 1 m above a plant, representing a 
footprint of around 0.40 m2. As our study occurred in an arid 
desert environment, sandstorms impacted the site on December 
8 and 16, 2017, and January 4 and 8–10, 2018. To combat 
the impact of the sandstorms on results, field staff washed 
the plants with non-saline water after each event.

Thermal Infrared and Optical RGB Data 
Collection and Processing
Thermal Infrared Image Collection and Processing
TIR images were captured using a gimbal-stabilized FLIR Tau 
2 core with a ThermalCapture 2.0 capture system (TeAx, 
Wilnsdorf, Germany) mounted on a DJI Matrice 100 quadcopter 
(Da Jiang Innovations, Shenzhen, China). The camera has a 
broadband spectral range across 7.5–13.5 um with a resolution 
of 640 × 512 pixels and a focal length of 13 mm. Manufacturer 
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guidelines indicate temperature retrievals with a specified 
accuracy of ±5°C and sensitivity of 0.04°C. Flying height was 
13 m AGL at a speed of 2 m.s−1 for a total flight duration of 
approximately 17 min, with flight times shown in Table  1. The 
imagery was collected from a nadir view, with around 60% 
sidelap and 93% forward overlap. Five large circular aluminum 
trays that can be  easily distinguished in the TIR data (due to 
their low emissivity) were deployed at both the center and 
each corner of the field as ground control points (GCPs) 
(Figure  1). Each GCP’s location was surveyed using a Leica 
AS10 Real-Time Kinematic Global Navigation Satellite System 
and base station (Leica Geosystems, St. Gallen, Switzerland).

Before deploying the TeAx 640 camera, a temperature-
dependent radiometric calibration matrix was applied to correct 
ambient temperature dependency, vignette effects, and other 
non-uniformity noise (Aragon et  al., 2020). The multilinear 
regression matrix from Aragon et  al. (2020) was applied to 
the collected thermal data before subsequent processing. In 
this correction, the mean Ta acquired during each flight was 
used for the temperature-dependent radiometric calibration to 
remove any influence of ambient temperature dependency. 

Geo-referencing and orthorectification of the TIR imagery were 
performed using Agisoft PhotoScan (Agisoft LLC, St. Petersburg, 
Russia). Before image alignment and scene reconstruction based 
on matched feature points, the calibrated radiance values were 
linearly stretched to the full dynamic range to improve feature 
identification. The image alignment step also performs a bundle 
adjustment to estimate the camera positions, orientations, and 
lens calibration parameters. Hence, to recalculate the camera 
positions, the self-calibrating bundle adjustment computes three-
dimensional point clouds from which thermal orthophotos 
were built (Malbéteau et  al., 2021).

For each of the five UAV campaigns, approximately 150 
individual geo-referenced and orthorectified images were collected 
across each of 18 flight lines. Due to the forward overlap of 
93% and the near-identical acquisition time of neighboring 
overlapping images, an averaging approach was applied to each 
pixel in the overlapping areas of each swath. The averaging 
method was applied to each swath due to the rapid changes 
in surface temperature and the impact of environmental 
conditions on the uncooled (unstabilized) sensor, which is often 
a significant challenge for UAV-based TIR processing (Aragon 

FIGURE 1 | Left: The location of the tomato field experiment and a field photograph of Salt Plot 2 at the King Abdulaziz University Agricultural Research Station, 
Hada Al-Sham, Saudi Arabia (21° 47ʹ48ʺN, 39° 43ʹ35ʺ E). Right: A UAV-derived orthomosaic of the site captured on January 14, 2018, showing the trial layout. 
Bottom: The timing of UAV flights, tomato phenological stages, and concentrations of salt in parts per million (ppm) in the water used to irrigate the salt-treated plots 
across the growing season.
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et  al., 2020). To alleviate the influence of flight orientation 
relative to the wind direction and to ensure normalization of 
neighboring swaths, a flight direction correction method was 
also applied. The correction method normalized the pixel values 
within the neighboring swaths by assuming a 0°C difference 
between the overlapping (60% sidelap) areas. Initially, the first 
swath of the flight survey was used for correcting the second 
swath. Then, the second corrected swath was used for correcting 
the third swath and so forth. Adjusting the temperatures of 
each swath one by one and starting with the first swath of 
the flight survey ensured that all swaths were also corrected 
for temperature variability experienced during the 17 min of 
flight time (Malbéteau et  al., 2021). The normalization process 
of individual swaths allowed them to be  merged to form 
an orthomosaic.

Optical RGB Image Collection and Processing
RGB data were collected with a Zenmuse X3 camera (Dà-Jiāng 
Innovations, Shenzhen, China) concurrently with the TIR data, 
except on December 6, 2017, when RGB data were collected 
at 11:44 (approximately 44 min after the TIR data collection). 
The RGB image collection occurred with 82% sidelap and 
93% along-track overlap, with a photograph captured every 
3 s. All UAV data were collected under clear sky conditions 
and close to solar noon to reduce sun angle impacts on the 
RGB data (Table  1). RGB imagery was processed in Agisoft 
PhotoScan (Agisoft LLC, St. Petersburg, Russia) to construct 
a geometrically corrected orthomosaic, which was then 
radiometrically corrected using calibration panels and the 
empirical line method (Smith and Milton, 1999). Additional 
information regarding the collection, processing, and calibration 
of the RBG imagery is outlined in Johansen et  al. (2019).

The processed RGB orthomosaics had a GSD of 0.005 m. 
The RGB orthomosaics were resampled to the same resolution 
as the TIR orthomosaics (0.015 m) using nearest-neighbor 
resampling in the rasterio.warp module. The resampling was 
undertaken to ensure that the RGB data could be  used to 
determine each plant’s extent for Tp retrieval from the TIR 
data (Figure  2). To ensure accurate co-registration of the TIR 
and RGB datasets, the RGB orthomosaics were manually 
geo-referenced in QGIS (QGIS Development Team, 2021) to 

the TIR data using the five GCPs with a polynomial 
transformation, resulting in a mean square error between the 
centers of each GCP across all campaigns of approximately 0.01 m.

Retrieving Plant Temperature From the 
Thermal Infrared Orthomosaics
An object-based image analysis (OBIA) approach was applied 
to the RGB orthomosaics to identify each plant’s extent in 
the TIR orthomosaic (Figure  2, Step  1). A full description of 
the workflow used to create the OBIA RGB delineations can 
be  found in Johansen et  al. (2019). In order to omit pixels 
within the delineated plants that were associated with white 
identification tags (attached to individual plants), pixels with 
blue reflectance above the 99.5th percentile were removed. 
Next, green vegetation was discriminated within the delineated 
objects by applying a k-means clustering to the green–red 
vegetation index (GRVI) (Motohka et  al., 2010). The GRVI 
was calculated as per Eq.  1 using the collected RGB data, as 
this index produced good results in Johansen et  al. (2019; 
Figure 2, Step 5a). We applied a k-mean unsupervised approach 
run with two clusters, k-means++ initialization, ten different 
centroid seeds, and a maximum iteration of 300  in the scikit-
learn package of the Python 3.5 software (Pedregosa et  al., 
2011). We  set two clusters since the plants had already been 
delineated with the OBIA approach, and we  were merely 
interested in discriminating vegetation from the sandy 
background, which had distinct spectral characteristics. For 
the classification of vegetation, a threshold value of GRVI > 
0 was also used (Motohka et  al., 2010). The distribution of 
temperature for vegetation classified with both the k-means 
approach and the GRVI threshold was subsequently compared 
to determine the most suitable approach (Figure  2, Step  6).

 
Green-red vegetation index GRVI Red

Red
( ) = −

+
Green
Green  

(1)

Even after the GRVI mask was applied, there were a number 
of pixels with Tp that was considerably higher than that expected 
for vegetation, indicating mixed pixel or classification issues. 
Therefore, the approach of Rud et  al. (2014) was adopted to 
determine a realistic estimate for the maximum deviation of 
Tp from Ta. In this case, a threshold of Ta + 9°C was used after 
analyzing both the field-installed Apogee radiometer and UAV 
data for the growing season. Subsequently, any pixels that had 
positive GRVI values but were warmer than Ta + 9°C were 
removed to allow the formation of the final vegetation mask, 
from which Tp was ultimately retrieved (see Figures  2, 3).

Following Poblete et  al. (2018), a k-mean clustering using 
a five-cluster a priori and k-means++ initialization was also 
applied on the blue band in order to differentiate sunlit and 
shaded areas of the tomato plants. The selection of a five-
cluster a priori was also verified by applying the elbow method 
to identify the optimum number of clusters (Thorndike, 1953). 
The maximum blue reflectance value of the first cluster was 
used as the threshold above which vegetation was identified 
as sunlit. From the final vegetation mask (Figure 2), we retrieved 

TABLE 1 | UAV data collection date, start time and coincident mean air 
temperature (Ta), relative humidity (RH), wind speed (WS), and vapor pressure 
deficit (VPD) for the 17-min flights.

UAV Flight 
Date

Start Time Ta (°C) RH (%) WS (ms−1) VPD (kPa)

November 
16, 2017

13:33 32.83 38.78 4.02 3.05

December 
06, 2017

11:00 32.48 22.89 2.85 3.77

December 
20, 2017

11:56 32.14 14.39 2.29 4.11

January 07, 
2018

12:42 29.79 15.85 1.44 3.53

January 14, 
2018

12:47 30.11 27.76 2.43 3.09
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descriptive statistics of Tp (minimum, maximum, mean, median, 
standard deviation, and pixel count). If the vegetation mask 
had a pixel count of <10% of the original number of pixels 
in the OBIA delineation, we  removed the plant from  
further analysis, assuming the plant was dead or that the 
canopy had senesced and was thus too sparse for accurate Tp  
retrieval.

Identifying Plant Stress and Calculating 
Thermal Indices
To consistently compare plant temperature across the five flights, 
we  calculated the deviation of Tp from ambient temperature 
(dTp = Tp - Ta), a measure often used in field phenotyping studies 
of heat tolerance (Balota et  al., 2007). To further normalize 
for meteorological conditions, we  calculated the CWSI using 
Eq (2) (Idso et  al., 1981; Jackson et  al., 1981), where dTp is 
the actual difference between Tp and Ta, dTpLL

 is the lower 
limit that represents transpiration at the maximum rate 
(theoretically a non-stressed plant cooled via latent heat 
exchange), and dTpUL

 is the upper limit that represents a halt 
in transpiration (theoretically a stressed plant, where sensible 
heat exchange determines Tp).

  
CWSI =

−
−

dT dT
dT dT

p

p p

pLL

UL LL  
(2)

Traditionally, there have been two ways to derive these 
transpiration baselines: empirically (CWSIE) and theoretically 
(CWSIT), with many researchers reviewing and debating the 
various limitations of each (Gardner et  al., 1992; Maes and 

Steppe, 2012; Gerhards et  al., 2019). The main limitation of 
the CWSIT is the complex meteorological data required to 
solve the energy balance equation. CWSIE has seen broad 
application, as it only needs three variables (Ta, Tp, and RH) 
to be  calculated. However, the CWSIE approach requires dTp 
and VPD measurements to be collected across an entire growing 
season to calculate robust baselines (Gardner et  al., 1992). 
More recently, UAV studies have proposed a simplified statistical 
method (CWSIS) using the temperature distribution in the 
image scene to set the baselines (Gonzalez-Dugo et  al., 2013; 
Rud et  al., 2014; Bian et  al., 2019). This simplified approach 
is appealing, as it only requires measurements of Ta, which 
facilitates applications in precision agriculture (Cohen et  al., 
2017). However, both stressed and non-stressed plants need 
to be  present in the imagery using the simplified approach.

As our study occurred in Saudi  Arabia, where there is a 
paucity of studies applying the CWSI, we  tested all three 
approaches. For CWSIE, we  calculated the baselines using the 
intercept and slope values for tomato plants in Idso (1982). 
For CWSIT, we  calculated dTpLL as presented in O’Shaughnessy 
et  al. (2011). As the calculation of dTpUL in CWSIT is error-
prone due to the estimation requirements of aerodynamic 
resistance and roughness length (Idso et  al., 1981), we  did 
not calculate it. Instead, we  adopted Ta + 9°C as an estimate 
for dTpUL (see Retrieving Plant Temperature). For the simplified 
statistical approach (CWSIS), we  examined the Tp histogram 
distribution and set dTp LL as the mean of the lowest 5% of 
plant temperatures in the control plots, while dTpUL was set 
as Ta + 9°C. (Meron et al., 2013; Rud et al., 2014; Bian et al., 2019).
We applied a standard independent two-sample T-test (α = 0.01) 
in the SciPy package of the Python 3.5 software language 

FIGURE 2 | Workflow to retrieve plant temperature (Tp) of green vegetation from the thermal infrared (TIR) orthomosaic using an object-based image analysis (OBIA) 
delineation of the red, green, and blue (RGB) image data, k-mean classification, green–red vegetation index (GRVI) thresholding, and air temperature (Ta).

https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles


Stutsel et al. Thermal Imaging of Plant Stress

Frontiers in Plant Science | www.frontiersin.org 7 October 2021 | Volume 12 | Article 734944

(Virtanen et  al., 2020) to assess whether there was a difference 
in thermal indices between salt-treated and control plots. To 
understand the change in thermal indices across the season, 
we calculated the percentage difference between the treatments 
and plotted the thermal indices as a box plot for each treatment 
to determine the optimum time to detect stress.
A field-based visual assessment of plants in poor condition 
was performed on January 4, which identified 30 dead plants. 
To assess whether Tp could be  used to identify the dead plants 
earlier in the season and prior to senescence, 30 healthy plants 
were also selected from a visual assessment of the January 7 
RGB data, with those plants distributed across the two control 
and two salt plots. That allowed comparison of the plants 
from the two groups, i.e., healthy and dead in the beginning 
of January, to determine whether Tp could be  used for early 
detection of plant stress, while all plants were still green 
in December.

RESULTS

Discriminating Plant From Soil 
Temperature in the Thermal Infrared 
Orthomosaics
To determine the best approach to discriminate vegetation in 
the TIR orthomosaics to retrieve Tp, pixel-based temperature 
distributions within all tomato plants in the field trial were 
plotted. The presence of pixel-based temperatures >50°C (i.e., 
approximately Ta + 20°C) within the OBIA delineations (Figure 4) 

indicated that some pixels represented soil or non-photosynthetic 
vegetation. When pixel-based temperature was retrieved using 
k-means clustering of the GRVI with a two-cluster a priori to 
separate background and vegetation, the frequency of pixels with 
temperatures >40°C reduced significantly (Figure  4). Therefore, 
it was assumed that this method was predominantly retrieving 
temperature from pixels representing vegetation rather than a 
mixed pixel response. A limitation of the k-means classification 
was attributed to vegetation being discriminated with a dynamic 
threshold of the GRVI value for the different campaigns to 
separate the two classes (Table  2), making a multi-temporal 
comparison of Tp challenging. Using a fixed threshold of GRVI 
> 0 to discriminate vegetation produced a similar temperature 
distribution across the five campaigns to that of the k-mean 
approach (Figure  4). However, the frequency of pixels with 
positive GRVI values decreased as the percentage of senesced 
vegetation increased. For example, the k-mean threshold for 
GRVI that separates vegetation and background was 0.02 on 
December 6. However, as non-photosynthetic vegetation increased, 
the threshold became −0.04 by January 14, which was the date 
exhibiting the largest difference between the two approaches in 
the number of retrieved vegetation pixels (Table 2). As a consistent 
comparison across the five flight dates was of most interest, a 
fixed threshold of GRVI > 0 was adopted for the final mask 
to retrieve Tp. However, a flexible clustering approach may 
produce better discrimination for single campaigns, which can 
be  seen in the reduced number of pixels >40°C in the k-mean 
approach on December 6 (Figure  4).
As shown in Figure  4, the number of plant pixels increased 
through the growing season, peaking on January 7 with a subsequent 

FIGURE 3 | An example of the vegetation mask where the GRVI was greater than 0 (i.e., indicating vegetation) and with pixels greater than air temperature 
(Ta) + 9°C dropped. Data are overlaid on a red, green, and blue image of six plants in a range of conditions in control plot 2 on January 14, 2018. Note light red on 
the edge plant corresponds to GRVI > 0 pixels warmer than Ta + 9°C.
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reduction due to increasing plant senescence prior to harvest. 
Counter to this trend was the reduction in the number of vegetation 
pixels on December 20. The fact that this occurred in both the 
OBIA and GRVI retrievals suggests that the decline may be attributed 

to the plant damage and decrease in plant area caused by a 
sandstorm before the UAV capture (Johansen et  al., 2019).
There is a tendency toward a negative relationship between 
GRVI and Tp, as increased GRVI values (greenness) result 

FIGURE 4 | Top Distribution of pixel-based temperatures within the plant delineations from the OBIA approach applied to the red green blue (RGB) data (purple) 
and for vegetation within the delineations determined by k-means clustering using a two-cluster a priori on the (GRVI; yellow) for the five UAV data collection dates. 
Bottom) The distribution of pixel-based temperature for vegetation classified where GRVI > 0 (green), overlaid on the k-mean approach (yellow) for comparison. 
When there is a greater frequency of pixels classified as vegetation with GRVI > 0 than the k-means approach (i.e., for December 6), it is shown in a lighter green 
color. Average air temperature (Ta) is shown for each flight.

TABLE 2 | The GRVI k-mean thresholds separating vegetation and the soil background across the five UAV data collection dates, as well as standard deviation (σ) of 
plant temperature (Tp) in the field trial for vegetation masks using GRVI > 0 and GRVI > 0 in combination with Tp < Ta + 9°C.

Flight date Nov 16, 2017 Dec 06, 2017 Dec 20, 2017 Jan 07, 2018 Jan 14, 2018

GRVI k-mean threshold −0.02 0.02 −0.03 −0.02 −0.04
Max σ of Tp @ GRVI > 0 6.0 7.1 7.8 9.2 4.9
Mean σ of Tp @ GRVI > 0 2.3 2.2 2.0 2.1 1.8
Max σ of Tp @ GRVI > 0 + Tp < Ta + 9°C 2.6 3.2 3.3 2.7 2.5
Mean σ of Tp @ GRVI > 0 + Tp < Ta + 9°C 1.3 1.8 1.6 1.5 1.2
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in Tp decreases due to latent heat exchange during transpiration. 
In our study, this trend held within the OBIA delineations, 
which included background soil and non-photosynthetic 
vegetation (Figure 5). However, there was no clear relationship 
between Tp and GRVI for GRVI > 0. The large range in Tp 
values for pixels with GRVI > 0 and the fact that there were 
pixels with positive GRVI values that have unrealistically high 
temperatures for vegetation demonstrated that the GRVI 
co-registration method did not fully resolve mixed pixel issues. 
Therefore, we  set a more realistic threshold of Ta + 9°C for 
the maximum deviation of Tp from Ta to mask pixels further. 
The need for the Ta + 9°C threshold is shown with the reduction 
in the maximum standard deviation (σ) of Tp before and 
after the threshold was applied (Table  2). The mean of the 
maximum σ of Tp was 7°C for the five dates with GRVI > 0  
but decreased to 2.9°C with the GRVI > 0 and Tp < Ta + 9°C 
(Table  2). The drop in the σ of Tp indicates that GRVI > 0  
and Tp < Ta + 9°C effectively classified vegetation pixels and 
omitted background and mixed pixels, which is essential to 
ensure confidence that changes in Tp are an indication of a 
response to salt stress.
The number of plants from which Tp was able to be retrieved 
with the final vegetation mask (GRVI > 0 and Tp < Ta + 9°C) 
compared to the number of plants as identified with the 
initial OBIA RGB delineation is shown in Table  3. As the 
growing season progressed, the sample size of the salt and 
control plots started to differ due to increased deterioration 
of plant condition in the salt plots based on the GRVI < 0  
and Tp > Ta + 9°C thresholds. Note also that Tp was extracted 
from more plants on December 6 than November 16, due 
to the small plant size of the initial vegetative growth stage, 
as well as and soil background effects (i.e., the 
Ta + 9°C threshold).

Examining the Influence of Sunlit and Shaded 
Components of Tomato Plants
While separating vegetation and soil temperatures is important 
to minimize mixed pixel responses (McCabe et  al., 2008), high-
resolution TIR sensing also allows for the discrimination of sunlit 
and shaded elements within the instrument’s field of view. To 
assess whether large temperature differences existed between sunlit 
and shaded vegetation components, the distributions of the sunlit 
(high reflectance) and shaded (low reflectance) components within 
the tomato plants (as determined by GRVI > 0) were compared 
to that of the whole plant, i.e., sunlit and shaded components 
combined. As shown in Figure  6, the plants had a relatively 
homogenous temperature range between sunlit and shaded plant 
components. The largest difference in shaded and sunlit 
temperatures occurred on December 6, 2017, which coincided 
with the date of the greenest vegetation (highest GRVI values) 
and earliest data collection time of 11:00 h. The denser, more 
developed canopy and lower sun angle likely increased the impact 
of shading on this date. However, as there was no distinct 
temperature range between sunlit and shaded components, 
subsequent analysis of retrieved Tp of salt stress was based on 
both sunlit and shaded vegetation, defined by GRVI > 0 and 
Tp < Ta + 9°C.

Can UAV Thermal Infrared Data Identify 
Stressed Tomato Plants?
To determine differences in plant response to either fresh or 
saline water irrigation, we  assessed the deviation of Tp from 
the ambient temperature in both the salt and control plots. 
As shown in Figure  7, the mean temperature of tomato plants 
in the salt-treated plots consistently deviated from the ambient 
temperature more than the control plots across all five collection 
dates. The mean dTp was above 5°C in both the salt-treated 

FIGURE 5 | The relationship between mean plant temperature (Tp) and the mean GRVI for the OBIA delineations (top) and GRVI > 0 retrieval.
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and control plots during the first collection on November 16, 
indicating that the plants may have been too small or sparse 
for accurate Tp retrieval. For instance, the mean plant area 
based on the OBIA RGB delineation was 0.06 m2 on November 
16, but increased to 0.42 m2 by December 6. From December 
6 to January 14, mean dTp increased from 2.2 to 4.1°C in 
the control plots and from 3.6 to 4.7°C in the salt plots, 
demonstrating that the salt treatment led plants to have a 
higher Tp above the ambient temperature (Figure 7). The biggest 
difference in dTp between salt and control plots occurred on 
December 20, with a difference of 1.3°C. Interestingly, on this 
day, plants also had the smallest deviation from Ta, with only 
one outlier in the control plot exceeding 6°C. The UAV flight 
on December 20 had a higher VPD (atmospheric demand for 
water) than on December 6 and January 7 and 14. Often, 
increasing VPD can lead to an initial increase in stomatal 
conductance, which decreases as the plant regulates its water 
exchange (Damour et  al., 2010). The influence of VPD on 

tomato stomatal conductance may have caused the smaller 
dTp values for this date and may also be  contributing to the 
larger dTp difference between salt-treated and control plants 
(Patanè, 2011). The difference in dTp between treatments was 
less apparent on January 14 (4 days before harvest), which 
may have been the result of plant aging and senescence being 
a larger factor in determining Tp than salt stress, as will 
be  discussed in UAV-Derived Plant Temperature.
In order to compare results across the data collections, Tp had 
to be  normalized for the variable weather conditions. To do 
this, the CWSI was calculated in three ways, as presented in 
Identifying Plant Stress and Calculating Thermal Indices 
(also see Supplementary Figure S1). Here, we  only discuss 
CWSIS, as it only required measurements of Ta and showed 
similar characteristics to CWSIE and CWSIT (Also, a full season 
of accurate daily dTp was not available to calculate robust 
local transpiration baselines.) A smaller difference in CWSIS 
between the control and salt-treated plots occurred on January 

FIGURE 6 | Distribution of pixel temperatures for sunlit, shaded, and all vegetation as classified by GRVI > 0 for the five UAV data collection dates. Sunlit vegetation 
was identified as pixels with a reflectance value greater than the maximum value in the first cluster of a five-cluster k-mean approach based on the blue band. 
Average air temperature (Ta) during each flight is also displayed.

TABLE 3 | Number of plants for which plant temperature (Tp) was retrieved in each of the thermal infrared orthomosaics.

UAV flight date
OBIA delineation OBIA masked for GRVI > 0 & < Ta + 9°C

Control Salt Total Control Salt Total

November 16, 2017 587 585 1,172 470 464 934
December 06, 2017 587 586 1,173 575 555 1,130
December 20, 2017 583 582 1,165 531 394 925
January 07, 2018 561 566 1,127 490 361 851
January 14, 2018 524 521 1,045 449 251 700

The number of plants is calculated based on: (1) the delineations of the OBIA approach and (2) the OBIA approach combined with the application of GRVI > 0 and Tp < Ta + 9°C.
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14 compared to the preceding dates. The smaller difference 
in CWSIS between treatments closer to harvest suggests that 
Tp was better at discriminating stress between the fruit formation 
and ripening/mature stages (Figure  1), when plants in both 
plots had more developed canopies. From December 6 to 
January 7, mean CWSIS in the control plots ranged between 
0.23 and 0.27, whereas the salt plots ranged from 0.36 to 0.44, 
indicating that CWSIS > ~0.36 may be  an indicator of stress. 
It is worth noting that CWSIs values <0 represent plants that 
are cooler than the mean of the lowest 5% of plant temperatures 
in the control plots, which was used to set the lower limit 
in the CWSI that represents transpiration at the maximum 
rate. As CWSIs was overestimated if Tp was retrieved from 
non-vegetation surfaces (Irmak et al., 2000), we omitted CWSIS 
values for November 16 due to large dTp values on that date, 
which represented Tp retrievals integrated the soil background.
It is apparent from Figures  7, 8 that there is a large range 
in Tp (and consequently dTp) and CWSIS values within both 
the control and salt plots, which may be  due to different 
stomatal responses to stress in each of the 200 accessions, as 
well as spatial variations within the trial. The spatial variations 
are plotted in Figure  9, with individual CWSIS shown for 
both the control and salt treatment for December 20, 2017, 
and January 7, 2018, which represented the time from fruit 
formation to mature, ripe fruit. As can be  seen, there is a 
clear tendency for higher CWSIS values in the two salt treatments, 
relative to the control, with a larger number of plants with 
CWSIs values >0.35  in the salt-treated plots. For instance, on 
December 20, only 19% of control plants had a CWSIS > 0.35, 
compared to 57% for the salt-treated plants. On January 7, 

the proportion of plants with CWSIS > 0.35 for the control and 
salt plots increased to 24 and 68%, respectively (Figure  9). It 
is, of course, important to recognize that spatial variability in 
real-world trials is more than just a function of plant stress, 
with other soil and environmental factors playing a role. 
However, while not all aspects of the spatial variation (e.g., 
the December sandstorms with northeasterly winds) in CWSIs 
observed in Figure  8 can be  attributed to salt-induced stress 
alone, Figure  9 provides some additional insights to help 
interpret the influence of irrigation treatments.
A field-based assessment of plant condition was undertaken 
on January 4, with 30 plants identified as dead. An equivalent 
number of healthy plants were separately identified from the 
RGB imagery collected on January 7. The CWSIS values for 
plants in the healthy and dead categories are shown on December 
6  in Figure 10 to understand whether CWSIs values measured 
earlier in the season were indicative of the plant condition in 
early January.
Plants in the salt plots that were dead by January 4, but in 
good condition on December 6, generally had higher CWSIs 
values than those control plants that were still healthy at the 
beginning of January (Figure  10). Of the plants that were 
classified as healthy, the ones in the control plots exhibited 
lower CWSIS values than in the salt plots (median = 0.46 and 
0.23, respectively). Interestingly to note is that for salt-irrigated 
plants on December 6, the difference in median CWSIS values 
between plants that were dead and healthy by the beginning 
of January (0.57 and 0.46, respectively) is much smaller than 
for the control plants (0.47 and 0.23, respectively). This is 
most likely because the salt irrigation caused some level of 

FIGURE 7 | Differences between plant and air temperatures (dTp) for all plants within the salt and control plots for the five UAV campaigns. The boxes span the 
interquartile range (IQR), with notches indicating the median and the dashed diamond the standard deviation and mean. The whiskers bound 1.5*IQR.
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FIGURE 8 | Crop water stress index (CWSIS) values for the simplified statistical method over both salt and control plots for four UAV campaigns throughout the 
growing season. The boxes span the interquartile range (IQR), with notches indicating the median and the dashed diamond the standard deviation and mean. The 
whiskers bound 1.5*IQR.

FIGURE 9 | Maps of the CWSIs values for the simplified statistical method in the salt-treated (S1 and S2) and control (C1 and C2) plots for December 20, 2017 
(left), and January 7, 2018 (right).
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plant stress early in the growing season, i.e., December 6, 
irrespective of plant appearance. These differences in CWSIS 
values on December 6 indicate that at least some plants that 
appeared green and visibly healthy with GRVI > 0 and Tp < Ta + 9°C 
showed early stress warning signs with high CWSIs values 
almost a month prior to plant death.

DISCUSSION

Identifying salt-resistant germplasm in field trials is challenging 
for a number of reasons, not the least being that plant response 
to stress is complex and manual field methods to screen 
germplasm are onerous and often subjective (Araus and Cairns, 
2014; Morton et  al., 2018). UAV remote sensing has emerged 
to phenotype plants and provides a way to derive an additional 
understanding of stress responses. Previous research has explored 
the morphometric detection of salt stress in tomatoes through 
RBG and multispectral UAV data (Johansen et al., 2019, 2020). 
While data collection and processing workflows for such 
approaches are comparatively well developed, the retrieval of 
accurate Tp from UAV TIR data remains challenging (Ribeiro-
Gomes et al., 2017; Torres-Rua, 2017; Kelly et al., 2019; Aragon 
et  al., 2020; Perich et  al., 2020).

Challenges in the Retrieval of Plant 
Temperature From Thermal Infrared 
Imagery
Here, we  explored the retrieval of Tp from a UAV TIR camera 
in a tomato field trial, demonstrating that it is possible to 
detect differences between salt-treated and control plants, which 
may help identify salt-tolerant tomato germplasm in future 

research. In our study, Tp was retrieved where GRVI > 0 and 
setting a maximum pixel threshold of Ta + 9°C. The latter 
condition was required because the presence of pixels with 
Tp > Ta + 20°C in the OBIA plant delineation showed that object-
based methods alone are insufficient to retrieve accurate Tp, 
at least from the tomato plants explored herein. This finding 
aligns with Cohen et  al. (2017), who also suggest that while 
object-based approaches work well for tree crops, they fail to 
retrieve Tp from field crops due to their less defined canopy 
structure. We  observed that even when Tp is extracted from 
pixels with GRVI > 0, temperatures that are unrealistically 
high for vegetation still occurred, demonstrating that the use 
of GRVI alone does not fully resolve mixed pixel issues. Our 
findings align with recent UAV TIR studies that could not 
eliminate all mixed pixels. For example, Zhang et  al. (2019) 
used red and green reflectance together with TIR data to 
retrieve Tp for a maize crop and concluded that better methods 
for eliminating mixed pixels are required to facilitate 
accurate extraction.
In our study, the mixed pixel issues were alleviated by combining 
RGB data with this empirical method (i.e., Ta + 9°C), which 
estimates the maximum temperature possible for non-transpiring 
vegetation. Researchers commonly report this empirical upper 
baseline in studies of drought stress for inclusion in CWSI 
calculations, e.g., Ta + 5°C in cotton (Cohen et al., 2005), Ta + 7°C 
in potato (Rud et  al., 2014), and Ta + 5°C in wheat (Jackson, 
1982) have all been used. The fact that our upper baseline 
was larger than those published could be  attributed to the 
higher solar radiation and Ta of the arid field site or potentially 
an extreme isohydric behavior (Han et  al., 2020), with closed 
stomata required to maintain turgor. As the field installed 
Apogee TIR radiometers used for setting the Ta + 9°C threshold 
make an integrated measurement of Tp from their field of 
view, vegetation movement driven by wind may have occasionally 
led to the integration of soil temperature, but it was not possible 
to fully resolve or remove the impact of soil background 
(Aubrecht et  al., 2016).
The successful retrieval of Tp using a co-registration approach 
between the RGB and TIR imagery was dependent on good 
pixel alignment of the whole study area (Meron et  al., 2013). 
While the datasets in the study were collected with two different 
sensors (Zenmuse X3 and TeAx 640) having differing resolutions 
and viewing geometries, they showed good alignment at the 
GCPs. Future research could identify whether the processing 
of RGB and TIR data together, as in Javadnejad et  al. (2020), 
leads to better Tp retrieval than processing datasets separately 
with co-registration to GCPs. While new strategies for processing 
TIR data and identifying vegetation within the orthomosaic 
would likely improve results, research advances are inevitably 
constrained by available UAV TIR camera resolutions (640 × 480 
pixels) and precision (Aragon et  al., 2020). Although lower 
flying heights can increase pixel resolution, the downwash from 
a multirotor UAV may influence measured Tp (Tang et  al., 
2020). Lower flying height also increases flying time to cover 
the site, increasing the chance of temperature changes occurring 
during a flight, which could further influence results. The 
precision of uncooled microbolometers, together with the 

FIGURE 10 | CWSIs values on December 6 for the simplified statistical 
method for plants from both the control and salt-treated plots identified as 
either dead (by ground-based visual observation) on January 4 or healthy (by 
RGB image assessment) on January 7. The boxes span the interquartile 
range (IQR), with notches indicating the median and the dashed diamond the 
standard deviation and mean. The whiskers bound the 1.5*IQR. The sample 
size is reflective of the plants that were identifiable in the UAV imagery with the 
GRVI > 0 and plant temperature <air temperature +9°C on both December 6 
and January 7, or field-identified as dead on January 4 (control dead = 12, 
control healthy = 10, salt dead = 18, and salt healthy = 20).
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potential impact of adjacency effects from background scattering 
(Aragon et  al., 2020), adds further uncertainly to derived Tp 
measurements. While the adjacency effect on high-resolution 
satellite data has recently been explored (Zheng et  al., 2019; 
Duan et  al., 2020), the influence on UAV-based data remains 
under-explored and should be the focus of future work, especially 
in regard to phenotyping studies, where sub-degree accuracies 
may be  required.
The detection of plant stress via UAV TIR data can be sensitive 
to the level of solar radiation due to its influence on stomatal 
conductance, with many studies showing the need to consider 
variation between sunlit and shaded plant components (Jones 
et  al., 2002; Meron et  al., 2013; Poblete et  al., 2018; Zhang 
et  al., 2019). However, these studies predominately occur in 
tree or vineyard crops with developed canopies where intra- 
and inter-plant shading can be  significant compared to low 
profile well-spaced tomato plants. Nonetheless, we  examined 
the temperature difference between high (sunlit) and low 
(shaded) blue reflectance areas of the plants and found, as 
opposed to Poblete et al. (2018), that shadowing did not increase 
the range in Tp. Therefore, the separation of sunlit and shaded 
plant components did not improve results in our study. It also 
meant that methods incorporating the standard deviation of 
Tp as a proxy for transpiration differences between sunlit and 
shaded areas to detect stress such as in Han et  al. (2016), 
could not be  applied to our study.

UAV-Derived Plant Temperature Can 
Be Used to Identify Plant Stress
While there are many unresolved questions and inherent sensor 
limitations for Tp retrievals from UAV TIR data, our research 
demonstrates a detectable difference in Tp between the salt-
treated and control plots. Differences are apparent across all 
data collections following the initial salt application on November 
14, 2017. Results suggest that Tp best discerns plant stress 
between the stages of fruit formation and ripening (i.e., between 
December 20 and January 7), an outcome most likely related 
to canopy cover, which was shown to peak approximately a 
month before harvest (Johansen et al., 2019). Increased canopy 
closure reduces soil background influence and increases the 
plant area over which transpiration is occurring. Once senescence 
begins, and photosynthesis reduces, and so too does transpiration 
and canopy cover. This result aligns with Perich et  al. (2020), 
which, although based on a wheat crop, also showed that the 
optimal time to make TIR measurements is before the onset 
of senescence. The smaller difference in TIR indices (dTp and 
CWSIs) between salt and control plots on January 14, together 
with the broad range in plant condition in both treatments, 
demonstrates that the morphometric methods of Johansen et al. 
(2019) present a better approach for identifying stress-tolerant 
germplasm close to harvest.
Our results suggest that a threshold of CWSIs >0.36 may 
indicate stress, based on mean differences between salt-treated 
and control plants and the fact that this threshold applied to 
57 and 68% of plants in the salt plot, but only 19 and 24% 
in the control plots on December 20 and 7 January, respectively. 

While studies applying CWSI to tomato plants are limited, 
our results are similar to Anconelli et  al. (1993), where CWSI 
>0.35 led to yield reduction in processing tomatoes (i.e., tomatoes 
that are canned and machine harvested). Many studies have 
suggested that CWSI values around 0.3 represent an optimum 
threshold for commencing irrigation in response to water stress 
(Reginato, 1983; da Silva and Rao, 2005; González-Dugo et  al., 
2006). While there are observable differences between the salt 
and control plots, there is a broad range of dTp and consequently 
CWSIs values in both treatments. This range may be  inherent 
to the data collection method due to thermal drift or the 
creation of the orthomosaic. However, compared to previous 
research we  applied a novel orthomosaic generation method 
by Malbéteau et al. (2021), wherein the temperature of overlapping 
pixels was averaged along each swath and normalized between-
swath temperatures to reduce the impact of standard orthomosaic 
generation approaches (which integrate overlapping flight lines 
collected minutes apart and exposed to different wind directions).
Presuming the ranges in CWSIs are reflective of real temperature 
differences between plants, we  suggest that these differences 
are due to the 200 accessions exhibiting a range of stomatal 
conductance responses to salt stress. While Tp has been used 
to detect plant stress since the 1960s (Fuchs and Tanner, 1966), 
it is based on the assumption that plants show an isohydric 
reaction to stress, reducing stomatal conductance to limit 
transpiration. A growing body of evidence suggests that plants 
within the same species exhibit both isohydric and anisohydric 
responses to stress (Sade et al., 2012). The mechanism employed 
by tomato varieties with different salt tolerance levels to regulate 
water use is also unclear (Han et  al., 2020). For example, the 
commercial variety “Moneymaker” (Lycopersicon esculentum 
Mill., cv) is anisohydric and maintains stomatal conductance 
in response to stress (Sade et  al., 2012). The domesticated 
variety “Brigade” (Lycopersicon esculentum Mill.) reduces 
stomatal conductance under drought stress. However, it also 
opens stomata within a day of irrigation (Patanè, 2011). In 
comparison, wild types of tomato plants can keep stomata 
closed for up to 6 days after irrigation to maintain turgor 
(Torrecillas et al., 1995). The variation in stomatal conductance 
response among the 200 wild genotypes in our trial is still 
to be determined. Therefore, even with very accurate Tp retrievals, 
cooler plants may not necessarily be  the least stressed in terms 
of agronomically desirable traits such as yield. Plants that had 
a higher temperature soon after salt application may maintain 
turgor and produce comparatively higher yields. Resolving this 
complexity and determining whether Tp can be  used to 
differentiate the performance of accessions in our trial are the 
focus of ongoing research. Identification of inter-accession 
differences was not the intent of the research presented herein, 
as the combination of accuracy limitations in current TIR 
cameras (Kelly et  al., 2019; Aragon et  al., 2020), the complex 
role of environmental interactions with plant response, and 
the uncertainty and complexity in the mechanism employed 
by Solanum pimpinellifolium plants in response to salt stress 
are all aspects that impact the discrimination of accession-
based behavior. Ongoing work will seek to explore some of 
the genotype–phenotype interactions, and the thermal infrared 
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data may provide some insights into this effort. As UAV-based 
Tp results are confounded by a plant’s morphology (canopy 
density, leaf inclination), there also needs to be focused research 
into how to account for morphological variation to increase 
confidence in the association between observed Tp and stomatal 
conductance (Perich et  al., 2020).
The fusion of TIR information with broadband spectral (Johansen 
et  al., 2019) or hyperspectral data will likely provide more 
in-depth insight than TIR data alone to elucidate the challenges 
in observed Tp associated with plant physiological response 
(Hernández-Clemente et  al., 2019). Building upon the results 
herein and integrating TIR data into the development of turnkey 
UAV phenotyping solutions could provide a method to enable 
the early detection of salt impacts by detecting changes in Tp 
in the initial ion-independent response to stress. While our 
study would have been improved by ground-based visual scoring 
of plant health during November and December (after the 
initial salt application), our results showed that CWSIS values 
were higher in salt-treated than control plants from December 
6. Early detection of stress before observed changes in plant 
form would enable breeders to select germplasm for future 
breeding studies rapidly and farmers to balance irrigation with 
brackish water while maintaining yields.

CONCLUSION

Salinization is increasingly impacting agricultural land around 
the world, and available freshwater water resources are 
increasingly under sustained pressures. Identifying new plant 
varieties that can either thrive on salinized land or tolerate 
irrigation with brackish water is crucial to ensuring future 
water and food security. UAV-based remote sensing has emerged 
as an effective means to phenotype field plants rapidly. Combining 
TIR imagery with multispectral data may enable the detection 
of plant stress before visible symptoms become apparent. Here, 
we  retrieved Tp from UAV-based TIR data using concurrently 
collected RGB data to identify vegetation pixels (GRVI > 0) 
and an empirical estimate of the maximum possible vegetation 
temperature (Tp < Ta + 9°C) to alleviate mixed pixels with 
background contamination. Results demonstrated measurable 
differences in Tp between salt-treated and control plants across 
five UAV campaigns performed during the growing season, 
with analysis suggesting that CWSIS >0.36 was indicative of 
stress. The reduction in CWSIS differences between treatments 
toward the end of the growing season demonstrates that the 
optimum time to use Tp for identifying salt stress is between 
the fruit formation and ripening stages. Tp and CWSIS differences 
between salt and control plots were detectable from December 
6, indicating that TIR data may provide a means of early 
detection of salt stress before visible impacts are discernable. 
Further research with more frequent image and field data 
around the initial salt treatment is required to identify the 
exact time between salt application and a measurable Tp response 
to stress. Tp and CWSIS differences were also identified not 
just between control and salt-treated plants, but between control 
plants that went on to either die or sustain their plant health 

a month later. While our analyses provide new insights into 
the use of UAV-based TIR sensing for the early detection of 
plant stress, additional research is required to explain both 
the observed spatial variation and the processes behind stomatal 
conductance regulation in individual accessions.
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