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Lycoris is used as a garden flower due to the colorful and its special flowers.
Floral coloration of Lycoris is a vital trait that is mainly regulated via the anthocyanin
biosynthetic pathway. In this study, we performed a comparative transcriptome analysis
of Lycoris radiata petals at four different flower development stages. A total of 38,798
differentially expressed genes (DEGs) were identified by RNA sequencing, and the
correlation between the expression level of the DEGs and the anthocyanin content was
explored. The identified DEGs are significantly categorized into ‘flavonoid biosynthesis,’
‘phenylpropanoid biosynthesis,’ ‘Tropane, piperidine and pyridine alkaloid biosynthesis,’
‘terpenoid backbone biosynthesis’ and ‘plant hormone signal transduction’ by Kyoto
Encyclopedia of Genes and Genomes (KEGG) enrichment analysis. The candidate
genes involved in anthocyanin accumulation in L. radiata petals during flower
development stages were also identified, which included 56 structural genes (especially
LrDFR1 and LrFLS) as well as 27 key transcription factor DEGs (such as C3H, GATA,
MYB, and NAC). In addition, a key structural gene namely LrDFR1 of anthocyanin
biosynthesis pathway was identified as a hub gene in anthocyanin metabolism network.
During flower development stages, the expression level of LrDFR1 was positively
correlated with the anthocyanin content. Subcellular localization revealed that LrDFR1
is majorly localized in the nucleus, cytoplasm and cell membrane. Overexpression of
LrDFR1 increased the anthocyanin accumulation in tobacco leaves and Lycoris petals,
suggesting that LrDFR1 acts as a positively regulator of anthocyanin biosynthesis. Our
results provide new insights for elucidating the function of anthocyanins in L. radiata
petal coloring during flower development.

Keywords: Lycoris radiata, transcriptome, anthocyanin, structural genes, phytohormone, transcription factors,
dihydroflavonol 4-reductase
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INTRODUCTION

Plant pigments, such as anthocyanins, carotenoids and
chlorophylls, play important roles in affecting the appearance
of flower, fruit and seed coloring (Tanaka et al., 2008; Rebecca
et al., 2010; Rosas-Saavedra and Stange, 2016; Cui et al., 2021).
As an important group of plant pigments, anthocyanins are
water soluble and belong to the family of flavonoids. So far,
more than 500 different anthocyanins have been isolated
from plants (Francavilla and Joye, 2020). They are highly
involved in determining flower, seed, fruit and vegetative tissue
colors, ranging from pink through scarlet, purple, and blue
(Tanaka et al., 2008; Khoo et al., 2017). There are six species
of anthocyanins (namely cyanidin, delphinidin, peonidin,
malvidin, pelargonidin, and petunidin) in colorful plants
(Tanaka et al., 2008; Castaneda-Ovañdo et al., 2009), of which
cyanidin is responsible for red-purple coloration, delphinidin
contributes to purple or blue-red, and pelargonidin contributes
to red and orange (Khoo et al., 2017). Besides, anthocyanins
also play various vital functions in plant biological functions,
including disease protection, resisting environmental stresses,
and promoting pollination (Lev-Yadun and Gould, 2009; Zhang
et al., 2014).

Anthocyanins are synthesized in cytosol, and stored in the
vacuole. Studies on several plant species, including Arabidopsis
(Baudry et al., 2006; Gonzalez et al., 2008; Qi et al., 2011; Xie et al.,
2016), agricultural crops (Yang et al., 2019; Dong et al., 2020),
fruits (Rahim et al., 2014; Zhou et al., 2015; Jiang et al., 2019; Li C.
et al., 2020), vegetable and ornamental plants (Suzuki et al., 2016;
Xu et al., 2017; Jin et al., 2018, 2019; Zhu et al., 2019) have revealed
that biosynthesis of anthocyanins are controlled by structural and
regulatory genes that take part in formation as well as regulation
of specific enzymes. The key enzymes including phenylalanine
ammonia lyase (PAL), cinnamic acid 4-hydroxylase (C4H),
4-coumarate-CoA ligase (4CL), chalcone synthase (CHS),
chalcone isomerase (CHI), flavonone 3-hydroxylase (F3H),
dihydroflavonol 4-reductase (DFR), flavonoid 3′-monooxygenase
(F3′H), anthocyanin synthase (ANS), as well as UDP-glucose-
flavonoid 3-O-glucosyltrasnferase (UFGT) are important in
anthocyanin biosynthesis (Koes et al., 2005; Li et al., 2018).
Among them, DFR catalyzes the conversion of dihydroflavonols
to leucoanthocyanidins, which is one of the final stages of
anthocyanin biosynthesis (Shimada et al., 2005; Luo et al., 2016).
DRF gene is responsible for plant pigmentation (Lou et al.,
2014), and its mutation has been associated with the loss of
anthocyanins as well as proanthocyanidins (Liu H. et al., 2019;
Jiang et al., 2020; Lim et al., 2020; Feng et al., 2021). Besides,
enhancement or activation of DFR gene expression is vital in
MYB transcription factor (TF)-based anthocyanin engineering.
For example, regulatory roles of MYB TFs in anthocyanin
biosynthesis such as Production of Anthocyanin Pigmentation 1
(PAP1, a MYB75 TF), PeMYB2/11/12, PsMYB114L, FtMYBF18,
EsMYB90, and FhMYB5 depend on DFR expression (Hsu et al.,
2015; Li et al., 2019; Zhang et al., 2019; Dong et al., 2020; Qi et al.,
2020). StMYB44 represses anthocyanin accumulation in leaves of
tobacco by directly suppressing the activity of the DFR promoter
(Liu Y. et al., 2019).

Moreover, some other TFs such as the MYB-bHLH-WD
(MBW) complex, B-box, bZIP, MYC, NAC, WRKY, bHLH,
MADS-box, and WD could also coordinate anthocyanin
biosynthesis initiation by binding to the promoter regions of
structural genes (Xu et al., 2015; Zhou et al., 2015; An et al.,
2017; Lloyd et al., 2017; Lu et al., 2018; Fang et al., 2019;
Jiang et al., 2019). For example, Arabidopsis bHLH TFs (GL3,
TT8, and EGL3) and WD40 repeat protein TTG1 regulate
anthocyanin biosynthetic gene expressions (Gonzalez et al.,
2008; Gerats and Strommer, 2009; Saito et al., 2013). Similarly,
anthocyanin biosynthesis in petunia petal cells is controlled by
the MBW complex, comprising subgroups of MYB TF (PhAN2
or PhAN4) and bHLH TF (PhAN1 or PhJAF13), as well as the
WD40 regulator PhAN11 (Quattrocchio et al., 2006). Strawberry
FaMADS1a played a negative role in anthocyanin accumulation
via repressing expression of FaPAL6, FaCHS, FaDFR, and FaANS
(Lu et al., 2018). Furthermore, apple B-box zinc finger protein
MdBBX20 promotes anthocyanin accumulation in response
to ultraviolet-B radiation and low temperature (Fang et al.,
2019). DhMYB2 was found to interact with DhbHLH1, thereby
regulating anthocyanin secretion in Dendrobium hybrid petals
(Li et al., 2017). Therefore, the regulatory mechanisms of TFs
on plant color are diverse. The formation of plant flower color
is affected by both structural genes and TFs.

The Lycoris species belongs to Amaryllidaceae family, and
is a perennial bulb plant native to Northeast Asia, including
China, South Korea, and Japan. It consists of about 20 species,
of which 15 species and one variety are distributed in China
(Zhang et al., 2020). Among them, Lycoris radiata is considered
ornamentally and medicinally valuable, as the colorful and special
flowers have been used for decoration and the bulbs are notable
to produce alkaloids with various biological activities (Park et al.,
2019, 2021). Anthocyanins are abundant in Lycoris flowers and
also contribute to their color formation (He et al., 2011; Chun
et al., 2013; Yue et al., 2019; Park et al., 2021). For example, four
critical anthocyanins, namely cyanidin 3-sophoroside, cyanidin
3-xylosylglucoside, cyanidin 3-sambubioside, and pelargonidin
3-xylosylglucoside in L. longituba tepals of different colors
have been well identified (He et al., 2011). In L. radiata
flowers, three anthocyanins (cyanidin 3-diglucoside, cyanidin
3-sambubioside, and cyanidin 3-glucoside) were identified
(Chun et al., 2013), and their presence during four flower
development stages was confirmed more recently (Park et al.,
2021). However, the molecular mechanisms of anthocyanins
regulating color formation of Lycoris flower remain unclear.
Thus, identifying the key genes related to color formation in
Lycoris flower would provide a more sufficient genetic resource
for manipulation of the related pathways to develop new cultivars
with specific flower colors.

In recent years, transcriptome sequencing (RNA-seq) was used
as a rapid technique to uncover DEGs, biosynthesis pathways,
and TFs related to specific traits in plants (He et al., 2020; Li C.
et al., 2020). In this study, we reported the changing profile
of anthocyanins and gene expression dynamics in L. radiata
petals at four developmental stages by integrated analyses
of the physiology and transcriptome. We further identified
modules with co-expressed genes and candidate hub genes
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FIGURE 1 | Phenotypes and anthocyanins content in petals of L. radiata at different development stages. (A) Petals of L. radiata at four flower development stages.
FB, floral bud stage; FL1, partially opening flower stage; FL2, fully opened flower stage, and R, senescent flower stage. Bars: 1 cm. (B) Anthocyanin levels in
L. radiata petals at four flower development stages. Bars with different letters are significantly different at p < 0.05 according to Duncan’s multiple range test.

for anthocyanin accumulation, and revealed LrDFR1 acts as a
positive regulator involved in anthocyanin biosynthesis. Our
results may serve as a reference for understanding the regulation
of key genes and transcription processes in color formation in the
flowers of this esthetically important Lycoris.

MATERIALS AND METHODS

Plant Materials
Lycoris radiata (L’Her.) Herb. plants were grown in Experimental
Plantation of Institute of Botany, Jiangsu Province and Chinese
Academy of Sciences, Nanjing, China. According to the studies
reported previously (Yue et al., 2019; Park et al., 2021), three
biological replicates of L. radiata flowers were sampled at four
development stages, which were FB (floral bud stage), FL1
(partially opening flower stage), FL2 (fully opened flower stage)
and R (senescent flower stage), as shown in Figure 1A. Each
biological replicate was taken from petals of five flowers and
pooled together. For gene expression analysis, different L. radiata
tissues, including scape, stamen, pistil, flower stalk, and petal
samples were obtained during flowering time, while leaf, root,
as well as bulb samples from the same plants were obtained
during the vigorous vegetative growth stage. The fresh samples
were harvested and instantly frozen in liquid nitrogen, then kept
at –80◦C until use.

Measurement of Total Anthocyanins
Extraction and determination of anthocyanins of L. radiata
flowers was performed following the protocol of Mehrtens
et al. (2005) with minor modifications. Briefly, approximately
0.1 g fresh petals were ground in 1 mL of acidic methanol
(0.1 mol L−1 HCl) and then incubated overnight in the dark

at 4◦C with gentle shaking. After centrifugation for 10 min
at 12,000 rpm, the supernatant was diluted four times with
acidic methanol and the absorbance was measured at 530 and
657 nm using a UV-1600 spectrophotometer (SHIMADZU,
Kyoto, Japan). The concentration of anthocyanins was
calculated using the following formula: QAnthocyanins = (A530 –
0.25 × A657) × FW−1, where QAnthocyanins is the amount
of anthocyanins, A530 and A657 is the absorption at the
indicated wavelengths and FW represents the weight of the
fresh sample [g].

Construction of the cDNA Library,
Sequencing, and Transcriptome
Assembly
Total RNA was extracted with the mirVana miRNA isolation
kit (Thermo Fisher Scientific, Waltham, MA, United States)
following the manufacturer’s protocol. The quality and quantity
of the RNA were examined by the Agilent 2100 Bioanalyzer
(Agilent Technologies, Santa Clara, CA, United States). Samples
with RNA Integrity Number (RIN) ≥ 7 were subjected to cDNA
library construction using the TruSeq Stranded mRNA LTSample
Prep Kit (Illumina, San Diego, CA, United States). Sequencing of
the cDNA libraries was done on the Illumina sequencing platform
(Illumina HiSeqTM 2500) by Shanghai OE Biotech. Co. Ltd.
(Shanghai, China). Reads were cleaned by removing adapters, as
well as low-quality and ambiguous regions, then subjected to de
novo assembly using the Trinity software (Grabherr et al., 2011).

Functional Annotation
Alignment of the assembled unigenes was done against
public databases including National Center for Biotechnology
Information (NCBI) non-redundant protein (Nr) and nucleotide
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(Nt) database, the Swiss-Prot protein database, Gene Ontology
(GO) database, Protein Family (Pfam) database, Kyoto
Encyclopedia of Genes and Genomes (KEGG) database,
Eukaryotic Ortholog Groups (KOG) database, and eggNOG
(evolutionary gene genealogy: Non-supervised Orthologous
Groups) database.

Identification of Differentially Expressed
Genes
The expression level of unigenes was calculated using fragments
per kilobase per million fragments mapped (FPKM) method
(Mortazavi et al., 2008). Identification of DEGs among samples
at four development stage was done using the DESeq2 package
implemented in R software, with cutoff values of |log2 (fold
change)| > 1 and p-value < 0.05 algorithms (Young et al., 2010).
To visualize the differential expression profiles, we generated a
heatmap for the Trimmed Mean of M-values (TMM) normalized
against FPKM via the pheatmap package in R.

Transcription Factors Analysis
To predict TFs involved in color formation of L. radiata, we
utilized the getorf database (mini-size 150) to find the open
reading frame (ORF) (Rice et al., 2000) and then used the HMM
search database (version 3.0) to align the ORFs to the TF protein
domain. The aligned sequences were described according to the
TF families available on the PlantTF database version 3.0 (Zhang
et al., 2011). Moreover, the Pearson’s correlation coefficient
(PCC) between these differentially expressed TFs, structure genes
and total anthocyanin content of samples was calculated. The
TFs with |PCC| > 0.8 were selected for subsequent analysis.
The TF expression data, which included expression levels for
MYB, bHLH, WD40, and the DEGs identified in the flavonoid
biosynthetic pathway, was screened using blastx software, with
an e-value of 1e-10. The target gene sequence was aligned to
the protein sequence of the reference species contained in the
string database, and the protein interaction relationship of the
reference species was used to construct an interaction network.
Network visualization for the interaction network related to DFR
and DEGs was performed using Cytoscape version 3.6.1.

Gene Cloning and Construction of
Expression Vectors
Cloning of LrDFR1 was based on putative ORFs of unigenes from
the RNA-seq database. Primers (Supplementary Table 1) were
synthesized for ORF sequence amplification using Tks GflexTM

DNA Polymerase (Takara, Dalian, China) from L. radiata petal
cDNA. Reaction conditions were: 5 min of 95◦C, 35 cycles for
30 s at 94◦C, 30 s at 60◦C, 1 min at 72◦C, with extension
at 72◦C for 10 min. PCR products were cloned into pMD19-
T simple vectors (Takara, Dalian, China). Afterward, those
T-vectors were transferred into DH5α competent cells (Takara,
Dalian, China) for amplification. The overexpression vectors of
LrDFR1 were established by linking their ORFs into a linear
plant transformation vector, pBinGFP4, using the One Step
Cloning Kit (Vazyme, Nanjing, China). Then the 35S:LrDFR1

recombinant vectors were transformed into Agrobacterium
tumefaciens EHA105 competent cells.

Subcellular Localization and
Proanthocyanidin Staining
The pBinGFP4 vector with LrDFR1-GFP was transformed into
the Agrobacterium tumefaciens strain EHA105, and transferred
into Nicotiana benthamiana epidermal cells (Sheludko et al.,
2007). Cultivation of the transformed N. benthamiana leaves
was done for 2–6 days. For co-localization with membrane-
localized marker, 35S: PIP2;1-mCherry construction was used
(Huang et al., 2019). Assessment of transformed N. benthamiana
epidermal cells was observed with confocal laser scanning
microscopy (Zeiss LSM780 META, Jena, Germany). For staining
of the nuclei, 10 mg/mL 4′6-diamidino-2-phenylindole (DAPI)
was infiltrated into N. benthamiana leaves 6 h before observation.

Staining of proanthocyanidin was conducted as described by
An et al. (2015). Briefly, light-treated N. benthamiana leaves were
decolorized in a solution of ethanol: glacial acetic acid (3:1).
A dimethylaminocinnamaldehyde (DMACA) reagent staining
solution (Sigma-Aldrich, St. Louis, MO, United States) was then
added for staining.

Agrobacterium-Mediated Transient
Transformation System of Lycoris Petals
The A. tumefaciens harboring 35S:LrDFR1-GFP construct and the
control pBinGFP4 vector were prepared for injecting into Lycoris
petals, respectively. The recombinant Agrobacterium strains were
cultured in YEB broth containing 50 µg mL−1 kanamycin
and incubated at 28 ◦C. Then, the collected recombinant
Agrobacterium strains were resuspended to OD600 of 0.6 in a
buffer with 10 mM 2-(4-Morpholino) ethanesulfonic acid, 10 mM
MgCl2, and 120 µM acetosyringone. Transformed Lycoris petals
were stored for 48 h in the dark after which they were transferred
to a phytotron at a constant photon flux density of 100 µmol
m−2 s−1. With 5 days cultivation, Lycoris petals were obtained
for anthocyanin level assessment and RNA extraction.

Validation RNA-Seq by Quantitative
Real-Time PCR
For validating gene expression using qRT-PCR, 32 unigenes
associated with anthocyanin biosynthesis and phytohormone
metabolism were randomly selected (Supplementary Table 2).
Total RNA isolation was conducted by using the RNAprep
Pure Plant Kit (Tiangen, Beijing, China). First-strand cDNA
was synthesized with TransScript One-Step gDNA Removal and
cDNA Synthesis SuperMix kit (Takara, Dalian, China), and the
extracted RNA was used as template according to manufacturer’s
instructions. A list of gene-specific primers is provided in
Supplementary Table 1. The quantified expression levels of
the tested genes were normalized against the house keeping
genes TIP41-like protein (TIP41) according to previous study on
L. aurea (Ma et al., 2016). qRT-PCR assays were conducted by
the SYBR Premix Ex TaqTM II kit (Tli RNaseH Plus) (Takara,
Dalian, China) in a Bio-Rad iQ5 Gradient RT-PCR system.
Reaction conditions were: 30 s of denaturation at 95◦C and 40
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amplification cycles (5 s at 95◦C, 30 s at 60◦C). Calculation
of relative target gene expression levels was done using the
2−11Ct method (Livak and Schmittgen, 2001). Experiments
were conducted using three independent biological and three
technical replicates.

Statistical Analysis
Statistical analyses were done by SPSS version 10.0 software
(IBM Corporation, Armonk, NY, United States). The significant
difference among sets of data was determined by one-way
analysis of variance (ANOVA) with Duncan’s multiple range test
(p < 0.05) or a significant t-test (∗∗p < 0.01, ∗p < 0.05). All the
results are presented as the mean± standard deviation (SD).

RESULTS

Anthocyanin Levels in Lycoris radiata
Petal During Flower Development Stages
During the red flower development of L. radiata, petals
underwent a rapid color change from slight red to brilliant red
(Figure 1A). At the flower bud (FB) stage, a slight red color was
observed, then the color intensity was significantly increased with
rapid elongation of petals in FL1. Subsequently, the intensity of
L. radiata decreased at FL2 and R stages (Figure 1A). We thus
investigated the changes of anthocyanin contents in L. radiata
at four different petal development stages. Notably, anthocyanin
content at FL1 stage was significantly higher than that of FB, FL2
and R stages (Figure 1B), suggesting that changes in anthocyanin
levels could be the main reason for red color formation of
L. radiata.

Transcriptome Sequencing and de novo
Assembly
To further study the molecular mechanism of L. radiata
petal coloring during flower development, twelve libraries were
established using samples at four flower development (FB, FL1,
FL2, and R) stages (three biological replicates for samples at each
development stage), and a total of 644.93 million raw reads as
well as 96.73 Gb raw bases were obtained. After eliminating the
adaptor, poor-quality sequences, and ambiguous reads, 634.09
million clean reads and 89.86 Gb clean bases were retrieved from
12 samples (Supplementary Table 3). The quality score above
30 (Q30) of each library was 93.75–94.91%, and GC percentages
ranged from 44.99–46.51% (Supplementary Table 3). By using
Trinity software, the de novo assembly of 12 petal transcriptomes
totally generated 87,584 unigenes with an average length of
942 bp (Supplementary Table 4). Sequence length distribution
showed that 27,073 (30.91%) unigenes had a mean length≥ 1000
bp (Supplementary Figure 1 and Supplementary Table 4). The
N50 was determined to be 1,334 bp, which indicated that the
quality of sequence assembly was good.

FPKM values were used to estimate the transcription levels
of unigenes. More than 50.0% of unigenes had FPKM values
above 1 (Supplementary Figure 2). In addition, the use of
relative unigene expression obtained from FPKM for principal

component analysis (PCA) showed 52.10% variability among
the samples (Supplementary Figure 3). Moreover, heatmap
coefficient matrix analysis of the samples based on the FPKM
values showed that most biological replicates (except FB3 sample)
exhibited similar expression patterns, indicating relatively high
reliability of our sequencing data (Supplementary Figure 4).

Functional Annotations and Unigene
Classifications
All of the unigenes were annotated by BLAST search against
the public databases. The results revealed that 40,974 (46.78%),
29,476 (33.65%), 37,487 (42.8%), and 22,318 (25.48%) unigenes
were annotated to the Nr, Swiss-Prot, eggNOG, and Pfam
databases, respectively. Taken the entire public databases
together, a total of 41,534 (47.42%) unigenes could be
successfully annotated (Supplementary Table 5). To elucidate
their main biological functions, GO, KOG, and KEGG pathway
assessments were also performed (Supplementary Figures 5–
7). Consequently, 27,296 (31.17%) unigenes were assigned
into three main categories including “biological process”
(BP), “cellular component” (CC), and “molecular function
(MF)," which could be further distributed under 50 GO
terms (Supplementary Figure 5). In addition. 15,122 (17.27%)
unigenes were associated with 126 KEGG pathways, and
category ‘Metabolism’ (6187 unigenes) was the most abundant
(Supplementary Figure 6). Moreover, the KOG analysis showed
that 23,858 (27.24%) annotated unigenes were assigned into 25
classes (Supplementary Figure 7).

Identification of Differentially Expressed
Genes in Lycoris radiata Petal During
Flower Development Stages
To identify the key DEGs involved in L. radiata petal color
transitions, six pair-wise comparison groups (FL1 vs. R, FB
vs. R, FL2 vs. R, FL2 vs. FL1, FL1 vs. FB, and FL2 vs. FB)
were conducted (Figure 2). A total of 38,798 DEGs were
identified among all samples based on a |log2 fold change| >1 at
p < 0.05. Among these comparison groups, the largest abundance
of DEGs (23,202) was found between FB and R libraries, of
which 10,958 and 12,244 genes were down-regulated and up-
regulated, respectively (Figure 2A). Conversely, the smallest
abundance of DEGs (9,057) was recorded between FL2 and
FL1 libraries, with 5,033 and 4,024 of them down-regulated
and up-regulated, respectively (Figure 2A). Furthermore, the
overlap DEGs among the six comparison groups were screened.
The results indicated that 38 genes were differentially expressed
among all the comparisons, which indicated that these DEGs
might have key functions in the color expression of different
petals (Figure 2B and Supplementary Table 6).

Functional Annotation of Differentially
Expressed Genes
To elaborate the functions of DEGs and identify genes involved in
regulating anthocyanin accumulation in L. radiata, all the DEGs
were firstly subjected to GO analyses, and 14,555 of the 38,798
DEGs were assigned to GO annotations (Supplementary Table 7
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FIGURE 2 | Statistics of differentially expressed genes (DEGs) between two different samples at flower development stages. (A) Numbers of DEGs in various
pair-wise comparisons. (B) Venn diagram for the numbers of DEGs as shown by pair-wise comparisons. FB, floral bud stage; FL1, partially opening flower stage;
FL2, fully opened flower stage, and R, senescent flower stage.

and Figure 3A). In the biological process category, most of
the DEGs were mapped to ‘cellular process’ (9,476, 20.23%),
‘metabolic process’ (8,073, 17.23%), and ‘response to stimulus’
(4,181, 8.92%) terms. In the cellular component category, more
than 63.08% of DEGs were enriched in ‘cell,’ ‘cell part’ and
‘organelle’ terms, but for molecular function, nearly 86.13% of
DEGs were mapped to ‘catalytic activity’ and ‘binding’ terms
(Figure 3A). For the KEGG annotation results, 7,631 DEGs
among all samples were also mapped to 126 KEGG pathways
(Supplementary Table 7). Comparisons across the samples at
four petal development stages revealed significant enrichment of
DEGs in ‘flavonoid biosynthesis,’ ‘phenylpropanoid biosynthesis,’
‘Tropane, piperidine and pyridine alkaloid biosynthesis,’
‘terpenoid backbone biosynthesis’ as well as ‘plant hormone
signal transduction’ pathways (Figure 3B and Supplementary
Figure 8). For example, the significantly enriched KEGG pathway
term ‘Tropane, piperidine and pyridine alkaloid biosynthesis’
was shared in all the comparisons. The ‘flavonoid biosynthesis’
pathway was enriched in FL1 vs. R, FB vs. R, FL2 vs. R, FL2 vs.
FL1, and FL2 vs. FB, but not in FL1 vs. FB. In addition, the ‘plant
hormone signal transduction’ pathway was enriched in FB vs. R,
FL2 vs. FB, and FL2 vs. FL1 (Supplementary Figure 8).

Identification of Key Differentially
Expressed Genes Responsible for the
Anthocyanin Biosynthesis Pathway
To elucidate the molecular basis underlying difference in
anthocyanin biosynthesis among the four flower development
stages in L. radiata, DEGs involved in the anthocyanin
synthesis pathway were identified. The results revealed that 56

DEGs were enriched in the anthocyanin synthesis pathway,
including PAL, C4H, 4CL, CHS, CHI, F3H, F3′H, DFR,
ANS, UFGT, FLS, ANR, and LAR (Figure 4A). Moreover,
the Pearson’s correlation coefficient between the expression
level of these DEGs and the total anthocyanins content was
further calculated (Figure 4B). The results showed that 23
DEGs negatively regulated anthocyanin synthesis, whereas 33
DEGs positively regulated the anthocyanin synthesis. Among
them, the expression level of two DEGs, namely LrDFR1
(DN43960) and LrDFR2 (DN42380) indicated a significant
positive correlation with the total anthocyanins content in
petals during the flower development stages, while LrFLS
(DN37334) indicated a significant negative correlation with the
total anthocyanins content (|PCC| > 0.8, Figure 4B and Table 1),
suggesting that these three DEGs may have an essential role in
anthocyanin accumulation.

Identification of Transcription Factors
Related to Anthocyanin Biosynthesis in
the Petals of Lycoris radiata
Transcription factors were subsequently predicted to whether
modulate anthocyanin accumulation and biosynthesis in
L. radiata petals during flowering development stages. In this
study, a total of 1,631 TFs were identified by searching the TF
database. The classified results indicated that most of these TFs
belonged to the MYB, C2C2, AP2/ERF, C2H2, and bHLH family
(Supplementary Figure 9). Furthermore, the differentially
expressed TFs (721) were characterized by analyzing their
FPKM values (Supplementary Figure 9). Importantly, co-
expression modules of these 721 TF DEGs were analyzed with
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FIGURE 3 | GO and KEGG enrichment analysis of all DEGs. (A) GO enrichment results of all DEGs. (B) Enrichment of the top 20 KEGG pathways of all DEGs
according to the p-value.

Short Time-series Expression Miner (STEM) software. In all,
six clusters of 272 TF DEGs were detected (Figure 5A and
Supplementary Table 8).

On the other hand, by calculating the PCC between the
expression level of 721 TF DEGs and the total anthocyanins

content, 27 TFs genes (|PCC| > 0.8) involved in the
accumulation of anthocyanins were identified, including 10
positive regulators and 17 negative regulators (Table 1). These
10 positive regulators, including MYB (1), AP2/ERF (1), bHLH
(1), bZIP (1), NAC (1), NF-X1 (1), and Trihelixs (4) genes,
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FIGURE 4 | Analysis of DEGs involved in anthocyanin biosynthesis pathway in L. radiata. (A) Anthocyanin biosynthesis pathway and the log2 transformed FPKM
values of DEGs associated with structural enzyme genes were used to draw the heatmap. The enzymes include 4-coumarateCoA ligase (4CL), phenylalanine
ammonia lyase (PAL), chalcone synthase (CHS), flavone 3-hydroxylase (F3H), chalcone isomerase (CHI), flavonoid 3′-hydroxylase (F3′H), dihydroflavonol reductase
(DFR), flavonol synthase (FLS), UDP-flavonoid glucosyl transferase (UFGT), anthocyanidin reductase (ANR), and leucoanthocyanidin reductase (LAR). FB, floral bud
stage; FL1, partially opening flower stage; FL2, fully opened flower stage, and R, senescent flower stage. Color gradients comprise red, white, and blue, representing
genes that were upregulated, not regulated, as well as downregulated, respectively. (B) The heatmap analysis of all DEGs in anthocyanin biosynthesis pathway
according to the FPKM value.

likely act to improve anthocyanin synthesis during L. radiata
petal development stages. However, the 17 negative regulators,
including Alfin-like (1), AP2/ERF (1), GATA (1), GRFs (2), bHLHs

(2), MYBs (2), C2H2s (2), C3Hs (4), MADS (1), and NAC (1),
might act as repressors in L. radiata anthocyanin biosynthesis
(Table 1). Notably, 11 of 17 negative TF regulators (subclass 4,
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TABLE 1 | The candidate TFs and the key structural gene involved in anthocyanin accumulation.

Gene family Gene ID Annotation Correlation with total anthocyanin p-value

FLS TRINITY_DN37334_c0_g1_i1_1 Flavonol synthase/flavanone 3-hydroxylase-like −0.8058 0.0015

DFR TRINITY_DN42380_c0_g4_i2_2 Dihydroflavonol 4-reductase LrDFR2 0.8045 0.0016

TRINITY_DN43960_c0_g1_i7_3 Dihydroflavonol 4-reductase (LrDFR1) 0.8655 0.0002

Alfin-like TRINITY_DN45802_c0_g1_i2_1 PHD finger protein ALFIN-LIKE 6-like −0.9302 1.16E-05

AP2/ERF TRINITY_DN42881_c0_g1_i1_3 AP2 domain-containing transcription factor 2 0.8584 0.0003

TRINITY_DN13573_c0_g1_i1_1 AP2 domain-containing transcription factor 2 −0.8304 0.0008

bHLH TRINITY_DN36174_c0_g1_i1_1 Transcription factor bHLH30-like −0.8631 0.0002

TRINITY_DN41224_c0_g1_i1_1 Transcription factor bHLH57-like −0.8494 0.0004

TRINITY_DN48856_c0_g1_i6_1 Transcription factor bHLH48-like 0.8305 0.0008

bZIP TRINITY_DN27549_c0_g1_i3_2 bZIP transcription factor 11-like 0.8317 0.0007

GATA TRINITY_DN30983_c0_g2_i1_2 GATA transcription factor 3-like isoform X2 −0.8175 0.0011

GRF TRINITY_DN37111_c0_g1_i4_2 Growth-regulating factor 4-like −0.8349 0.0007

TRINITY_DN48073_c0_g1_i1_1 Growth-regulating factor 7-like −0.8084 0.0014

C2H2 TRINITY_DN44933_c0_g1_i2_1 Histone deacetylase HDT2-like −0.8566 0.0003

TRINITY_DN48967_c0_g1_i23_1 Histone deacetylase HDT2 −0.8434 0.0005

C3H TRINITY_DN36142_c1_g2_i3_3 Zinc finger CCCH domain-containing protein 8 −0.8517 0.0004

TRINITY_DN42291_c0_g1_i1_1 Zinc finger CCCH domain-containing protein 59 −0.8752 0.0001

TRINITY_DN60484_c0_g1_i1_1 Zinc finger CCCH domain-containing protein 44 −0.8130 0.0013

TRINITY_DN48680_c0_g1_i6_1 Zinc finger CCCH domain-containing protein 8 −0.8535 0.0004

MADS TRINITY_DN50153_c1_g1_i10_1 Transcription factor, MADS-box −0.8239 0.0009

MYB TRINITY_DN33872_c0_g1_i1_3 MYB transcription factor 0.8101 0.0013

TRINITY_DN45447_c0_g1_i7_1 MYB transcription factor −0.8298 0.0008

TRINITY_DN51496_c0_g1_i9_1 MYB transcription factor −0.8245 0.0009

NAC TRINITY_DN39353_c0_g2_i1_1 NAC domain-containing protein 43 −0.8351 0.0007

TRINITY_DN39797_c0_g2_i6_3 NAC domain-containing protein 17-like 0.8215 0.0010

NF-X1 TRINITY_DN33064_c0_g1_i1_2 NF-X1-type zinc finger protein NFXL2 0.8369 0.0006

Trihelix TRINITY_DN39907_c1_g1_i5_1 Trihelix transcription factor GTL1 0.8138 0.0012

TRINITY_DN41155_c0_g2_i2_2 Trihelix transcription factor GTL1-like 0.8208 0.0010

TRINITY_DN43481_c0_g2_i1_1 Trihelix transcription factor ASIL2-like 0.8571 0.0003

TRINITY_DN45677_c0_g1_i7_3 Trihelix transcription factor GTL1 0.8042 0.0016

5, and 6) and one positive regulator (subclass 2) were enriched in
TF co-expression modules (Supplementary Table 8).

Previous studies have reported that bHLH, MYB and WD40
TFs regulate anthocyanin biosynthesis thereby activating or
repressing transcription of anthocyanin structural genes. We
then performed unigenes regarding to MYB, bHLH and WD40,
as well as 56 DEGs involved in anthocyanin biosynthesis
(Figure 5) to analyze their interaction network and hope
to identify the hub TF genes that could affect anthocyanin
biosynthesis pathway. The results showed that four DFRs, four
MYBs, two WD40s, two 4CLs, one F3′H, one UFGT, one CHS,
one ANS, one FLS, and one CHI were selected as hub genes
based on their connection position in the network modules,
expression pattern and functional annotation (Supplementary
Table 9a and Supplementary Figure 10). Furthermore, those
genes (shown in Supplementary Table 9a) and 27 key TF genes
(Table 1) were selected to build the interaction network for
further analysis. Among them, LrDFR1 (DN43960) and LrFLS
(DN37334) could be regarded as key hub genes for participating
anthocyanin biosynthesis. Two MYBs (DN45447 and DN33872),
two NACs (DN39353 and DN39797), one C3H (DN42291),
and one GATA (DN30983) TF genes were identified as hub

genes in regulating anthocyanin biosynthesis (Figure 5B and
Supplementary Table 9b). The above results indicate that these
eight genes may play essential roles in anthocyanin synthesis in
L. radiata during petal development.

Validation of RNA-seq Data by qRT-PCR
To validate the accuracy and transcription profiles revealed by
the RNA-seq data, 32 unigenes were selected for qRT-PCR assays.
The relative expression levels of these 32 genes were normalized
to the expression of LrTIP41, and compared with the RNA-Seq
data, as shown in Figure 6A. Further linear regression analysis
revealed that the expression levels of these genes were well
correlated with the RNA-Seq results (Figure 6B, R2 > 0.76),
indicating that the RNA-seq data were credible and accurate.

LrDFR1 Is Involved in Anthocyanin
Biosynthesis in Lycoris radiata
In this study, we cloned LrDFR1 gene (DN43960) from
L. radiata. The full-length cDNA of LrDFR1 is 1113 bp in
length and it encodes a 370 amino acid protein with a
molecular weight of 41.67 kDa (Supplementary Table 10).
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FIGURE 5 | Gene expression profiles of identified transcription factor and protein-protein interaction network of key structural enzymes and TFs involved in
anthocyanin biosynthesis in L. radiata flowers. (A) K-means clusters of DEGs based on standardized (log2 transformed) FPKM of L. radiata petals at flower
development stage (FB, FL1, FL2, and R). Number of genes that were clustered in every subclass are shown above each Figure. (B) Protein–protein interaction
network constituted by protein sequences of differentially expressed transcription factors and structural genes involved in anthocyanin synthesis of L. radiata petals.
Genes that have the higher weight are depicted in ‘yellow and orange,’ the ‘blue edges’ correspond to co-expressed strong links and the ‘yellow edges’ correspond
to co-expressed weak links.
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FIGURE 6 | qRT-PCR validation of gene expression level in the transcriptome. (A) qRT-PCR validation of gene expression level in the transcriptome. Thirty two
unigenes were selected for qRT-PCR validation. (B) Correlation analysis of the results between qRT-PCR and RNA-Seq.
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FIGURE 7 | Phylogenetic tree analysis, transcription expression profiles, and subcellular localization of LrDFR1. (A) Phylogenetic assessment of LrDFR1 with other
DFR proteins from different plants. Phylogenetic tree generation was achieved using the maximum likelihood method in MEGA 7.0 software. Numbers at every interior
branch show bootstrap values of 1000 replicates. The bar shows a 0.05 genetic distance. Plant species as well as GenBank accession numbers of DFR proteins
used in phylogenetic analyses are: Solanum tuberosum StDFR (AF449422), Solanum lycopersicum SlDFR (CAA79154.1), Petunia hybrida PhDFR (AF233639),
Angelonia angustifolia AngDFR (KJ817183), Nicotiana tabacum NtDFR (NP_001312559.1), Antirrhinum majus AmDFR (X15536), Perilla frutescens PfDFR
(AB002817), Gentiana triflora GtDFR (D85185), Torenia hybrid ThDFR (AB012924), Gerbera hybrid GhDFR (Z17221), Vaccinium macrocarpon VmDFR1 (AF483835),
Arabidopsis thaliana AtDFR (AB033294), Medicago truncatula MtDFR1 (AY389346), Vitis vinifera VvDFR (Y11749), Malus domestica MdDFR (AAO39816), Rosa
hybrid RhDFR (D85102), Cymbidium hybrid ChDFR (AF017451), Fragaria ananassa FaDFR (AF029685), Tulipa gesneriana TgDFR (BAH98155.1), Lilium hybrid
LhDFR (AB058641), Iris hollandica IhDFR (BAF93856.1), Allium cepa AcDFR (AY221250.2), Agapanthus praecox ApDFR (AB099529.1), Muscari aucheri MaDFR
(MH636605), Freesia hybrid FhDFR (KU132389), and Hyacinthus orientalis HoDFR (AFP58815.1). (B) Expression profiles of LrDFR1 in various tissues of L. radiata.
Expressions of LrDFR1 were assessed by qRT-PCR, and normalized to LrTIP41. Expressions of LrDFR1 in root tissues were defined as 1.0. Data are shown as
mean ± SD. Bars with different letters are significantly different at p < 0.05 according to Duncan’s multiple range test. (C) Expression profiles of LrDFR1 during the
FB stage, FL1 stage, FL2 stage and R stage of L. radiata. Expression levels of LrDFR1 were assessed by qRT-PCR, and normalized to LrTIP41. Expression levels of
LrDFR1 in FB stage were defined as 1.0. Data are shown as mean ± SD. Bars with different letters are significantly different at p < 0.05 according to Duncan’s
multiple range test. (D) Subcellular localization of LrDFR1 in N. benthamiana epidermal cells. Scale bars = 20 µm. The nuclei are indicated by DAPI staining.

The deduced amino acid sequence of LrDFR1 revealed a
high similarity with DFR proteins from Agapanthus praecox
(75.33%), Muscari armeniacum (74.74%), and Hyacinthus
orientalis (72.72%) (Figure 7A). Multiple amino acid sequence
alignments showed the highly preserved NADPH-binding
motif (VTGAAGFIGSWLIMRLLERGY) (Gang, 2005) and the
substrate-binding domain (T128–K154) (Johnson et al., 2001)
in the LrDFR1 sequence (Supplementary Figure 11). qRT-
PCR was then performed to assess whether expression patterns
of LrDFR1 in different tissues and flower development stages
were coincided with anthocyanin accumulation in L. radiata.

LrDFR1 was found to be expressed in all tissues, with the highest
expression levels in petals (Figure 7B). Moreover, expression
levels of LrDFR1 were significantly increased from stage FB to
stage R, peaking at stage FL1 (Figure 7C). These findings imply
tissue-specific expression levels for LrDFR1, which is associated
with anthocyanin accumulation in L. radiata petals.

Moreover, we transiently expressed LrDFR1 in tobacco
epidermal cells to assess subcellular localization of LrDFR1. As
shown in Figure 7D, the fluorescent signal of LrDFR1-GFP
was localized into the nucleus, cytoplasm and cell membrane,
while GFP was evenly distributed in the cell (Figure 7D
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FIGURE 8 | Overexpression of LrDFR1 promotes anthocyanin and proanthocyanidin biosynthesis. (A) Proanthocyanidin staining and (B) relative proanthocyanidin
(PA) levels in transiently transformed tobacco leaves (pBinGFP4: empty vector controls; LrDFR1-OE: LrDFR1-overexpressing leaves). Tobacco leaves were kept in a
phytotron at 24◦C under constant lighting for 5 days. DMACA was used to stain proanthocyanidin. Every experiment was performed using 8–10 leaves for each
genotype. Experiments were conducted in triplicates, and a representative image is shown. Proanthocyanidin levels of empty vector controls were set as the
reference to 1. Asterisks represent significant differences between control and LrDFR1-overexpressing leaves (**p < 0.01). Bars = 1 cm. (C) Phenotypes of
anthocyanin accumulation. Arrow indicates the transfected petals. (D,E) Relative anthocyanin levels in transiently transformed Lycoris petals (pBinGFP4: empty
vector controls; LrDFR1-OE: LrDFR1-overexpressing petals). Lycoris petals were kept in a phytotron at 24◦C with a constant light for 5 days. Every experiment was
performed using 8–10 petals per genotype. Data are shown as mean ± SD. **p < 0.01. Bar = 0.5 cm. (F) Relative expression levels of endogenous anthocyanin
biosynthetic genes in pBinGFP4 (empty vector controls) as well as LrDFR1-overexpressing petals. Expression patterns of early biosynthetic genes (CHS, F3H, CHI,
and F3′H) as well as late biosynthetic genes (DFR, UFGT, ANS, and 3RT) in petals were investigated. Asterisks represent significant differences between control and
LrDFR1-overexpressing petals (**p < 0.01).

and Supplementary Figure 12). To determine the roles of
LrDFR1 in regulating anthocyanin as well as proanthocyanidin
biosynthesis in L. radiata, an LrDFR1-overexpressing plasmid
was transfected into Lycoris petals and tobacco epidermal cells

(Figure 8A). Overexpression of LrDFR1 in tobacco and Lycoris
petals markedly enhanced proanthocyanidin and anthocyanin
accumulation (Figures 8B–E). To assess the effects of LrDFR1 on
endogenous Lycoris petals genes that are involved in anthocyanin
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synthesis, the expression levels of CHS, CHI, F3H, F3′H, DFR,
ANS, UFGT, and 3RT were determined (Figure 8F). Among
them, the expressions of LrDFR1, ANS, UFGT and 3RT were
significantly higher in LrDFR1-overexpressing plants than in
control plants (Figure 8F). These results suggest that LrDFR1
may play important roles in anthocyanins biosynthesis of
Lycoris petals.

DISCUSSION

Changes of Anthocyanin Contents in the
Lycoris radiata Petals During Flower
Development Stages
Flowering plants exhibit a wide variation in their flora,
foliage, and fruit colors, as a result of genetic factors and
variations in environments. Flavonoids/anthocyanins, betalains
and carotenoids are the major metabolites for coloration in plant
reproductive organs (Griesbach, 2005; Tanaka et al., 2008). Most
of the red, purple, and blue-colored flowers (such as red rose,
lavender, and blue chicory) as well as fruits (such as berries,
currants, and grapes) contained high anthocyanins content
(Khoo et al., 2017). The genus Lycoris is used as a garden flower
due to the colorful and special flowers, and the flower colors of
Lycoris are diverse. For example, the flower color of L. radiata
and L. rosea was red, that of L. aurea and L. chinensis was yellow.
L. sprengeri and L. haywardii showed red and blue color, while
L. longituba displays an exceptionally wide diversity of flower
colors from purple, red, orange, to yellow (He et al., 2011). Similar
to the flowers of other species, the petals of Lycoris are rich in
anthocyanins, and their color formation are largely related to
anthocyanins (He et al., 2011; Chun et al., 2013; Yue et al., 2019;
Park et al., 2021). In this study, we determined the content of
anthocyanins in the petals of L. radiata, and the results showed
that the color intensity of the L. radiata petals was changed with
the different anthocyanin contents. The anthocyanins increased
then decreased during the flower development stages (Figure 1),
which are similar to the results recently reported by Park et al.
(2021).

Key Structural Genes Responsible for
Anthocyanin Synthesis in Lycoris radiata
Petals During Flower Development
Stages
To data, transcriptome sequencing is highly employed for
predicting novel genes, gene function, and genome evolution
for plant breeding and horticulture research (Rameneni et al.,
2020). For example, transcriptome analysis has revealed the role
of anthocyanin in flower color formation in several horticultural
crops, such as Camellia sinensis (Zhou et al., 2020), “Tiny Padhye”
(Lilium spp.) (Xu et al., 2017), lilies (Lilium spp.) (Suzuki et al.,
2016), Magnolia sprengeri (Shi et al., 2014), Paeonia lactiflora
(Zhao et al., 2014), Paeonia delavayi (Shi et al., 2015), and Silene
littorea (Casimiro-Soriguer et al., 2016). For better understanding
of petals color formation during flower development stages in
L. radiata, a comparative transcriptomics analysis was carried

out. The results showed that approximately 70.27 GB of high-
quality data, and 87,584 unigenes were obtained. Further
analyses, based on NR, Swiss-Prot, KEGG, KOG, GO, Pfam,
and eggNOG databases, predicted 38,798 DEGs associated with
a specific or general function (Supplementary Tables 4, 5).

The variations in floral coloration emanates from different
processes, such as pathways competition, expression levels of
structural genes involved in pigment formation, and mutations
of structural or regulatory genes (Grotewold, 2006; Cui et al.,
2021). In plants, phenylpropanoids represent a vital group
of physiologically active secondary metabolites derived from
phenylalanine, and anthocyanins, flavonols, isoflaconoids and
flavonols have a similar metabolism pathway during their
biosynthesis (Ferrer et al., 2008). KEGG pathway analysis showed
that the ‘phenylpropanoid biosynthesis,’ ‘flavonoid biosynthesis,’
as well as ‘flavone and flavonol biosynthesis’ pathways were
enriched between each two transcriptomes of L. radiata
petals during flower development stages (Figure 3B and
Supplementary Figure 8). Given that anthocyanin biosynthesis
pathway is well known to modulate color formation in plants,
we mainly focused on them as the candidate pathways to
elucidate their involvement in petal/flower color formation in
L. radiata. Subsequently, we identified the main functional
genes participated in the anthocyanin biosynthetic pathway,
and found that most of structural genes such as F3′H, UFGT,
DFR, and FLS were elevated in L. radiata petals at FL1 and
FL2 stages (Figure 4A). Therefore, these genes might have
contributed to the increasing anthocyanin content in petals
from the FB stage to the FL1 and FL2 stage, as evidenced in
Figure 1. For example, three F3′H genes (DN41001, DN43758,
and DN46768) were highly expressed in petals at FL1 and FL2
stages (Figure 4A). Another prominent gene, UFGT (DN44965),
which glycolyzes anthocyanidin into anthocyanin (Xie et al.,
2003), was also highly expressed in petals at FL1, FL2 and
R stages, as compared to that of the samples at FB stage
(Figure 4A). All of these genes were positively correlated with
the biosynthesis of anthocyanins (Niu et al., 2010). Notably,
two DFR genes (DN42380, DN43960) and one FLS (DN37334)
(Table 1) were found to be highly associated with the total
anthocyanins content (|PCC| > 0.8), suggesting they may have
an essential function in the phenotypic expression of petal color
(Figure 4B). In anthocyanin biosynthesis, DFR catalyze the
reduction of dihydroquercetin to leucoanthocyanidins, and the
level of DFR expression have been associated with flower color
changes (Nakatsuka et al., 2003; Zhao et al., 2012). qRT-PCR also
indicated that the hub gene LrDFR1 were mostly expressed the
most in the FL1 samples (Figure 7C). Our results suggest that
these enzymes may be the most important enzymes to catalyze
anthocyanin biosynthesis in L. radiata petals.

Transcriptional Regulation of Color
Formation in Lycoris radiata Petals
Transcription factors play critical functions in flavonoid
biosynthesis, by regulating expression of structural genes.
For example, the class of TFs identified were previously
implicated in regulation of petal color formation in roses
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(Li D. et al., 2020). Particularly, MYB-bHLH-WD40 complexes
have been implicated in multi-level regulation of flavonoid
biosynthesis (Gallego et al., 2018), whereas the R2R3-MYB family
was shown to play a vital role in regulation of spatiotemporal
expressions of genes involved in anthocyanin biosynthetic in
plants (Gonzalez et al., 2008; Zhao and Tao, 2015). Besides,
MYB-domain TFs are important mediators of anthocyanin
accumulation and participate in colorations of various organs in
horticultural as well as ornamental plants (Tang et al., 2017; Liu Y.
et al., 2019; Xiang et al., 2019; Zhai et al., 2019; He et al., 2020; Sun
et al., 2020; Wang et al., 2020; Zhong et al., 2020).

In this study, the most abundant TFs including AP2/ERF,
bHLH, bZIP, C2C2, HSF, MYB, NAC, TIFY, and WRKY
families were predicted (Supplementary Table 8). In addition,
we employed a K-means clustering, as proposed earlier by
Handhayani and Hiryanto (2015), which permitted the clustering
of 272 TF unique genes among the samples (FB, FL1, FL2,
and R) into six sub-clusters with some members in Cluster
2 associated with genes from the MYB and bHLH TFs
(Figure 5A). Based on the expression level of TFs obtained
from the transcriptome data, 27 TFs (Table 1) were found
to highly associate with the total anthocyanin content (|PCC|
> 0.8), and these TFs may have an essential function in the
phenotypic expression of L. radiata petal color. Interestingly,
among these TFs, three MYBs showed two different expression
patterns. The expression level of two MYBs (DN45447, DN51496)
was highest in FB, followed by FL1, FL2, and R, which was
contrary to the total anthocyanin content trend. Conversely,
the expression of LrMYB1 (DN33872) exhibited a similar trend
to the total anthocyanin content in the L. radiata petals
(Supplementary Figure 13), indicating that MYBs (DN45447
and DN51496) negatively regulated anthocyanin accumulation,
whereas LrMYB1 (DN33872) was identified as one of the eight
hub genes may positively regulate anthocyanin accumulation in
L. radiata (Table 1 and Figure 5B).

Subsequently, two negatively correlated bHLHs (DN36174 and
DN41224) and one positively correlated LrbHLH1 (DN48856)
were identified (Table 1). In plants, MYB often forms protein
complexes with bHLH and WD40 to participate in anthocyanin
biosynthesis rather than regulate anthocyanin biosynthesis
directly (Feng et al., 2020). In apple, MdMYB1, MdMYB9,
MdMYB10, and MdMYBA act as positive modulators of
anthocyanin biosynthesis, by activating the expressions of
MdDFR and MdUF3GT (Takos et al., 2006; Ban et al.,
2007; Espley et al., 2007; An et al., 2015). On the contrary,
downregulation of MdMYB1 inhibits anthocyanin accumulation
mediated by ethylene, abscisic acid (ABA), wounding, drought,
and different light intensities (An et al., 2018, 2019, 2020a,b).
Notably, our results also revealed a significant upregulation of
LrMYB1 (DN33872) and LrbHLH1 (DN48856), of which the
expression was positively correlated with LrDFR1, LrCHS, LrCHI,
F3′H, LrUFGT and LrANS genes during petal development stages
(Supplementary Figure 13). This is similar to that of LhMYB12-
Lat, which has previously been associated with activation of
accumulation of anthocyanin in lily petals (Yamagishi et al.,
2014). In our co-expression networks, the module that was
positively correlated with anthocyanin contents and modules

negatively correlated with anthocyanin content were identified.
Overall, whether these MYB TFs interact with bHLH TFs to
regulate anthocyanin biosynthesis in L. radiata remains to be
further investigated.

The LrDFR1 Drives Anthocyanin
Accumulation in Lycoris radiata Petals
In the anthocyanin biosynthesis pathway, DFR catalyzes
dihydroflavonol conversion to leucoanthocyanidins (Zhang
et al., 2014). DFR belongs to the superfamily of short chain
dehydrogenase reductase (SDR), which has a highly preserved
NADPH-binding domain “VTGAAGFIGSWLIMRLLERGY” as
well as a substrate-binding domain in plants (Martens et al.,
2002; Haselmair-Gosch et al., 2018). In this study, based on the
expression level of the anthocyanin structure genes obtained from
the transcriptome data, LrDFR1 and LrDFR2 (Table 1) were
found to highly associate with the total anthocyanin content
(PCC > 0.8), suggesting DFR may have an essential function in
the phenotypic expression of L. radiata petal color. LrDFR1 was
then identified as one of the hub genes (Figure 5B) and important
to positively regulate anthocyanin production in L. radiata petals.
Multiple amino acid alignments showed that LrDFR1 contains
the NADPH-binding domains and substrate-binding domains.
Phylogenic tree analysis revealed a high similarity between
LrDFR1 and other characterized DFRs, implying that LrDFR1
belongs to the monocot DFR family and exhibits catalytic
characteristics.

The DFR genes of Iris and Gentiana have been reported
to be associated with the absence of brick-red flowers (Noda
et al., 2017). Moreover, heterologous MaDFR expressions in
N. tabacum has been associated with enhanced anthocyanin
accumulation, which leads to darker flower colors, suggesting
that MaDFR is involved in flower color development (Liu H.
et al., 2019). After the introduction of maize (Zea mays)
DFR into white-flowered petunia varieties, transgenic plant
flowers accumulate non-native pelargonidin, which results in
novel brick red-flower varieties (Meyer et al., 1987). In this
study, the expression patterns of LrDFR1 was first temporally
and spatially tested in various tissues and petal development
stages of L. radiata. It showed that the expression levels of
LrDFR1 were correlated with total anthocyanin accumulation.
These findings imply that LrDFR1 is associated with petal color
development in L. radiata (Figures 1, 7C,D). The spatial and
temporal expression characteristics of LrDFR1 gene were found
similarly in several other species (Liu H. et al., 2019; Lim
et al., 2020). In order to investigate the functional divergence
of LrDFR1 gene in the flavonoid biosynthesis, we performed
transient expression analyses using Lycoris petals and tobacco
leaves. Overexpressed LrDFR1 was associated with significantly
elevated anthocyanin content and proanthocyanidin content in
Lycoris petals and tobacco leaves. Interestingly, overexpression
of LrDFR1 also enhanced the expression of downstream genes
(LrANS and LrUFGT) involved in anthocyanins biosynthesis in
transgenic Lycoris petals (Figures 8B–F). In addition, for plant
breeders, a single DFR gene maybe ideal for determining flower
colors. DFR is vital for pigmentation, when compared to other
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anthocyanin biosynthetic genes, which only regulate plant flower
color hue. Thus, whether LrDFR1 has a high preference for
dihydromyricetin, and is accountable for the limited flower colors
in L. radiata needs further study.

CONCLUSION

In this study, we provided a dynamic transcriptome profile
of L. radiata petals during flower development stages. Overall,
56 structural genes and 27 key TF DEGs were identified
as key genes responsible for L. radiata petal coloration. In
the protein-protein interaction network analysis, LrDFR1 was
identified as a hub gene in the anthocyanin biosynthesis pathway,
and was highly associated with anthocyanin accumulation.
Overexpression of LrDFR1 in Lycoris petals and tobacco leaves
induced anthocyanin accumulation. In addition, the structural
genes and co-expressed TFs reported in this study would serve
as useful genetic resources for further functional characterization
and molecular breeding programs in L. radiata. Taken together,
our results elucidate on the molecular basis of petal development
in L. radiata.
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