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Specialized photosynthetic organs have appeared several times independently during
the evolution of land plants. Phyllids, the leaf-like organs of bryophytes such as
mosses or leafy liverworts, display a simple morphology, with a small number of
cells and cell types and lack typical vascular tissue which contrasts greatly with
flowering plants. Despite this, the leaf structures of these two plant types share many
morphological characteristics. In this review, we summarize the current understanding
of leaf morphogenesis in the model moss Physcomitrium patens, focusing on the
underlying cellular patterns and molecular regulatory mechanisms. We discuss this
knowledge in an evolutionary context and identify parallels between moss and flowering
plant leaf development. Finally, we propose potential research directions that may
help to answer fundamental questions in plant development using moss leaves as a
model system.

Keywords: Physcomitrum patens, Physcomitrella patens, leaf, heteroblasty, bryophytes, development,
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INTRODUCTION

Leaves are photosynthetic organs with mainly determinate growth that evolved several times
independently during land plant diversification (Tomescu, 2009; Nelissen et al., 2016). These
organs can be large with a complex structure as some flowering plant leaves, or small and
anatomically simple as bryophyte phyllids (hereafter called leaves). However, they all display a
predominantly flat shape as an adaptation to optimize light capture. The genetic basis of leaf
development has been extensively studied in flowering plants (Bar and Ori, 2015; Du et al., 2018;
Maugarny-Calès and Laufs, 2018). However, how genetic commands are coordinated between
cells and translated into supracellular level organization, and the final leaf shape remains largely
elusive. This is due to the complex, multilayer structure of flowering plant leaves with interweaving
interactions between cells and tissues (Malinowski, 2013).
The development of upright bryophyte gametophores, or leafy shoots, has contributed to the
colonization of new environments by plants and helped mosses to thrive on land for hundreds
of million years (Mitchell et al., 2021). Moss leaves are lateral appendages attached to the stem
of gametophores. In the model species P. patens (Physcomitrum patens, formerly known as
Physcomitrella patens), leaves are small and composed of cells arranged principally in a single layer
(Courtice and Cove, 1983; Figures 1A–C). As the gametophore grows, leaves start to develop a
midrib (a bundle of specialized conducting cells) and marginal serrations (Sakakibara et al., 2003;
Barker and Ashton, 2013; Dennis et al., 2019; Figure 1E). At first glance, the lanceolate-shaped
leaves of P. patens mirror the dominant leaf shape of flowering plants, but they have a much
simpler structure and smaller size, and can be more easily imaged, which makes them an ideal
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FIGURE 1 | Leaf anatomy in P. patens. (A) A leafy shoot (or gametophore) with juvenile and adult leaves from the base to the top. (B) Adult (upper) leaf has a
multicellular midrib and lanceolate shape. The leaf margin is magnified to show marginal serrations (red arrowhead) formed by cell tip outgrowths. (C) First juvenile
leaf is composed of a single cell layer and has a rectangular shape. (D) Three cell shapes are commonly identified in adult leaves: long and narrow cells on the edge;
smaller and more isodiametric cells close to the tip (top); long and broad cells near the base (based on Dennis et al., 2019). (E) TEM cross-section image of a midrib
cell bundle with thick-walled stereids and thin-walled hydroids (marked with blue and red asterisk respectively). Scale bars: 200 µm in (A); 50 µm in (B,C); and
10 µm in (E).

system for studying leaf development. However, our
understanding of moss leaf organogenesis is still limited. Here,
we review current knowledge on P. patens leaf organogenesis,
focusing on the cellular dynamics and molecular factors
underlying leaf development.

LEAF INITIATION

In contrast to flowering plants where lateral organs are generated
at the multicellular shoot apical meristem (Kuhlemeier, 2017),
leaves in bryophytes are derived from a single shoot apical cell
(Gifford, 1983; Harrison et al., 2009). This shoot apical cell is
itself generated from a single shoot initial cell. Specification of the
shoot initial cell requires both cytokinin and auxin (Ashton et al.,
1978; Cove et al., 2006; Bennett et al., 2014). Factors including
DEFECTIVE KERNEL 1 (DEK1), NO GAMETOPHORES 1 and
2 (NOG1 and 2) RECEPTOR-LIKE PROTEIN KINASE 2 (RPK2),
and CLAVATA (CLV) function through APETALA2-type (AP2-
type) transcription factors to control the frequency of shoot
initial cells (Aoyama et al., 2012; Perroud et al., 2014; Moody
et al., 2018, 2021; Whitewoods et al., 2018; Demko et al., 2021;
Nemec Venza et al., 2021). In P. patens, a shoot initial cell

undergoes several rounds of stereotypic, oblique cell divisions
that lead to the formation of a tetrahedral shoot apical cell,
marking the transition from a so-called 2D to 3D growth mode
(Figure 2A; Harrison et al., 2009). These divisions are also
regulated by DEK1, CLV, NOG1, and NOG2 genes (Perroud
et al., 2014; Moody et al., 2018, 2021; Whitewoods et al., 2018;
Nemec Venza et al., 2021), and precisely fulfilled by mitotic
spindle orientation regulators, including microtubule-associated
protein TARGETING FACTOR FOR Xklp2 and SABRE (Kosetsu
et al., 2017; Kozgunova et al., 2020; Cheng and Bezanilla, 2021).
Additionally, SOSEKI proteins might also be involved in apical
cell identity specification and division (van Dop et al., 2020).

The self-renewing activity of the shoot apical cell gives
the gametophytic leafy shoot a capacity for indeterminate
growth. Through successive asymmetric divisions, the apical
cell maintains itself and gives rise to merophytes, which divide
to generate leaf initials and cells that produce stem tissues
(Figure 2A). This cell-autonomous capacity to rotate cell division
planes in 3D initiates the growth of upright leafy gametophores
and underlies its spiral phyllotaxy (Figure 2B; Kamamoto
et al., 2021; Véron et al., 2021). Similar to flowering plant
meristems, leaf initial outgrowth and shoot apical cell function in
mosses involve auxin and PIN-FORMED (PIN) mediated auxin
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FIGURE 2 | Leaf growth in P. patens. (A) Schematic representation of the transition from 2D to 3D growth during leafy gametophore initiation. Gametophore shoot
initial cell divides obliquely to generate the shoot apical cell (in green). Second and third divisions of the shoot initial cell are also oblique and generate a hair cell (in
white) and the first leaf initial (L1, in red) consecutively. From this stage, the shoot apical initial cell becomes tetrahedral and generates subsequent leaf initials. (B) A
single apical cell (marked with asterisk) produces leaves in a spiral phyllotactic pattern with leaf sequences indicated in consecutive numbers. (C) Schematic
representation of the early development of the juvenile leaf. The leaf apical cell is shown in red and the cell recently cleaved from the apical cell is shown in blue. Red
dotted lines indicate recent cell division (based on Harrison et al., 2009). (D) Schematic representation of clonal sectors arising from single cells shown in (C) at early
stages of leaf development. (E) Schematic representation of cell division patterns within the segments generated by the leaf apical cell. Red lines represent new walls
(based on Harrison et al., 2009). (F) Schematic representation of the distribution of cell sizes in the adult leaf. Bigger cells are located in the distal region of the leaf,
smaller cells in proximal region (based on Dennis et al., 2019). (G) Schematic representation of the PpPINA protein localization (in green) in the adult leaf (Viaene
et al., 2014).

transport but the precise mechanism of their action is unclear
(Bennett et al., 2014). SHORT-LEAF (SHLF), a bryophyte specific
tandem direct repeat gene, is likely involved in the underlying
mechanism, as SHLF expression is associated with auxin
accumulation in the gametophore and the capacity of the shoot
apical cell to generate leaves (Mohanasundaram et al., 2021).

LEAF DEVELOPMENT

Leaf development in P. patens starts with the outgrowth of
the leaf initial cell, which depends on auxin and cellulose
biosynthesis (Goss et al., 2012; Bennett et al., 2014). The leaf
initial cell maintains meristematic potential and cleaves daughter
cells basipetally (Harrison et al., 2009). Similar to the shoot
apical cell, the divisions of the leaf initial cell seem to be

controlled cell-autonomously but instead of rotating spirally,
subsequent divisions alternate in the same plane and are almost
perpendicular to each other (Figures 2C,D; Harrison et al., 2009;
Bascom et al., 2016). The orientation of the leaf initial cell division
plane is likely controlled by microtubules as mutants lacking
the cortical microtubule regulator TONNEAU1 develop thick
multi-layered leaves (Spinner et al., 2010). Eventually, the leaf
apical cell stops dividing and becomes the pointed tip of the leaf.
Daughter cells derived from the leaf apical cell divide further,
first near the leaf base (Figure 2E). The proliferative activity of
these daughter cells decreases gradually so that cells near the
tip divide less frequently and give rise to smaller segments of
the leaf (Figures 2C,D; Harrison et al., 2009). Several rounds
of longitudinal divisions within sectors derived from the leaf
apical cell, especially in the outermost lateral portion of the
leaf, lead to leaf broadening (Figure 2E). Additional transverse
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divisions also contribute to extending the daughter segments in
the proximo-distal axis (Figure 2E; Harrison et al., 2009).

Quantitative analysis of the entire leaf growth at cellular
resolution has not yet been performed in P. patens. However,
the basipetal gradient of cell proliferation (Figure 2E; Harrison
et al., 2009) and basipetal increase of cell sizes in mature leaves
(Figure 2F; Barker and Ashton, 2013; Dennis et al., 2019) indicate
that cells near the leaf tip are the earliest to cease growth.
Cells at the tip differentiate first as they become insensitive to
exogenous cytokinin, while cell proliferation in more proximal
leaf regions is stimulated by this hormone (Barker and Ashton,
2013). Interestingly, basipetal gradients of growth, proliferation,
and differentiation are key features of many flowering plant
leaves and is controlled non-cell-autonomously by positional
information (Avery, 1933; Andriankaja et al., 2012; Kuchen et al.,
2012; Fox et al., 2018; Kierzkowski et al., 2019). Thus, apart from
the cell-autonomous behavior of the leaf apical cell, positional
cues also likely play a role in controlling moss leaf growth.

Auxin is a fundamental player in plant organogenesis where
it regulates cell proliferation, elongation, and differentiation in
a positional and context dependent manner (Vieten et al., 2007;
Weijers et al., 2018). An essential common genetic toolbox
involved in auxin biosynthesis, transport, and signaling is
conserved between flowering plants and bryophytes (Poli et al.,
2003; Kato et al., 2018; Thelander et al., 2018). Auxin could
provide positional information during moss leaf development.
Although the signal of the GH3:GUS reporter has not been
observed in the wild type leaves of P. patens, exogenous
auxin treatments disrupt leaf growth (Barker and Ashton, 2013;
Bennett et al., 2014).

Auxin distribution within the developing leaf could be
controlled by canonical auxin efflux carriers PIN-FORMED A
and B (PpPINA and B) (Bennett et al., 2014; Viaene et al., 2014).
The expression of PpPINA is displaced along the proximo-distal
axis of the leaf during growth and correlates with developmental
gradients (Figure 2G). This correlation is also evident at the
subcellular level, where PpPINA protein is localized bipolarly
on both apical and basal cell sides close to the leaf tip,
while it is distributed more uniformly in cell membranes near
the leaf base (Figure 2G; Viaene et al., 2014). Alternatively,
auxin gradients in mosses might also be achieved by callose-
controlled plasmodesmata-mediated diffusion (Coudert et al.,
2015). Gametophores of the shlf mutant produce shorter leaves
with a decreased cell number, similar to plants grown with a high
auxin concentration or overexpressing PpPINA. Auxin activity
gradients can be detected in leaves of the shlf mutant where
GH3:GUS signal is present in very young leaves and at the tip
of more developed leaves (Mohanasundaram et al., 2021). As
SHLF might regulate plasmodesmata frequency, it could control
leaf morphogenesis through the regulation of auxin gradients
(Mohanasundaram et al., 2021).

Class III Homeodomain-Leucine Zipper (HD-ZIP III)
transcription factors are key players during flowering plant
development and are associated with auxin synthesis and
transport (Prigge and Clark, 2006; Ariel et al., 2007; Turchi
et al., 2015). There are five HD-ZIP III homologs in the
P. patens, namely PpC3HDZ1-5 (Yip et al., 2016). PpC3HDZ

expression colocalizes with actively developing regions in adult
leaves. Strikingly, PpC3HDZ knock-down induces pronounced,
multicellular protrusions along leaf margins that resemble the
distal portion of wild-type leaves. It indicates that in PpC3HDZ
knock-down plants, daughter cells derived from the leaf
apical cell, whose normal divisions produce characteristic leaf
sectors (Figures 2C,D), could recapitulate the cell-autonomous
behavior of the apical cell itself. Additionally, in PpC3HDZ
knock-down leaves, cell number is reduced, suggesting that
HD-ZIP III genes are important for the establishment and/or
the maintenance of the proliferative activity of the daughter
cells (Yip et al., 2016). PpC3HDZ expression domain mirrors
PpPINA distribution, and both PpC3HDZ knock-down and
PpPINA/PpPINB knock-out lines produce narrower leaves
with a reduced cell number, indicating that HD-ZIP III
function could be at least partially related to auxin-dependent
positional information (Bennett et al., 2014; Viaene et al., 2014;
Yip et al., 2016).

LEAF HETEROBLASTIC DEVELOPMENT

Although all leaves of P. patens initiate from single cells,
their morphology changes gradually up the gametophore axis
(Figure 1A; Barker and Ashton, 2013; Dennis et al., 2019),
a phenomenon called heteroblastic development (Zotz et al.,
2011). As in Arabidopsis, juvenile leaves in P. patens are much
smaller than adult leaves (Figures 1B,C; Courtice and Cove,
1983; Barker and Ashton, 2013). The width of the juvenile leaf
is relatively constant except at the tapering tip, resulting in a
roughly oblong shape (Figure 1C). By contrast, adult leaves have
a lanceolate shape with a narrow base, a broader middle part, and
a pointy tip (Figure 1B). The increase in size during heteroblastic
development results from an increase in cell number but not cell
size (Dennis et al., 2019). In flowering plants, auxin and cytokinin
regulate cell proliferation and differentiation in an opposite
manner during leaf development (Shani et al., 2010; Kierzkowski
et al., 2019; Skalák et al., 2019). Exogenous treatments with
auxin, or knock-out mutants in auxin efflux carriers PpPINA
and PpPINB, cause a decrease in moss leaf size by reducing cell
number (Bennett et al., 2014; Viaene et al., 2014). By contrast,
cytokinin treatment increases cell proliferation and enhances
adult leaf characteristics (Barker and Ashton, 2013). Altogether
this indicates an important role of cytokinin-auxin cross-talk in
moss leaf heteroblastic development.

The transition from juvenile to adult leaves in P. patens
is also associated with morphological changes of the marginal
cells that become long and narrow (Figure 1D) as well as the
formation of a multilayered midrib (Figure 1E; Barker and
Ashton, 2013; Dennis et al., 2019). Marginal cells tend to grow
slightly outward at their distal end to form marginal serrations
that usually appear on the apical half of the adult leaf (Barker
and Ashton, 2013). The leaf margin in flowering plants has a
distinct cell morphology and plays an important role during
leaf development (Bilsborough et al., 2011; Nakata et al., 2012;
Kalve et al., 2014; Alvarez et al., 2016; Hayakawa et al., 2016).
Marginal cells in P. patens could play a role in controlling upper
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leaf size and shape by restricting or promoting growth around
its circumference. The wrinkled leaves with undifferentiated
marginal cells of crinkly4 mutants likely result from mechanical
conflicts in lamina cells (Demko et al., 2016). The leaf margin
could also work in tandem with the midrib in the bigger leaves
and ensure proper leaf flattening by preventing blade twisting.
However, the role of marginal cells in moss leaf morphogenesis
remains elusive.

THE ROLE OF MIDRIB

Unlike vascular plants which conduct water through the xylem,
mosses neither possess vessel elements or tracheids, nor have
an interconnected network of veins. Instead, mosses mostly
rely on external water conduction by capillary action to carry
out water-dependent physiological functions (Proctor, 1979).
However, the adult leaves conduct water through a multi-
layered tissue called the midrib that is reminiscent of a vascular
bundle and arises through a series of periclinal and anticlinal
cell divisions (Ligrone et al., 2000; Sakakibara et al., 2003; Yip
et al., 2016). These cell divisions give rise to different cell
types within the leaf midrib, including thick-walled stereids
and thin-walled, elongated hydroids (Figure 1E). Hydroids
are the main water-conducting cells. They are initially alive,
before undergoing programmed cell death, and have fully
degenerate protoplasm upon maturation (Xu et al., 2014).
Stereids also undergo programmed cell death but may mainly
serve a supporting purpose. Therefore, hydroids resemble xylem
vessel elements and tracheids, except that they lack a lignified
secondary cell wall, while stereids resemble xylem fiber cells
(Ligrone et al., 2000).

Several genes affecting midrib formation have been identified
and characterized. For instance, among the seven moss genes
that encode VND/NST/SND family transcription factors,
six of them (PpVNS1-7, except PpVNS3) are expressed in
the central region of newly formed leaves or in developing
midribs. The triple mutant (ppvns1,6,7) forms morphologically
normal midribs. However, stereid programmed cell death
and hydroid proliferation are disrupted, and the water
conducting capacity is greatly compromised (Xu et al.,
2014). Interestingly, VNS orthologs are critical for xylem
vessel element formation in angiosperms, suggesting that
mosses and vascular plants may at least partly use the
same molecular mechanism in shaping water-conducting
tissue. The leaves of midrib-defective mutants tend to curl
around the middle axis under low-humidity conditions,
indicating a water transport deficiency. Nevertheless,
compromised midrib formation does not seem to have
a detrimental impact on overall moss growth, at least in
laboratory conditions.

HD-ZIP III transcription factors also control midrib
establishment. When their function is suppressed, midrib
formation is abnormal and leaf shape becomes distorted (Yip
et al., 2016). Given that HD-ZIP III transcription factors ATHB8,
ATHB15, and REVOLUTA are essential for procambial cell
specification and vasculature development, the observation

that HD-ZIP III proteins function in specifying moss water-
conducting tissues further suggests that shared molecular
mechanisms underpin conducting tissue development in
convergent plant organs (Kang and Dengler, 2002; Ohashi-Ito
et al., 2002; Green et al., 2005; Prigge et al., 2005; Donner et al.,
2009) and therefore that these mechanisms may have evolved
before the divergence between bryophytes and vascular plants.
Nonetheless, further research on midrib development is needed
to uncover the regulatory circuits underlying the morphological
differences between juvenile and adult leaves.

PERSPECTIVES

In this review, we summarized the current understanding of
leaf development in the model species P. patens. Proper leaf
morphogenesis in this moss seems to require coordination of cell-
autonomous and non-cell-autonomous developmental processes
that are controlled via cross-talks between molecular regulators
that are bryophyte-specific or shared by land plants. It is,
however, still difficult to understand how these genetic and
hormonal inputs are translated into cellular growth and division
patterns and how they are coordinated in space and time within
the mechanically connected tissue constituting the P. patens leaf.

In recent years, new research approaches combining genetics,
quantitative live-imaging, biomechanics, and computational
modeling have massively advanced our understanding of organ
development in plants (Hervieux et al., 2016; Solly et al., 2017;
Fox et al., 2018; Hong et al., 2018; Kierzkowski et al., 2019;
Sapala et al., 2019; Wolny et al., 2020; Whitewoods et al., 2020;
Hernandez-Lagana et al., 2021; Vijayan et al., 2021). The next step
will be to apply such a multidisciplinary approach to study moss
leaf development.

In comparison with the complex anatomy of flowering
plant leaves, the single-cell-layered structure of P. patens leaf
provides a unique opportunity to quantify the development of
the entire organ in 3D. Such an approach, should provide a
comprehensive picture of moss leaf developmental dynamics
at cellular resolution that otherwise would be difficult to
apprehend. In contrast with flowering plants, gene targeting
by homologous recombination is very efficient in P. patens,
and together with CRISPR/Cas9-mediated gene editing, permits
to bypass genetic redundancy and rapidly generate high-
order mutants (Koshimizu et al., 2018). Combination of
imaging and genetic approaches will, for example, help us
to understand the precise role of molecular regulators in
the control of cell-autonomous and non-cell-autonomous
behaviors during growth and their role in juvenile to adult
leaf transition.

Single-cell-layered leaves in P. patens will also be a huge
asset to dissect the role of biomechanical signals regulating plant
organogenesis. Largely eliminating complex interactions that
occur between different tissue layers of developing organs, as in
flowering plants, this moss model system should provide a better
understanding of the mechanical interactions between individual
cells and their role in the coordination of organ growth. As
P. patens leaves are easy to manipulate and have relatively
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big cells, they should also enable precise measurements of cell
mechanical properties using modern micro-indentation devices
(Routier-Kierzkowska et al., 2012; Robinson et al., 2017; Majda
et al., 2019) or turgor pressure manipulations (Kierzkowski et al.,
2012; Sapala and Smith, 2020). All these experimental inputs,
in combination with geometrically accurate templates extracted
from confocal images, will enable the creation of biologically
realistic simulations of the entire moss leaf. Such models will
not only provide a comprehensive picture of P. patens leaf
development, but also advance our general understanding of the
mechanism governing plant organogenesis.
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