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Wheat blast is an emerging threat to wheat production, due to its recent migration to
South Asia and Sub-Saharan Africa. Because genomic selection (GS) has emerged
as a promising breeding strategy, the key objective of this study was to evaluate it
for wheat blast phenotyped at precision phenotyping platforms in Quirusillas (Bolivia),
Okinawa (Bolivia) and Jashore (Bangladesh) using three panels: (i) a diversity panel
comprising 172 diverse spring wheat genotypes, (ii) a breeding panel comprising 248
elite breeding lines, and (iii) a full-sibs panel comprising 298 full-sibs. We evaluated two
genomic prediction models (the genomic best linear unbiased prediction or GBLUP
model and the Bayes B model) and compared the genomic prediction accuracies
with accuracies from a fixed effects model (with selected blast-associated markers
as fixed effects), a GBLUP + fixed effects model and a pedigree relationships-based
model (ABLUP). On average, across all the panels and environments analyzed, the
GBLUP + fixed effects model (0.63 ± 0.13) and the fixed effects model (0.62 ±
0.13) gave the highest prediction accuracies, followed by the Bayes B (0.59 ± 0.11),
GBLUP (0.55 ± 0.1), and ABLUP (0.48 ± 0.06) models. The high prediction accuracies
from the fixed effects model resulted from the markers tagging the 2NS translocation
that had a large effect on blast in all the panels. This implies that in environments
where the 2NS translocation-based blast resistance is effective, genotyping one to
few markers tagging the translocation is sufficient to predict the blast response and
genome-wide markers may not be needed. We also observed that marker-assisted
selection (MAS) based on a few blast-associated markers outperformed GS as it
selected the highest mean percentage (88.5%) of lines also selected by phenotypic
selection and discarded the highest mean percentage of lines (91.8%) also discarded
by phenotypic selection, across all panels. In conclusion, while this study demonstrates
that MAS might be a powerful strategy to select for the 2NS translocation-based blast
resistance, we emphasize that further efforts to use genomic tools to identify non-2NS
translocation-based blast resistance are critical.

Keywords: wheat, blast disease, genomic selection (GS), marker-assisted selection, pedigree selection,
genotyping-by sequencing, Magnaporthe oryzae
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INTRODUCTION

An emerging threat to wheat production that has the potential to
cause substantial yield losses is the disease blast (Kohli et al., 2011;
Islam et al., 2016; Chowdhury et al., 2017; Cruz and Valent, 2017;
Sadat and Choi, 2017; Singh et al., 2021), caused by the fungus
Magnaporthe oryzae pathotype Triticum Catt. (MoT) (anamorph
Pyricularia oryzae Cavara) (Couch and Kohn, 2002; Tosa and
Chuma, 2014; Zhang et al., 2016). The disease primarily affects
the spikes which become partially or fully bleached, resulting in
inferior quality of grains which are small, shriveled and have low
test weight (Goulart et al., 2007; Urashima et al., 2009; Cruz and
Valent, 2017). First identified in 1985 in Brazil (Igarashi, 1986),
the disease spread to the major Brazilian wheat growing areas
(Goulart et al., 1990; Igarashi, 1990; Picinini and Fernandes, 1990;
Dos Anjos et al., 1996), and then moved to Bolivia, Paraguay
and Argentina in 1996, 2002, and 2007, respectively (Barea and
Toledo, 1996; Viedma and Morel, 2002; Cabrera and Gutiérrez,
2007; Perelló et al., 2015).

The first intercontinental jump of the MoT pathogen from
South America to Asia was reported in 2016, when there was
a blast outbreak in Bangladesh most likely caused by the South
American lineage of MoT via wheat importation (Islam et al.,
2016; Malaker et al., 2016; Ceresini et al., 2018). In addition,
the warm and humid climate at heading time during that year
was also a significant driver of the epidemic, as both high
temperatures (between 25 and 30◦C) and long wetting periods
favor blast development (Cardoso et al., 2008; Islam et al., 2019).
Another major intercontinental jump of the MoT pathogen
to Africa was recently reported, when blast was observed in
the Muchinga province of Zambia during the 2017–2018 rainy
season (Tembo et al., 2020). Furthermore, about seven million
hectares of wheat growing regions in India, Pakistan and
Bangladesh and some states in the United States (Louisiana,
Mississippi and Florida) were identified to be vulnerable to blast
outbreaks, given their similar favorable environmental conditions
(Cruz et al., 2016a; Mottaleb et al., 2018; Valent et al., 2021),
indicating that further spread of the disease is possible.

Wheat blast management approaches like the use of
fungicides, planting time alteration and discontinuation of wheat
cultivation in disease-prone regions by declaring a wheat holiday
have only been partly successful in combating the disease
(Mottaleb et al., 2019b; Roy et al., 2021). This is because of
limitations such as inefficient control with fungicides when the
disease pressure is high, inability of poor farmers to afford
fungicides, development of resistance to some fungicide classes
in MoT populations and challenges of finding the appropriate
profitable alternative wheat land use (Urashima et al., 2009;
Kohli et al., 2011; Castroagudín et al., 2015; Cruz et al., 2015,
2019; Coelho et al., 2016; Cruz and Valent, 2017; Mottaleb
et al., 2019a,b). Hence, the most sustainable, cost-effective and
farmer-friendly approach to wheat blast control is developing and
deploying blast resistant wheat varieties (Cruz and Valent, 2017).

Genetic resistance to wheat blast is known to follow the gene-
for-gene interaction model in the seedling stage (Takabayashi
et al., 2002), while field resistance is also known to be quantitative
(Goddard et al., 2020; He et al., 2021). Among the five reported

wheat blast resistance genes including Rmg2, Rmg3, Rmg7, Rmg8,
and RmgGR119, only the genes Rmg8 and RmgGR119 are known
to be effective against several recent MoT isolates (Zhan et al.,
2008; Anh et al., 2015, 2018; Tagle et al., 2015; Cruz and
Valent, 2017; Wang S. et al., 2018). Besides these genes, the
2NS translocation from the wild species, Aegilops ventricosa has
been reported to confer a consistent and strong effect on blast
resistance in several studies, although the resistance is sometimes
background dependent and partial (Cruz et al., 2016b; Juliana
et al., 2019, 2020a; He et al., 2020, 2021; Ferreira et al., 2021; Wu
et al., 2021).

Breeding for wheat blast resistant genotypes first involves
screening to find resistant germplasm and then identifying
resistance genes. However, wheat breeding programs globally are
constrained in their ability to screen a large number of lines for
blast resistance, as phenotyping can only be done in the blast hot-
spot locations and there is a limitation to the number of lines that
can be handled, unless their phenotyping capacity is expanded.
While this poses a huge challenge to accelerate development
of blast resistant wheat varieties, it is an excellent case for the
application of genomic selection (GS), an approach that was
advocated to change the role of phenotyping in breeding (Heffner
et al., 2009). Using GS, breeders can eliminate phenotyping
and select genotypes based on their genomic-estimated breeding
values (GEBVs) for traits, that are obtained from genome-wide
markers (Meuwissen et al., 2001). In GS, a “training population”
that includes lines that have been genotyped and phenotyped
for the trait of interest is used to train prediction models that
are then used to obtain the GEBVs of individuals (also known
as “selection candidates” or “testing population”) that have been
only genotyped. While GS has proved to be effective in predicting
quantitative disease resistance (Ornella et al., 2012; Rutkoski
et al., 2014; Juliana et al., 2019), it also has the potential to increase
the accuracy of selection, reduce cycle time and cost, thereby
leading to an increase in gain from selection (Heffner et al., 2010;
Voss-Fels et al., 2019).

Given the potential of GS for wheat blast, the key objective
of this study was to evaluate it in the following panels, assuming
that a subset or half of them were phenotyped: (a) Diversity
panel comprising diverse spring wheat lines and varieties that
were developed over several years by the International Maize
and Wheat Improvement Centre (CIMMYT) and South Asia
partners, which is useful to understand if GS can be applied
to select for blast resistance in unrelated lines or any set of
existing historic germplasm. (b) Breeding panel comprising elite
lines from CIMMYT’s international nurseries, which is useful
to understand if GS can be applied to select advanced breeding
lines for blast resistance. (c) Full-sibs panel comprising progenies
from a cross between a resistant and a susceptible blast parent,
which is useful to understand if selection for blast is effective
within families, i.e., among sister lines in biparental populations.
The other main objectives of this study were to:

(i) compare genomic prediction accuracies from the genomic
best linear unbiased prediction (GBLUP) model that
utilizes the genomic relationships between lines (de
los Campos et al., 2013; Habier et al., 2013) and the

Frontiers in Plant Science | www.frontiersin.org 2 January 2022 | Volume 12 | Article 745379

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-745379 January 3, 2022 Time: 12:58 # 3

Juliana et al. Genomic Selection for Wheat Blast

Bayes B model that utilizes the estimated marker effects
(Meuwissen et al., 2001) to generate GEBVs.

(ii) compare genomic prediction accuracies from both the
genomic prediction models (GBLUP and Bayes B) with
prediction accuracies from a fixed effects model, where a
genome-wide association analysis for blast is first done in
the training set, followed by selection of the best model
(when adding a marker to the model no longer increases
the prediction accuracy) and use of the selected marker(s)
to estimate the breeding values, referred to as the estimated
breeding values (EBVs).

(iii) compare prediction accuracies from the GBLUP model
and the fixed effects model to the accuracies from
the combined GBLUP and the fixed effects model
(GBLUP+ fixed effects).

(iv) compare genomic prediction accuracies with pedigree-
based prediction accuracies, where pedigree-based
relationships between the lines is used to obtain the
EBVs, in a pedigree (additive)-best linear unbiased
prediction model (ABLUP).

(v) compare selections made from the blast phenotypes
(phenotypic selection, PS) with selections using the EBVs
from the different models to understand what percentage
of lines that are selected and discarded by PS, overlap with
the breeding values-based selections.

(vi) test the hypothesis that GS would perform better than
the selections based on EBVs from a fixed-effects model
(which can be considered similar to marker-assisted
selection, MAS) and the pedigree relationships-based
model (pedigree selection).

(vii) compare prediction accuracies in subsets of lines with and
without the 2NS translocation in the three panels using the
GBLUP, Bayes B, fixed effects, GBLUP + fixed effects and
ABLUP models.

MATERIALS AND METHODS

Panels, Blast Evaluation Sites, Crop
Cycles, and Planting Time
Diversity Panel
The diversity panel comprised 172 diverse spring wheat
genotypes including lines developed by CIMMYT and varieties
released in South Asia (India, Bangladesh, and Nepal), some of
which were directly introduced from CIMMYT. The diversity
panel was phenotyped for blast in two planting dates that
were about 14 days apart, indicated as first planting (FP) and
second planting (SP) in the following blast precision phenotyping
platforms and crop cycles:

(i) Quirusillas, Bolivia (18◦20′S 63◦57′W) during the 2017–
2018 and 2018–2019 crop cycles (December to April) in
two different planting dates and the datasets are referred to
by the site followed by the harvest year and planting time
as: Quirusillas 2018 FP, Quirusillas 2018 SP, Quirusillas
2019 FP and Quirusillas 2019 SP.

(ii) Okinawa, Bolivia (17◦13′S 62◦53′W) during the 2018 crop
cycle (May to September) in two planting dates and
the datasets are referred to as Okinawa 2018 FP and
Okinawa 2018 SP.

(iii) Jashore, Bangladesh (23◦10′N 89◦10′E) during the 2017–
2018 crop cycle (December to April) in two different
planting dates and the datasets are referred to as Jashore
2018 FP and Jashore 2018 SP.

Breeding Panel
The breeding panel comprised 248 lines from CIMMYT’s
international nurseries that included subsets of lines from the
50th International Bread Wheat Screening Nursery (IBWSN,
119 lines) and the 35th Semi-Arid Wheat Screening Nursery
(SAWSN, 129 lines). The IBWSNs and SAWSNs comprise
advanced breeding lines developed by CIMMYT’s global wheat
program using the selected bulk-breeding scheme that are
targeted to the irrigated and drought-prone target environments,
respectively and are CIMMYT’s primary vehicles of germplasm
dissemination globally (Rajaram et al., 1993; van Ginkel and
Rajaram, 1993). From the set of 269 lines from the 50th IBWSN
and 265 lines from the 35th SAWSN (Juliana et al., 2020a), subsets
of lines were chosen after filtering out a large number of lines
that had across-environment blast best linear unbiased estimates
(BLUEs) of 0, and only some of those lines were retained to avoid
a large number of lines with a blast index of 0 in the training and
prediction populations. Similarly, only the environments where
more than half the entries did not have a blast index of 0 were
chosen. The selected environments where the breeding panel was
phenotyped for blast included:

(i) Quirusillas during the 2017–2018 crop cycle (December
to April) in the FP date and in the 2018–2019 crop
cycle in two different planting dates and the datasets are
referred to as: Quirusillas 2018 FP, Quirusillas 2019 FP and
Quirusillas 2019 SP.

(ii) Okinawa during the 2018 crop cycle (May to September)
where only the second planting was chosen (Okinawa 2018
SP), due to the high number of resistant lines in the FP.

Full-Sibs Panel
The full-sibs panel comprised 298 full-sibs or F2:7 recombinant
inbred lines that were obtained by single seed descent from a
cross between a resistant female parent Caninde#1 (with the 2NS
translocation) and a susceptible male parent Alondra (without
the 2NS translocation), as described in He et al. (2020). The full-
sibs panel was phenotyped for blast in two planting dates in the
following sites and crop cycles:

(i) Quirusillas during the 2017–2018 and 2018–2019 crop
cycles (December to April) in two different planting
dates and the datasets are referred to as: Quirusillas
2018 FP, Quirusillas 2018 SP, Quirusillas 2019 FP and
Quirusillas 2019 SP.

(ii) Okinawa during the 2018 and 2019 crop cycles (May to
September) in two planting dates and the datasets are
referred to as Okinawa 2018 FP, Okinawa 2018 SP, Okinawa
2019 FP and Okinawa 2019 SP.
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(iii) Jashore during the 2017–2018 and 2018–2019 crop cycles
(December to April) in two planting dates and the datasets
are referred to as Jashore 2018 FP, Jashore 2018 SP, Jashore
2019 FP and Jashore 2019 SP.

Blast Phenotyping—Field Experimental Design,
Inoculation, Evaluation, and Analyses
In all the three sites, the lines were planted in double rows
each of 1-m length with 20-cm spacing in between them. Blast
inoculation in Quirusillas and Okinawa was done using isolates
QUI1505, QUI1601, QUI1612, OKI1503, and OKI1704 and
in Jashore it was done using isolates BHO17001, MEH17003,
GOP17001.2, RAJ17001, CHU16001.3, and JES16001, all of
which were collected locally and exhibited high pathogenesis.
Inoculum was prepared according to He et al. (2020) by
culturing the MoT isolates on oatmeal agar medium. Inoculum
concentration was adjusted to 80,000 spores/mL and applied
using a backpack sprayer at anthesis, followed by a second
inoculation 2 days later, in all the environments.

Disease development after inoculation was favored using a
misting system that was set up to provide 10 min of misting each
hour, between 8 a.m. and 7 p.m. in the Bolivian sites and between
9 a.m. to 5 p.m. in Jashore. In addition to the panel lines, local
checks were also planted and evaluated for blast, which included
resistant check Urubo and susceptible check Atlax in Bolivia
and resistant check BARI Gom 33 (Hossain et al., 2019) and
susceptible check BARI Gom 26 in Jashore. Evaluation of wheat
blast was done 21 days post the first inoculation on 10 spikes
marked at anthesis, where the total number of spikelets and those
infected were counted. Wheat blast index was obtained using the
formula: index = incidence (proportion of spikes that had blast
infection)× severity (average percentage of infected spikelets).

The BLUEs for blast in each of the panels were calculated
using the ASREML statistical package (Gilmour, 1997) using the
following mixed model:

yij = µ+ gi + ej + εij (1)

where yij is the observed blast index, µ is the overall mean,
gi is the fixed effect of the genotype, ej is the random effect of
the environment (site-year-planting time) that was independent
and identically distributed (IID) (ej ∼ N (0, σ2

e )), and εij is
the residual with IID (εij ∼ N (0, σ2

ε )). Analysis of the blast
indices in the different panels and environments was done and
the mean, standard deviation, median, minimum and maximum
blast indices were obtained in all the datasets. Visualization of all
the results in this study was done using the “R” package “ggplot2”
(Wickham, 2009). The narrow-sense heritabilities for blast across
the different environments in each panel were obtained using the
formula:

h2
=

σ2
A

σ2
A + σ2

ε

(2)

where σ2
A was the additive genetic variance among the lines

calculated using markers and σ2
ε is the error variance. The

heritabilities, genetic and error variances were obtained using the
average information-restricted maximum likelihood algorithm

(Gilmour et al., 1995) in the “R” package “heritability”
(Kruijer et al., 2015).

Genotyping
The diversity panel was genotyped for genome-wide markers
using the Illumina Infinium 15K BeadChip (TraitGenetics,
Germany) and four sequence tagged site (STS) markers
associated with the Yr17 gene in the 2NS translocation namely:
Ventriup (Helguera et al., 2003), WGGB156 and WGGB159
(Wang Y. et al., 2018) and cslVrgal3 (Seah et al., 2001; He
et al., 2021). The breeding panel was genotyped for genome-wide
markers using the genotyping-by-sequencing (GBS) platform
(Poland et al., 2012) and the TASSEL (Trait Analysis by
aSSociation Evolution and Linkage) version 5 GBS pipeline
(Glaubitz et al., 2014) was used to call the marker polymorphisms.
Marker polymorphisms discovery, alignment to the reference
genome assembly (RefSeq v1.0) of Chinese Spring (IWGSC,
2018) and tag filtering were done as described in Juliana
et al. (2020a). The full-sibs panel was genotyped for genome-
wide markers using the DArTseq platform (Genetic Analysis
Service for Agriculture, CIMMYT, Mexico), the four STS markers
mentioned above and also another marker IWB11136 tagging the
2NS translocation (Xue et al., 2018). The genome-wide markers
in each panel and STS markers were filtered for those with less
than 60% missing data, greater than 10% minor allele frequency
and less than 10% heterozygosity resulting in 13,427 markers in
the diversity panel, 8,072 markers in the breeding panel and 2,489
markers in the full-sibs panel. Marker imputation in all the panels
was done using the linkage disequilibrium k-nearest neighbor
genotype imputation method (Money et al., 2015) in TASSEL
version 5 (Bradbury et al., 2007).

Blast Prediction
Blast prediction in all the panels was done using a twofold cross-
validation approach, where each of the panels was divided into
two random folds and one-half of the lines was used to predict
the breeding values of the other half of the lines for blast within
each panel. We have only evaluated twofold cross-validations,
because across the panels, 15.8–62.5% of the lines had a blast
index of zero and dividing them into smaller folds might result in
some random folds having most of the lines with a blast index of
zero. The sampling of the random folds was iterated 10 times, the
prediction accuracy was calculated as the Pearson’s correlation
between the observed blast index values and the breeding values
in each iteration and the mean prediction accuracy across the 10
iterations was obtained for each of the datasets in the different
panels using the following models:

(i) Fixed effects model

For the fixed effects model implemented in “R,” a stepwise
least-squares approach was used which involved the following
steps:

• Identification of markers significantly associated with blast
in the training set using a genome-wide association analysis
and calculation of marker p-values.
• Ranking of markers according to their p-values.
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• Marker selection from the ranked markers was done with
the following stepwise regression model:

y = 1nµ+ Xiβi . . . Xjβj + ε (3)

where y was the blast phenotype, µ was the mean, βiand βj were
the effects of the ith and jth marker, and Xi and Xj were the
ith and jth marker’s genotype matrix and ε was the error term.
Here, for each iteration i through j, we added a marker to the
model, starting from the marker that had the lowest p-value. We
then calculated the twofold cross validation accuracy within the
training set after each iteration and selected the model that had j-1
markers, when the accuracyj−1 was greater than the accuracyj.

• Estimation of marker effects was done from the selected
markers, and the effects were subsequently used for
obtaining the EBVs of lines in the testing populations for
blast resistance.

(ii) Genomic-best linear unbiased prediction (GBLUP)

The GBLUP model was fitted using the “R” package “rrBLUP”
(Endelman, 2011) and can be represented by the following mixed
model:

y = µ1+Zgu+ε (4)

where y was the vector of blast indices, µ was the mean, u
represented the additive genetic effects, Z was the design matrix
for the random effects and ε was the error term. The joint
distribution of u (the vector of additive genetic effects) was
assumed to be multivariate normal i.e., MN (0, Gσ2

g), where G
was the marker-based genomic relationship matrix calculated
using the method of VanRaden (2008) [G = ZZ′/p, where Z
was the centered and standardized marker matrix and p was the
number of markers] and σ2

g was the genetic variance]. The joint
distribution of ε (error term) was also assumed to be multivariate
normal i.e., MN (0, Iσ2

e), where I was the identity matrix and σ2
e

was the residual variance.

(iii) Genomic-best linear unbiased prediction and fixed
effects (GBLUP+ fixed effects)

In the GBLUP + fixed effects model, in addition to modeling
the markers as random effects in the GBLUP model, some
loci were also modeled as fixed effects and the model can be
represented as:

y = 1nµ+ Xiβi . . . Xjβj + Zgu+ε (5)

where the terms are the same as described in (3) and (4).

(iv) Bayes B

In the Bayes B model (Meuwissen et al., 2001), a mixture
distribution prior is used, where some marker effects are
assumed to be zero with probability, π (the markers linked
to regions of the genome that have no effect on the trait and
hence zero effect), and some marker effects are assumed to be
drawn from a scaled-t distribution with probability, 1-π (the
markers linked to regions of the genome that have an effect
on the trait). The Bayes B model was fitted in the “R” package

“BGLR” (Pérez and de los Campos, 2014), using the default prior
parameters and 10,000 iterations, while the first 1,000 iterations
were discarded as burn-in.

(v) Pedigree-best linear unbiased prediction (ABLUP)

The ABLUP was a modified version of the GBLUP that was
also implemented in the “R” package “BGLR,” where the marker-
based genomic relationship matrix was replaced by the pedigree-
based relationship matrix, that was calculated from the coefficient
of parentage and the pedigree tracing back to five generations.

To compare the prediction accuracies obtained from the
different models and to test if they were significantly different
from each other, we performed paired-t-tests using the “JMP”
statistical software1 and obtained the mean differences between
the prediction accuracies from the different model pairs in each
panel. We also obtained the p-values to test their significance
at a threshold of 0.005 for three alternate hypotheses: the mean
prediction accuracy of one model is significantly greater or less
than the other model (two-tailed t-test), the mean prediction
accuracy of one model is significantly greater than the other
model (one-tailed t-test) and the mean prediction accuracy of
one model is significantly lesser than the other model (one-tailed
t-test).

Comparison of Genomic Selection With
Marker-Assisted Selection and Pedigree-Based
Selection
The BLUEs dataset in all the panels was used to select the most
resistant blast lines using the phenotypes (PS) and compared to
the following selections made using the EBVs for blast obtained
from different models: (i) MAS using the EBVs obtained from
the fixed effects model (ii) GS using the GEBVs obtained from
the GBLUP (GS GBLUP) and Bayes B (GS Bayes B) models (iii)
GS + MAS using the GEBVs obtained from the GBLUP + fixed
effects model (iv) pedigree selection using the EBVs obtained
from the ABLUP model. For PS, we selected the lines with blast
indices less than 10 in the BLUEs dataset for all the panels and
an equal number of lines were selected using the EBVs obtained
from the different models.

Blast Prediction in Subsets of Lines With and Without
the 2NS Translocation
Subsets of lines with and without the 2NS translocation were
obtained using consensus data from the STS markers tagging
the 2NS translocation in the diversity and full-sibs panels and
using all the 2AS markers significantly associated with blast
in the fixed effects model in the breeding panel. The lines
where the presence or absence of the 2NS translocation could
not be determined using all the markers (because of missing
data or contrasting information from different markers) were
excluded from predictions. Within the subsets of lines with and
without the 2NS translocation, blast prediction was done using
twofold cross-validations with the fixed effects, GBLUP, Bayes B,
GBLUP+ fixed effects and ABLUP models. The mean prediction
accuracies obtained from the subsets with and without the 2NS

1www.jmp.com
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translocation in each of the panels were compared using paired-
t-tests.

RESULTS

Diversity Panel
Statistical Analysis of Blast Indices in the Diversity
Panel
Statistical analysis of blast indices in the diversity panel
(Supplementary Data 1 and Table 1) indicated that the mean
blast indices were relatively higher in the Quirusillas 2019 FP
(38.5 ± 35.1), Quirusillas 2018 FP (32 ± 25.5) and Okinawa
2018 SP (31.4 ± 22.9) datasets. The maximum blast index in
the individual diversity panel datasets ranged between 48 and
100. We also observed that 23.3% (Jashore 2018 SP) to 43%
(Quirusillas 2018 SP) of the lines in the different environments
had a blast index of zero. The phenotypic correlations between
the blast indices in the two plantings were high in Quirusillas
2019 (0.7), while they were moderate in Okinawa 2018 (0.58),
Quirusillas 2018 (0.56), and Jashore 2018 (0.46). Across the sites
of blast evaluation, we observed low to moderate correlations
between the blast indices in Jashore and the Bolivian sites (ranged
between 0.27 and 0.53), while moderate to high correlations
(ranged between 0.47 and 0.67) were observed between the
blast indices in Okinawa and Quirusillas. The narrow-sense
heritability of blast across all the environments in the diversity
panel was 0.38 (σ2

A = 190.1 and σ2
ε = 308.2).

Prediction Accuracies for Blast in the Diversity Panel
The mean prediction accuracies for blast across the different
environments for all the lines in the diversity panel were: (i)
0.63 ± 0.14 using the GBLUP + fixed effects model (ii) 0.60 ±
0.15 using the fixed effects model (iii) 0.58 ± 0.05 using the
Bayes B model (iv) 0.57 ± 0.05 using the GBLUP model and
(v) 0.45 ± 0.03 using the ABLUP model (Figure 1). In the
fixed effects model, one or two markers on chromosome 2AS
(Supplementary Table 1) that were selected by association
analysis and stepwise regression were used as fixed effects
in the different datasets (except the Jashore 2018 FP and SP
datasets). This included markers Tdurum_contig29983_490

TABLE 1 | Statistical analysis of blast indices in the diversity panel with 172 lines.

Dataset Mean Standard
deviation

Median Minimum Maximum

Quirusillas 2018 FP 32.0 25.5 35.9 0 90.7

Quirusillas 2018 SP 22.3 24.1 11.0 0 77.0

Quirusillas 2019 FP 38.5 35.1 36.9 0 100.0

Quirusillas 2019 SP 29.9 27.4 27.9 0 98.2

Okinawa 2018 FP 21.8 20.5 18.3 0 76.4

Okinawa 2018 SP 31.4 22.9 38.7 0 72.7

Jashore 2018 FP 11.2 12.3 8.9 0 48.0

Jashore 2018 SP 18.5 17.5 14.4 0 74.1

BLUEs 25.7 18.2 28.3 0 61.3

FP, First planting; SP, Second planting; BLUEs, Best linear unbiased estimates.

(259,187 bps, 0 cM), Kukri_c22599_114 (397,565 bps,
0 cM), Tdurum_contig11802_864 (2,478,927 bps, 0 cM),
Ventriup (3,965,255 bps, 0 cM), wsnp_Ku_c33374_42877546
(4,789,998 bps, 2.9 cM), Kukri_c31776_1621 (7,550,063 bps, 8.9
cM), AX-94629608 (14,327,985 bps, 8.9 cM) and AX-94684111
(27,276,097 bps, 9.8cM), that were located between 259,187 and
27,276,097 bps on the Refseq v1.0 (IWGSC, 2018) and between 0
and 9.8 cM on the Popseq map (Chapman et al., 2015).

With all the models, the blast BLUEs had the highest
prediction accuracies (0.61–0.85) in the diversity panel, that
were 34.2–45.5% higher than the mean prediction accuracies
of the individual environments. Considering all the models, we
observed that the mean prediction accuracy was the highest in
Okinawa 2018 SP (0.66± 0.12) and the lowest in Jashore 2018 SP
(0.44 ± 0.08) dataset. We observed that the mean differences in
prediction accuracies were not significant in the two-tailed t-tests
at a threshold of 0.005 for the following model pairs:

(i) GBLUP+ fixed effects and Bayes B: Mean difference = 0.04,
p-value = 0.21

(ii) GBLUP + fixed effects and GBLUP: Mean
difference = 0.06, p-value = 0.09

(iii) GBLUP + fixed effects and fixed effects: Mean
difference = 0.02, p-value = 0.03

(iv) Bayes B and GBLUP: Mean difference = 0.01, p-value = 0.17
(v) Fixed effects and Bayes B: Mean difference = 0.02, p-

value = 0.57
(vi) Fixed effects and GBLUP: Mean difference = 0.03, p-

value = 0.33

However, the prediction accuracies from all models were
significantly higher than the prediction accuracies from the
ABLUP model at a threshold of 0.005 (p-values for the one-
sided t-test ranged from 4.03 × 10−6 to 2 × 10−3) and the
mean differences in prediction accuracies between the ABLUP
and other models ranged from 0.12 to 0.18.

Phenotypic Selection vs. Estimated Breeding Values
Based Selection for Blast in the Diversity Panel
For PS, we selected 52 lines (30.2%) with blast indices less than 10
in the BLUEs dataset and an equal number of lines using the EBVs
from different models (Figure 2). Considering the GS+MAS and
MAS, we observed that among the 52 lines selected by PS, 94.2%
were also selected by these two selection methods. Similarly, 90.4
and 76.9% lines were selected by GS, using the GEBVs obtained
from the Bayes B and GBLUP models, respectively. Among the
120 lines that were discarded by PS, 97.5, 97.5, 95.8, and 90%
were also discarded by GS + MAS, MAS, GS Bayes B and GS
GBLUP, respectively. However, considering pedigree selection,
we observed that 69.2% lines that were selected by PS were also
selected by pedigree selection, while 86.7% lines that were not
selected by PS were also not selected by pedigree selection.

Blast Distribution and Prediction Accuracies in
Subsets of Lines With and Without the 2NS
Translocation in the Diversity Panel
In the 53 diversity panel lines with the 2NS translocation, we
observed that the mean blast index ranged between 1.5± 4.8 and
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FIGURE 1 | Twofold cross validation prediction accuracies for blast response in the diversity panel (172 lines) using the fixed effects (Fixed), genomic best linear
unbiased prediction (GBLUP), GBLUP and fixed effects (GBLUP + Fixed), Bayes B, and pedigree best linear unbiased prediction (ABLUP) models. FP refers to the
first planting, SP refers to the second planting and BLUEs refer to the best linear unbiased estimates of blast indices across the different environments.

FIGURE 2 | Comparison of phenotypic selection (PS) of the best linear unbiased estimates of blast indices across environments with: (i) marker assisted selection
(MAS) using the estimated breeding values (EBVs) obtained from the fixed effects model (Fixed) (ii) genomic selection (GS) using the genomic estimated breeding
values (GEBVs) obtained from the genomic best-linear unbiased prediction (GBLUP) and Bayes B models (iii) GS + MAS using the GEBVs obtained from the GBLUP
and fixed effects (GBLUP + Fixed) model and (iv) pedigree selection (PedS) using the EBVs obtained from the pedigree best linear unbiased prediction (ABLUP)
model in the diversity panel comprising 172 lines.

4.9± 7.3 in the different environments (Figure 3A). Similarly, in
the 119 diversity panel lines without the 2NS translocation, the
mean blast index ranged between 14.3 ± 12.9 and 54.6 ± 29.8
in the different environments. The mean prediction accuracies
for blast across the different environments for the lines with
the 2NS translocation in the diversity panel ranged between
0.04± 0.17 using the GBLUP+ fixed effects model and−0.03±
0.19 using the ABLUP model (Figure 3B). Similarly, for the
lines without the 2NS translocation in the diversity panel, the
mean prediction accuracies ranged between 0.36 ± 0.18 using
the Bayes B model and 0.27 ± 0.19 using the GBLUP + fixed
effects model. The prediction accuracies could not be obtained
for some environments and models in the subset of lines with the

2NS translocation, as several lines had a blast index of zero. The
markers used as fixed effects in the different datasets for the lines
with and without the 2NS translocation in the diversity panel are
given in Supplementary Tables 2, 3, respectively.

We observed that the mean prediction accuracy across all the
environments and models was significantly higher in the subset
of lines without the 2NS translocation compared to the subset
of lines with the 2NS translocation (mean difference = 0.29, p-
value = 1.2 × 10−4). In the diversity panel lines where the 2NS
translocation was present, the mean prediction accuracy across
all the models was the highest in Jashore 2018 SP (0.4± 0.06) and
the lowest in Okinawa 2018 FP (−0.16 ± 0.06). In the diversity
panel lines where the 2NS translocation was absent, we observed
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FIGURE 3 | (A) Boxplots showing the wheat blast indices in 53 lines with the 2NS translocation in the diversity panel and 119 lines without the 2NS translocation in
the diversity panel. (B) Two-fold cross validation prediction accuracies for blast response in 53 lines with the 2NS translocation and 119 lines without the 2NS
translocation in the diversity panel using the fixed effects (Fixed), genomic best linear unbiased prediction (GBLUP), GBLUP and fixed effects (GBLUP + Fixed), Bayes
B, and pedigree best linear unbiased prediction (ABLUP) models. The prediction accuracies are missing for some environments and models in the subset of lines
with the 2NS translocation, where several lines had a blast index of zero. In (A,B), FP refers to the first planting, SP refers to the second planting and BLUEs refer to
the best linear unbiased estimates of blast indices across the different environments.

that the blast BLUEs had the highest mean prediction accuracy
(0.56± 0.03) across all the models, and Okinawa 2018 SP had the
lowest mean prediction accuracy (−0.04± 0.04).

Breeding Panel
Statistical Analysis of Blast Indices in the Breeding
Panel
Statistical analysis of blast indices in the breeding panel (Table 2)
indicated that the mean blast indices was the highest in
Quirusillas 2019 FP (14.6 ± 27.5) and lowest in Quirusillas 2018
FP (10.2 ± 19.2). While the maximum blast indices ranged
between 68.6 and 100 in the different datasets, 48% (Quirusillas
2019 SP) to 62.5% (Quirusillas 2018 FP) of the lines in the
different environments had a blast index of zero. The phenotypic
correlation between the blast indices in the Quirusillas 2019 FP
and SP was very high (0.82). The Okinawa 2018 SP dataset also
had high correlations (ranged between 0.70 and 0.75) with the
Quirusillas blast evaluations. The narrow-sense heritability of
blast across all the environments in the breeding panel was 0.65
σ2

A 318 and σ2
ε = 168).

Prediction Accuracies for Blast in the Breeding Panel
The mean prediction accuracies for blast in the breeding panel
using different models were: (i) 0.75± 0.04 using the fixed effects
model (ii) 0.73 ± 0.05 using the GBLUP + fixed effects model
(iii) 0.70 ± 0.02 using Bayes B model (iv) 0.61 ± 0.06 using
the GBLUP model and (v) 0.51 ± 0.06 using the ABLUP model
(Figure 4). In the fixed effects model, one to four selected markers
on chromosome 2AS (Supplementary Table 4) were used as
fixed effects in the different datasets of the breeding panel. This

included markers 2A_718152 (718,152 bps, 0 cM), 2A_1686041
(1,686,041 bps, 0 cM), 2A_1872142 (1,872,142 bps, 0 cM) and
2A_2367215 (2,367,215 bps, 0 cM), that were located between
718,152 and 2,367,215 bps on the Refseq v1.0 (IWGSC, 2018) and
at 0 cM on the Popseq map (Chapman et al., 2015).

The highest mean prediction accuracy with the different
models in the breeding panel was observed in the blast BLUEs
dataset (0.56-0.81). However, unlike in the diversity panel, the
accuracies in the blast BLUEs dataset from each model were only
4.7–15.3% higher than the mean prediction accuracies of the
individual environments. Across all the models, we observed that
the mean prediction accuracy was the highest in the Quirusillas
2018 FP (0.66 ± 0.06) dataset and the lowest in Quirusillas 2019
FP (0.63± 0.11) dataset.

The tests for the significance of the mean differences between
the prediction accuracies obtained from the different models
indicated that they were not significant in the two-tailed t-tests
at a threshold of 0.005 for the following model pairs:

TABLE 2 | Statistical analysis of blast indices in the breeding panel with 248 lines.

Dataset Mean Standard
deviation

Median Minimum Maximum

Okinawa 2018 SP 10.6 18.1 0 68.6 0

Quirusillas 2018 FP 10.2 19.2 0 87.2 0

Quirusillas 2019 FP 14.6 27.5 0 100 0

Quirusillas 2019 SP 14.1 24.7 1 94.1 0

BLUEs 12.4 20.1 2.3 77.9 0

FP, First planting; SP, Second planting; BLUEs, Best linear unbiased estimates.
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FIGURE 4 | Twofold cross validation prediction accuracies for blast response in the breeding panel (248 lines) using the fixed effects (Fixed), genomic best linear
unbiased prediction (GBLUP), GBLUP and fixed effects (GBLUP + Fixed), Bayes B, and pedigree best linear unbiased prediction (ABLUP) models. FP refers to the
first planting, SP refers to the second planting and BLUEs refer to the best linear unbiased estimates of blast indices across the different environments.

(i) GBLUP+ fixed effects and Bayes B: Mean difference = 0.03,
p-value = 0.13

(ii) GBLUP + fixed effects and fixed effects: Mean
difference = 0.02, p-value = 0.01

(iii) Bayes B and fixed effects: Mean difference = 0.05, p-
value = 0.02.

However, the Bayes B, GBLUP + fixed effects and fixed
effects models had significantly higher prediction accuracies
compared to the GBLUP model, with the mean differences
ranging between 0.10 and 0.14 and the p-values ranging between
7.6 × 10−5 and 2.4 × 10−3. Similarly, all the marker-based
models had significantly higher prediction accuracies compared
to the ABLUP model, with the mean differences ranging between
0.10 and 0.25 and the p-values ranging between 3.6 × 10−6 and
5.3× 10−4.

Phenotypic Selection vs. Estimated Breeding Values
Based Selection for Blast in the Breeding Panel
To compare PS and EBVs-based selection for blast resistance
using the BLUEs dataset in the breeding panel, we selected 185
lines (74.6%) with blast indices less than 10 and an equal number
of lines using the EBVs (Figure 5). The highest percentage of
overlap with PS was obtained using the EBVs from the fixed
effects model, where 95.7% lines were selected by both MAS
and PS, while 87.3% of the lines were not selected by both.
Selection from the GEBVs obtained from the GBLUP + fixed
effects, Bayes B and GBLUP models resulted in selection of 94.6,
94, and 90.3% lines, respectively, that were also selected by PS
and discarding of 84.1, 82.5, and 71.4% lines, respectively, that
were also discarded by PS. However, in pedigree selection using
the EBVs from the ABLUP model, 85.4% lines overlapped with

the lines selected by PS and 57.1% lines overlapped with the lines
discarded by PS.

Blast Distribution and Prediction Accuracies in
Subsets of Lines With and Without the 2NS
Translocation in the Breeding Panel
In the 185 lines with the 2NS translocation in the breeding panel,
we observed that the mean blast index ranged between 2.3 ±
5.4 and 3.7 ± 8.9 in the different environments (Figure 6A).
In the 47 lines without the 2NS translocation in the breeding
panel, the mean blast index ranged between 38.2 ± 18.7 and
56.8 ± 30.3 in the different environments. The mean prediction
accuracies for blast across the different environments for the lines
with the 2NS translocation in the breeding panel ranged between
0.27 ± 0.14 using the Bayes B model and 0.04 ± 0.19 using
the GBLUP + fixed effects model (Figure 6B). Similarly, for the
lines without the 2NS translocation in the breeding panel, the
mean prediction accuracies ranged between 0.10 ± 0.04 using
the ABLUP model and 0.03± 0.08 using the Bayes B model. The
markers used as fixed effects in the different datasets for the lines
with and without the 2NS translocation in the breeding panel are
given in Supplementary Tables 5, 6, respectively.

We observed that in the subsets of lines with and without
the 2NS translocation, the mean prediction accuracy was not
significantly different (mean difference = 0.05, p-value = 0.25). In
the breeding panel lines with the 2NS translocation, we observed
that the blast BLUEs had the highest mean prediction accuracy
(0.32 ± 0.12) across all the models, and Quirusillas 2019 FP
had the lowest mean prediction accuracy (−0.004 ± 0.15). In
breeding panel lines without the 2NS translocation, the mean
prediction accuracy across all the models was the highest in
Quirusillas 2019 FP (0.13 ± 0.06) and the lowest in Quirusillas
2019 SP (0.01± 0.07).
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FIGURE 5 | Comparison of phenotypic selection (PS) of the best linear unbiased estimates of blast indices across environments with: (i) marker assisted selection
(MAS) using the estimated breeding values (EBVs) obtained from the fixed effects model (fixed) (ii) genomic selection (GS) using the genomic estimated breeding
values (GEBVs) obtained from the genomic best-linear unbiased prediction (GBLUP) and Bayes B models (iii) GS + MAS using the GEBVs obtained from the GBLUP
and fixed effects (GBLUP + Fixed) model and (iv) pedigree selection (PedS) using the EBVs obtained from the pedigree best linear unbiased prediction (ABLUP)
model in the breeding panel comprising 248 lines.

FIGURE 6 | (A) Boxplots showing the wheat blast indices in 185 lines with the 2NS translocation in the breeding panel and 47 lines without the 2NS translocation in
the breeding panel. (B) Two-fold cross validation prediction accuracies for blast response in 185 lines with the 2NS translocation and 47 lines without the 2NS
translocation in the breeding panel using the fixed effects (Fixed), genomic best linear unbiased prediction (GBLUP), GBLUP and fixed effects (GBLUP + Fixed),
Bayes B, and pedigree best linear unbiased prediction (ABLUP) models. In (A,B), FP refers to the first planting, SP refers to the second planting and BLUEs refer to
the best linear unbiased estimates of blast indices across the different environments.

Caninde#1 × Alondra Full-Sibs Panel
Statistical Analysis of Blast Indices in the Caninde#1
× Alondra Full-Sibs Panel
In the Caninde#1 × Alondra full-sibs panel (Table 3), we
observed that the mean blast indices were the highest in the
Okinawa 2019 FP (55.7± 41.8) dataset. While the maximum blast
index was 100 in nine out of the 12 datasets, we also observed
that 15.8% (Jashore 2019 FP) to 42.3% (Quirusillas 2018 FP)
of the lines in the different datasets had a blast index of zero.
Across the different planting times, we observed moderate to high
correlations between the blast indices ranging between 0.87 in
Okinawa 2019 and 0.58 in Jashore 2018. Considering the different
sites of blast evaluation, we observed moderate correlations

between the blast indices in Jashore and the Bolivian sites (ranged
between 0.39 and 0.69), while high to very high correlations
(ranged between 0.58 and 0.82) were observed between the
blast indices in Okinawa and Quirusillas. The narrow-sense
heritability of blast across all the environments in the full-sibs
panel was 0.55 (σ2

A = 633.7 and σ2
ε = 520.9).

Prediction Accuracies for Blast in the Caninde#1 ×

Alondra Full-Sibs Panel
The mean prediction accuracies for blast in the Caninde#1 ×
Alondra population using different models were: (i) 0.57 ±
0.10 using the fixed effects model (ii) 0.57 ± 0.10 using the
GBLUP + fixed effects model (iii) 0.54 ± 0.10 using Bayes B
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TABLE 3 | Statistical analysis of blast indices in the Caninde#1 × Alondra full-sibs
panel with 298 lines.

Dataset Mean Standard
deviation

Median Minimum Maximum

Quirusillas 2018 FP 19.4 21.3 13.4 0 90.1

Quirusillas 2018 SP 32.4 28.4 37.9 0 100

Quirusillas 2019 FP 41.6 36.9 43.1 0 100

Quirusillas 2019 SP 43.6 38.4 48.1 0 100

Jashore 2018 FP 29.1 28.1 24.5 0 100

Jashore 2018 SP 28.5 24.8 24.7 0 100

Jashore 2019 FP 32.3 25.3 30.8 0 100

Jashore 2019 SP 45.8 40.0 39.5 0 100

Okinawa 2018 FP 34.8 28.6 42.6 0 92.9

Okinawa 2018 SP 28.0 25.8 29.3 0 96.0

Okinawa 2019 FP 55.7 41.8 70.3 0 100

Okinawa 2019 SP 46.5 39.3 49.5 0 100

BLUE 36.5 25.6 45.5 0 90.1

FP, First planting; SP, Second planting; BLUEs, Best linear unbiased estimates.

model and (iv) 0.49 ± 0.10 using the GBLUP model (Figure 7).
In the fixed effects model, one to three selected markers on
chromosome 2AS (Supplementary Table 7) were used as fixed
effects and they included the STS markers (cslVrgal3, IWB11136,
Ventriup, WGGB156, and WGGB159) and the GBS marker,
2A_14418709 (14,418,709 bps and 8.9 cM). Similar to the
diversity and breeding panels, the highest mean prediction
accuracies with the different models in the full-sibs panel was
observed in the blast BLUEs dataset (0.65–0.72), that were
29.2–36.8% higher than the mean prediction accuracies of the
individual environments. When the mean prediction accuracies
of the environments across all the models were considered, we
observed that it was the highest in Okinawa 2019 FP (0.68± 0.04)
dataset and lowest in Jashore 2019 FP (0.41± 0.03) dataset.

The two-tailed t-tests for the significance of the mean
differences between the prediction accuracies obtained from
different models indicated that they were not significant at a
threshold of 0.005 for the GBLUP + fixed effects and fixed
effects models (Mean difference = 0.005, p-value = 0.19). We also
observed that the fixed effects, Bayes B and GBLUP+ fixed effects
models had significantly higher prediction accuracies compared
to the GBLUP model, with the mean differences ranging between
0.05 and 0.08 and the p-values for the test of significance of the
mean differences ranging between 3.2 × 10−7 and 2.9 × 10−8.
Similarly, the prediction accuracies from the GBLUP + fixed
effects and the fixed effects models were significantly higher than
those from the Bayes B model with a mean difference of 0.03 and
the p-value for the test of significance of the mean differences
ranging between 1.9× 10−4 and 1.1× 10−5.

Phenotypic Selection vs. Estimated Breeding Value
Based Selection for Blast in the Full-Sibs Panel
The blast BLUEs dataset was used to select 82 lines (27.5%) with
BLUEs less than 10 and a similar number of lines were selected
from the EBVs obtained from different models (Figure 8). We
observed that MAS based on EBVs from the fixed effects model
had the highest percentage of overlap with PS, resulting in 75.6%
of the lines selected by both and 90.7% of the lines discarded by
both methods. The GEBVs obtained from the GBLUP + fixed
effects, Bayes B and GBLUP models resulted in selection of 59.8,
57.3, and 58.5% lines, respectively, that were also selected by PS
and discarding of 84.7, 83.8, and 84.3% lines, respectively, that
were also discarded by PS.

Blast Distribution and Prediction Accuracies in
Subsets of Lines With and Without the 2NS
Translocation in the Full-Sibs Panel
In the 117 full-sibs with the 2NS translocation, we observed that
the mean blast index ranged between 7.8 ± 16.1 and 19.5 ± 31.3

FIGURE 7 | Twofold cross validation prediction accuracies for blast response in the full-sibs panel (298 lines) using the fixed effects (Fixed), genomic best linear
unbiased prediction (GBLUP), GBLUP and fixed effects (GBLUP + Fixed) and Bayes B models. FP refers to the first planting, SP refers to the second planting and
BLUEs refer to the best linear unbiased estimates of blast indices across the different environments.
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in the different environments (Figure 9A). In the 144 full-sibs
without the 2NS translocation, the mean blast index ranged
between 29± 20.8 and 82.9± 26.2 in the different environments.
The mean prediction accuracies for blast across the different
environments for the lines with the 2NS translocation in the full-
sibs panel ranged between 0.03 ± 0.09 using the Bayes B model
and−0.02± 0.11 using the GBLUP model (Figure 9B). Similarly,
for the lines without the 2NS translocation in the full-sibs panel,
the mean prediction accuracies ranged between 0.15± 0.12 using
the GBLUP model and 0.04 ± 0.08 using the fixed effects model.
The markers used as fixed effects in the different datasets for the
lines with and without the 2NS translocation in the full-sibs panel
are given in Supplementary Tables 8, 9, respectively.

We observed that the mean prediction accuracy across all the
environments and models was significantly higher in the subset
of lines without the 2NS translocation compared to the subset
of lines with the 2NS translocation (mean difference = 0.07,

p-value = 5.7 × 10−4). In the full-sibs panel lines with the
2NS translocation, we observed that Quirusillas 2018 FP had the
highest mean prediction accuracy (0.17 ± 0.05) across all the
models, and Okinawa 2018 FP had the lowest mean prediction
accuracy (−0.14 ± 0.08). In full-sib panel lines without the 2NS
translocation, the mean prediction accuracy across all the models
was the highest in Jashore 2019 FP (0.24 ± 0.07) and the lowest
in Jashore 2019 SP (−0.05± 0.03).

DISCUSSION

We have successfully evaluated genomic prediction for wheat
blast in three panels using the GBLUP and Bayes B models and
compared the genomic prediction accuracies with those from
the fixed effects, GBLUP + fixed effects and ABLUP models,
to understand the relative advantage of using genome-wide

FIGURE 8 | Comparison of phenotypic selection (PS) of the best linear unbiased estimates of blast indices across environments with: (i) marker assisted selection
(MAS) using the estimated breeding values (EBVs) obtained from the fixed effects model (fixed) (ii) genomic selection (GS) using the genomic estimated breeding
values (GEBVs) obtained from the genomic best-linear unbiased prediction (GBLUP) and Bayes B models and (iii) GS + MAS using the GEBVs obtained from the
GBLUP and fixed effects (GBLUP + Fixed) model in the Caninde#1 × Alondra full-sibs panel comprising 298 lines.

FIGURE 9 | (A) Boxplots showing the wheat blast indices in 117 lines with the 2NS translocation in the full-sibs panel and 144 lines without the 2NS translocation in
the full-sibs panel. (B) Twofold cross validation prediction accuracies for blast response in 117 lines with the 2NS translocation and 144 lines without the 2NS
translocation in the full-sibs panel using the fixed effects (Fixed), genomic best linear unbiased prediction (GBLUP), GBLUP and fixed effects (GBLUP + Fixed) and
Bayes B models. In (A,B), FP refers to the first planting, SP refers to the second planting and BLUEs refer to the best linear unbiased estimates of blast indices
across the different environments.
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markers. On average, across all the panels and environments
analyzed in this study, the GBLUP + fixed effects model (0.63 ±
0.13) and the fixed effects model (0.62 ± 0.13) were the best
models for predicting blast, followed by the Bayes B (0.59± 0.11),
GBLUP (0.55 ± 0.1), and ABLUP (0.48 ± 0.06) models. Our
results also indicated that there was no significant difference in
the prediction accuracies from the GBLUP and Bayes B genomic
prediction models in the diversity panel, as also observed in
previous studies (Heslot et al., 2012; Juliana et al., 2017b).
However, in the other two panels, the Bayes B model gave
significantly higher accuracies compared to the GBLUP model,
probably because the Bayes B model assumptions fitted well the
genetic architecture of blast response in these panels, where the
2NS translocation had a large effect.

On comparing blast prediction accuracies from the genomic
prediction models (GBLUP and Bayes B) with prediction
accuracies from the fixed effects model and the GBLUP + fixed
effects model, we observed: (i) no significant differences between
the fixed effects, GBLUP + fixed effects and the Bayes B
models in both the diversity and breeding panels and (ii)
significantly higher prediction accuracies from the fixed effects
model and GBLUP + fixed effects model compared to the
genomic prediction models in the full-sibs panel. These results
are contrasting to previous studies that have reported the
superiority of genomic prediction models over the fixed effects
model for some diseases in wheat (Rutkoski et al., 2012; Juliana
et al., 2017b) and higher accuracies by integrating genomic
prediction and the fixed effects model (Odilbekov et al., 2019;
Sehgal et al., 2020). However, given that blast response in all the
panels in this study was predominantly controlled by the 2NS
translocation (He et al., 2020, 2021; Juliana et al., 2020a), our
results are in agreement with Juliana et al. (2017a), who reported
that for seedling leaf and stripe rust resistance, where a single gene
had a large effect on the disease response in the population, the
fixed effects model and the GBLUP+ fixed effects model perform
similar to or slightly better than the genomic prediction models.
Hence, our findings have important implications for wheat blast
predictions in environments where the resistance is determined
by the 2NS translocation and indicate that in such environments,
a fixed effects model with one to few markers tagging the 2NS
translocation would be sufficient and genome-wide markers may
not lead to a significant increase in blast prediction accuracies.

The 2NS translocation linked markers that were effective
in predicting blast response in more than a fold or dataset
in this study included the Illumina Infinium 15K BeadChip
markers, Kukri_c22599_114 and Tdurum_contig29983_490 (El
Hanafi et al., 2021); GBS markers, 2A_1686041, 2A_1872142,
2A_718152 and 2A_14418709 and STS markers, cslVrgal3,
IWB11136, Ventriup, WGGB156, and WGGB159, all of which
can be used to select for the 2NS translocation based blast
resistance. But, it should also be noted that the 2NS translocation-
based blast resistance is incomplete and sometimes background-
dependent (Cruz et al., 2016b; Cruppe, 2020), with reports of
the MoT isolates in Brazil (Ceresini et al., 2018) and Paraguay
(Singh et al., 2016) having overcome the 2NS translocation-based
blast resistance and hence relying on only one large effect
resistance locus is not recommended, as it could result in

selection pressure on the MoT populations (Cruz and Valent,
2017; Cruppe et al., 2020). However, in such cases where there
is a risk of resistance breakdown and narrowing down the genetic
variation for blast resistance by using predictions based on only
one locus, the 2NS translocation-based markers can still be used
to predict and select against the translocation.

Comparison of genomic and pedigree-based prediction
accuracies indicated that in both the diversity and breeding
panels, the ABLUP model resulted in the lowest prediction
accuracies. This is consistent with previous studies that have
reported superiority of genomic prediction over prediction
prediction (Crossa et al., 2010; Spindel et al., 2015), while other
studies have also reported similar accuracies from both (Juliana
et al., 2017a,b, 2018, 2020b). However, we also observed that the
ABLUP blast prediction accuracies were 85.4 and 83.6% of the
mean genomic prediction accuracies from the Bayes B model
in the different datasets of the diversity panel and breeding
panel, respectively. This implies that although pedigree-based
prediction for blast does not result in the highest accuracy,
pedigree relationships can also be useful in predicting blast
resistance, when genotyping data is not available or affordable.

Among the three sites of blast evaluation and prediction
in this study, our results showed that Okinawa (0.63 ± 0.09)
had the highest mean prediction accuracy across the different
panels, models, years and planting times, followed by Quirusillas
(0.59 ± 0.1) and Jashore (0.45 ± 0.06). Our results also indicated
that the blast BLUEs dataset was the best predicted in all the
three panels and accuracies in the BLUEs datasets were 4.7–
45.5% higher than the mean prediction accuracies observed
in the individual environments. One possible explanation to
this is that the BLUEs obtained from multi-environment
evaluations are most likely to be close to the true breeding
values of the genotypes and hence predicted with the highest
accuracy, thereby making them more robust for utilization in
predictive breeding, compared to single-environment phenotypic
observations. Another interesting observation in our study
was that across all the environments, panels and models, the
prediction accuracies from the two planting times were not
significantly different (FP mean prediction accuracy: 0.56± 0.12;
SP mean prediction accuracy: 0.57± 0.11), indicating that highly
correlated blast indices in different planting times result in similar
prediction accuracies.

Among the three panels evaluated for wheat blast prediction,
the breeding panel had the highest mean prediction accuracy
(0.66 ± 0.1), followed by the diversity panel (0.59 ± 0.13) and
full-sibs panel (0.54 ± 0.1). This is a promising outcome of this
study indicating that blast can be predicted with moderate to
high predictabilities in all these panels, and hence prediction-
based selection for wheat blast can be successfully implemented
in any historic germplasm, breeding lines and sister lines.
However, we could not directly compare prediction accuracies
across panels, because of the different sizes of the panels, the
different genotyping platforms used and also the different blast
distributions in these panels. For example, the breeding panel
had the highest number of resistant lines (48–62.5%) with a
blast index of zero and this might have also contributed to high
prediction accuracies.
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This study is also unique because three different whole-
genome marker platforms, the Illumina Infinium 15K BeadChip,
GBS and DArTseq were evaluated for predicting wheat blast.
Considering only the two genomic prediction models (GBLUP
and Bayes B), we observed that the breeding panel genotyped
using GBS was the best predicted (0.66 ± 0.07), followed by
the diversity panel genotyped using the Illumina Infinium 15K
BeadChip (0.60 ± 0.09) and the full-sibs panel genotyped using
the DArTseq platform (0.51 ± 0.1). While previous studies
have reported the superiority of GBS over both the DArTseq
(Juliana et al., 2017b) and array-based platforms (Elbasyoni
et al., 2018), the differences in prediction accuracies using
these three platforms cannot be compared per se in this study,
because of the aforementioned reasons (different panel sizes
and blast distributions across panels) and none of the panels
were genotyped using all the platforms. Hence, further studies
on genomic predictions in different panels genotyped using
the same genotyping platform are essential to compare blast
predictabilities across different panels. Using a common platform
to genotype different panels would also be useful to explore
beyond the cross-validation strategy evaluated in this study and
evaluate genomic prediction for blast across panels to understand
how well one panel can be predicted from another. This would be
akin to a practical GS implementation scenario, where breeders
would be interested in predicting the blast response of lines from
new panels using any existing panel. Since genomic prediction
accuracies be lower in across-panel predictions compared to
within-panel predictions (Juliana et al., 2019), it is important to
evaluate across-panel predictions for wheat blast.

This study was also aimed to test the hypothesis that GS would
perform better than MAS and pedigree-based selection for wheat
blast. On average, across all the datasets and panels, MAS led to
the selection of the highest percentage (88.5%) of lines selected
by PS and discard of the highest percentage of lines (91.8%) that
were discarded by PS. In contrast, on average, GS GBLUP and GS
Bayes B only led to the selection of 75.2 and 80.6% of the lines that
were selected by PS and discard of 81.9 and 87.4% of the lines that
were discarded by PS, respectively. These results clearly indicated
that MAS outperformed GS in our study, despite the phenotypic
responses being continuous and indicating quantitative genetic
control. However, pedigree-based selection, on average led to the
selection of 77.3% of the lines that were selected by PS and the
discard of 71.9% of lines that were discarded by PS and hence
GS was superior to pedigree-based selection as hypothesized. It is
also interesting that in a previous study comparing GS and PS for
grain yield which is a highly quantitative trait, GS could select a
maximum of 70.9% of the top lines and discard 71.5% of the poor
lines (Juliana et al., 2018) at a selection intensity of 0.5, which
is significantly lower than the percentage overlap with PS in this
study, owing to less complex genetic architecture of wheat blast
resistance in the panels used in this study.

We compared the prediction accuracies from different models
obtained from subsets of lines with and without the 2NS
translocation and the mean prediction accuracies across the
different panels were 0.03 ± 0.16 (ranged between −0.22 and
0.45) and 0.16 ± 0.18 (ranged between −0.09 and 0.57),
respectively. While the mean prediction accuracies in the subsets

of lines were significantly lower than the mean prediction
accuracies obtained in the full set of lines in each panel, our
results demonstrate the possibility of implementing GS for blast
in panels of lines without the 2NS translocation. However, it
should be noted that our observations of blast predictions in lines
with and without the 2NS translocation were done using subsets
of few lines (53, 185, and 117 lines from the three panels had the
2NS translocation and 119, 47, and 144 lines from the three panels
that did not have the 2NS translocation), and hence larger panels
are needed to further understand the prediction accuracies for
blast in panels of lines with and without the 2NS translocation.
The higher blast predictabilities in the subsets of lines without the
2NS translocation could be because of the low variability in the
blast indices in the lines with the 2NS translocation (mean blast
indices ranged between 1.5 and 19.5) and the moderate to high
variability in the blast indices (mean blast indices ranged between
14.3 and 82.9) in subsets without the 2NS translocation. We also
observed that the mean prediction accuracies using the fixed
effects model were very low (less than 0.10 in most subsets except
in the lines without the 2NS translocation in the diversity panel),
and the markers that were used in the different folds and datasets
of the fixed effects model were inconsistent, indicating that the
fixed effects model is not an ideal choice when there are no large
effect consistent markers associated with blast in the panels.

Overall, this study has provided important insights into
the genomic predictability of wheat blast and the prospects
of implementing GS and MAS for the disease. One caveat
in this study is that in all the three panels, blast resistance
was controlled to a large extent by the 2NS translocation and
hence further studies on genomic prediction of quantitative blast
resistance in panels where resistance is not controlled by the 2NS
translocation is needed. In conclusion, we have demonstrated
that in populations where blast resistance is controlled by the
2NS translocation, MAS using few markers tagging the 2NS
translocation can be used for accelerating predictive breeding
for blast. This is a key finding of this study that opens several
opportunities for wheat breeding programs to:

(i) Screen a subset of lines in the blast hot-spots and use that
phenotyping data to predict the blast breeding values for
other related lines, as demonstrated in this study where we
evaluated genomic prediction assuming that a half of the
lines were phenotyped.

(ii) Use the predicted breeding values to complement
selection based on the phenotype and increase the
selection accuracy.

(iii) Use the 2NS translocation-associated molecular markers
to select for or against the 2NS based-blast resistance
without phenotyping.

(iv) Scale-up selection for blast resistance to early generations
of the breeding program that have been genotyped, but
are in large numbers to be phenotyped. For example,
the CIMMYT global wheat program screens international
nurseries (200-300 lines) derived from the stage 3 yield
trials for blast resistance, but about 9,000 stage 1 yield
trial lines are genotyped each year. Here, the international
nurseries can be used as training populations to predict the
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blast breeding values of the large set of stage 1 yield trial
lines, thereby saving substantial cost and resources. In this
case, GS can provide an advantage over MAS, as the same
genotyping data can be used to select for multiple traits in
the early generations.

(v) Sparse-test genotypes in different blast hot-spots in which
not all the genotypes are grown in all the environments
(Jarquin et al., 2020). For example: when there are cost-
constraints for breeding programs to evaluate blast in
multiple sites, then sparse-testing can be implemented in
correlated sites.

(vi) For non-2NS resistance based predictive breeding, since
screening a large number of lines for blast in field
conditions to build training sets is challenging, greenhouse
testing of blast can be used to primarily identify new
resistance genes. This can be followed by obtaining
GEBVs of the selected lines and then the best lines using
PS and GS can be advanced for multilocation testing.
Simultaneous selection against the 2NS translocation can
also be performed using molecular markers, to facilitate the
identification of non-2NS based resistance.

CONCLUSION

In conclusion, while this study demonstrates the potential of
MAS and GS for wheat blast resistance breeding, we would
also like to emphasize that continued efforts to use genomic
tools to identify non-2NS based sources of blast resistance in
wheat is critical, which will involve coordinated high-throughput
genomics and phenomics approaches.
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