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As an important plant growth regulator, the role of γ-aminobutyric acid (GABA) in regulating 
seeds germination was less well elucidated under water stress. The present study was 
conducted to investigate the impact of GABA pretreatment on seeds germination of white 
clover (Trifolium repens) under water deficient condition. Results demonstrated that seeds 
pretreated with 2 μmol/l GABA significantly alleviated decreases in endogenous GABA content, 
germination percentage, germination potential, germination index, root length, and fresh weight 
along with marked reduction in mean germination time after 7 days of germination under drought 
stress. In addition, seeds priming with GABA significantly increased the accumulation of soluble 
sugars, non-enzymatic antioxidants [reduced ascorbate, dehydroascorbic acid, oxidized 
glutathione (GSSG), and reduced glutathione (GSH)], and enzymes [superoxide dismutase 
(SOD), peroxidase (POD), catalase (CAT), ascorbate peroxidase (APX), dehydroascorbate 
reductase (DHAR), glutathioe reductase, and monodehydroasorbate reductase (MDHR)] 
activities involved in antioxidant metabolism, which could be associated with significant reduction 
in osmotic potential and the accumulation of superoxide anion, hydrogen peroxide, electrical 
leakage, and malondialdehyde in seeds under drought stress. The GABA-pretreated seeds 
exhibited significantly higher abundance of dehydrin (DHN, 56 KDa) and expression levels of 
DHNs encoding genes (SK2, Y2K, Y2SK, and Dehydrin b) and transcription factors (DREB2, 
DREB3, DREB4, and DREB5) than the untreated seeds during germination under water-limited 
condition. These results indicated that the GABA regulated improvement in seeds germination 
associated with enhancement in osmotic adjustment, antioxidant metabolism, and DREB-
related DHNs expression. Current study will provide a better insight about the GABA-regulated 
defense mechanism during seeds germination under water-limited condition.

Keywords: ascorbic acid-glutathione cycle, oxidative damage, osmotic adjustment, transcription factor, gene 
expression

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/journals/plant-science
www.frontiersin.org
https://www.frontiersin.org/journals/plant-science#articles
http://crossmark.crossref.org/dialog/?doi=10.3389/fpls.2021.776939&domain=pdf&date_stamp=2021-12-06
https://www.frontiersin.org/journals/plant-science#editorial-board
https://www.frontiersin.org/journals/plant-science#editorial-board
https://doi.org/10.3389/fpls.2021.776939
https://creativecommons.org/licenses/by/4.0/
mailto:lizhou1986814@163.com
https://doi.org/10.3389/fpls.2021.776939
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full
https://www.frontiersin.org/articles/10.3389/fpls.2021.776939/full


Zhou et al. GABA Promotes Germination Under Stress

Frontiers in Plant Science | www.frontiersin.org 2 December 2021 | Volume 12 | Article 776939

INTRODUCTION

More than one third of the earth’s land is distributed in arid 
and semi-arid areas worldwide. In China, the arid area is 
about 3.32 million square kilometers, accounting for 34.6% of 
the total land area (Wang et  al., 2012). Due to the increased 
anthropogenic activities and climate change, drought has become 
a critical problem limiting agricultural productivity worldwide 
(Li and Qiu, 2003). Seeds germination is highly sensitivity to 
drought stress because water is a crucial factor during germination 
(Liu et al., 2016). It has been reported that drought or osmotic 
stress decreased germination percentage, root length, fresh 
weight, seed vigor index (SVI), and prolonged mean germination 
time (MGT) in many economically important crop seeds (Okçu 
et  al., 2005; Sun et  al., 2006; Zhu et  al., 2006; Sheteiwy et  al., 
2018). Seeds also undergo a series of physiological and 
biochemical changes, such as a decrease in osmotic potential 
(OP), accelerated oxidative damage, enhanced antioxidant 
metabolism, and other metabolic pathways in response to water 
stress or other stress (He et  al., 2017; Cao et  al., 2018). Under 
normal condition, the production and cleansing of reactive 
oxygen species (ROS) are in a dynamic balance. However, 
water stresses such as drought promote the production of ROS 
leading toward cell membrane lipid peroxidation, thus inhibiting 
seeds germination and seedling growth (Lyons and Raison, 
1970; Na et  al., 2012). To resist this threat, plants are inclined 
to enhance activities of various antioxidant enzymes, including 
superoxide dismutase (SOD), peroxidase (POD), ascorbate 
peroxidase (APX), and catalase (CAT) and promote 
non-enzymatic antioxidants metabolism, such as reduced 
glutathione (GSH), oxidized glutathione (GSSG), ascorbic acid 
(ASA), and dehydroascorbic acid (DHA). The study of Wang 
et al. (2009) had found that the stress-tolerant alfalfa (Medicago 
sativa) “Xinmu No.1” exhibited significantly lower ROS 
accumulation and lipid peroxidation associated with higher 
SOD, POD, APX, and CAT activities than the stress-sensitive 
“Northstar” during seed germination under drought stress. 
Similar findings were also found in other plant species during 
seeds germination under other stresses (Li et al., 2017). Therefore, 
the maintenance of better antioxidative capacity is essential 
for seeds germination when seeds are subjected to an unfavorable 
environmental condition.

For a long time, seed priming with water or chemicals has 
been used as an effective technique to improve seeds germination 
under favorable condition or enhance stress tolerance under 
environmental stress (Harris et  al., 2001). Previous studies 
found that seed priming confers the tolerance to different 
abiotic stresses associated with alterations in physiological, 
molecular, and metabolic levels during seeds germination. For 
example, seed priming with spermidine and 5-aminolevulinic 
acid improved amylolysis, antioxidant defense, and polyamines 
metabolism during rice (Oryza sativa) seeds germination under 
chilling stress (Sheteiwy et al., 2017). Enhanced starch metabolism 
and antioxidant capacity induced by the spermidine priming 
were observed during white clover (Trifolium repens) seeds 
germination under water stress (Li et  al., 2014). Polyethylene 
glycol (PEG)-induced osmotic stress could be effectively alleviated 

by priming with methyl jasmonate through regulating metabolic 
profile in rice seeds (Sheteiwy et  al., 2018). In addition, seed 
priming with γ-aminobutyric acid (GABA) could significantly 
alleviate salt-induced inhibition of seeds germination associated 
with changes in physiological, metabolic, and molecular responses 
in white clover (Cheng et al., 2018). It is worth further exploring 
effect and mechanism of seed priming with different chemicals 
on alleviating stress damage under various abiotic stresses. 
The GABA is an important non-protein amino acid that exists 
naturally in animals and plants (Kinnersley and Turano, 2000). 
Generally, the plant tissues contain minute concentration of 
GABA under normal conditions, but it can be  amplified in 
different plant species under various stressed conditions, such 
as in soybean (Glycine max) leaves under lower temperature 
(Wallace et al., 1984), in creeping bentgrass (Agrostis stolonifera) 
under drought and heat stress (Li et  al., 2019a, 2020), and in 
white clover under drought stress (Yong et  al., 2017). Many 
studies have also found that GABA played a vital role in the 
stress tolerance of plants associated with the regulation of the 
tricarboxylic acid cycle, nitrogen reservoir, cytoplasmic pH, 
antioxidant defense, and osmotic potential (Guo-Xing et  al., 
2003; Khan et  al., 2021; Li et  al., 2021). Exogenous GABA 
application could improve the hypoxic tolerance in muskmelon 
(Cucumis melo; Fan, 2012) and cucumber (Cucumis sativus; 
Huang, 2016) seedlings. In addition, the GABA application 
significantly increased the activity of POD and APX and the 
accumulation of osmolytes, thus effectively alleviating the 
oxidative damage and water imbalance in the leaves of perennial 
ryegrass (Lolium perenne) under water deficient condition 
(Krishnan et  al., 2013). The GABA enhanced antioxidant 
metabolism to mitigate oxidative damage, which is a key 
regulatory pathway for improving drought tolerance of creeping 
bentgrass (Tang et  al., 2020). Although the GABA is beneficial 
for plants adaption to abiotic stresses, the study about its 
function during seeds germination is still at initial stages.

Large number of late embryonic development proteins, also 
known as dehydrins (DHNs), tend to accumulate during seeds 
germination under stress conditions (Houde et al., 1995; Cheng 
et  al., 2018). It has been reported that DHNs are involved in 
the water regulation, biomembrane protection, and antioxidant 
defense, hence contributing toward adaptation to drought stress 
in plants (Dure, 1992; Roberts et al., 1993; Hara, 2009). Baldwin 
et  al. (1999) found that wheat (Triticum aestivum) embryos 
accumulated abundant DHNs under osmotic stress. The content 
of DHNs in drought-tolerant soybean (Glycine max) varieties 
was higher than that in drought-sensitive soybean varieties in 
response to drought stress (Arumingtyas et  al., 2013). Na+ 
priming mitigated the inhibition of seeds germination associated 
with the upregulation of a DHN gene SK2 in white clover 
under drought stress (Cao et  al., 2018). Transcript level of 
DHNs is regulated by multiple transcription factors, including 
MYC/MYB, bZIP, and DREB family. Many DHNs include the 
DREB recognition sequence “dehydration-responsive element 
(DRE)” in the promoter that can recognize and combine DREBs 
(Maria et  al., 2017). Previous research has already confirmed 
that significant increase in DREB/CBF expression level through 
transgenic approach could enhance the expression of downstream 
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target genes encoding DHNs (Battaglia et  al., 2008). However, 
it is still unclear whether specific DREBs and DHNs genes are 
regulated by GABA during seeds germination under water-
limited condition.

White clover is an important perennial legume and cultivated 
all over the world (Li et  al., 2012), due to its soft stems, 
abundant leaves, and high nutritional value, thus utilizing as 
an excellent feed source for livestock. White clover is also 
used as an imperative ground cover plant in urban areas because 
of its fast regeneration ability and high ornamental value (Sincik 
and Acikgoz, 2007). However, white clover mainly adapts to 
warm and moist climate, and water deficit easily affects seeds 
germination, forage quality, and ornamental value. Objectives 
of this study were (1) to investigate seeds germination 
characteristics, antioxidant defense system, and osmotic responses 
regulated by the GABA and (2) to further reveal DREBs 
expression and DHNs accumulation associated with the GABA-
induced drought tolerance, which will provide important 
information for better understanding of the GABA-regulated 
mechanisms of drought tolerance in plants during seeds  
germination.

MATERIALS AND METHODS

Plant Materials and Treatments
White clover seeds (cultivar “Haifa”) were used as test 
materials. For GABA pretreatment, the seeds were soaked 
in distilled water for 1 h, and then drenched in 2 μmol/l 
GABA solution for another 2 h, while untreated seeds were 
soaked in deionized water for 3 h in the dark. After the 
surface moisture of seeds being removed, 50 seeds were 
randomly selected and placed in petri dishes containing 
10 ml distilled water or polyethylene glycol-6000 (PEG-6000, 
−0.3 Mpa) solution with three layers of filter papers. All 
petri dishes were kept in a growth chamber at 23/19°C 
(day/night) with 12 h photoperiod. The experimental design 
was a completely randomized block design with two water 
status (normal water condition and water stress condition) 
and the GABA application under each water status. Four 
treatments were set: (1) water (seeds germination in distilled 
water); (2) water+GABA (seeds primed with GABA and 
then germination in distilled water); (3) PEG (seeds 
germination in PEG-6000 solution); and (4) PEG+GABA 
(seeds primed with GABA and then germination in PEG-6000 
solution). Each treatment included eight independent 
replicates. Petri dishes, distilled water, and PEG-6000 solution 
were refreshed every day. Four replicates were selected from 
each treatment on the 3rd and 7th day of germination to 
measure germination characteristics and physiological and 
biochemical parameters of germinated seeds. The effective 
concentration of GABA (2 μM) was applied in this study 
based on a preliminary test with a range of concentrations 
(0.5, 1.0, 2.0, 4.0, and 8.0 μM), since 2 μM GABA exhibited 
the most pronounced effect on alleviating germination  
inhibition.

Determination of Seed Germination 
Characteristics
The germination percentage (GP) was measured on the 7th 
day of seed germination: GP (%) = n/N × 100, where N is the 
total number of seeds, and n is the number of seeds that 
have germinated after 7 days interval. The germination vigor 
(GV, %) was calculated as a percentage of germinated seeds 
on the 3rd day of germination. The germination index (GI) 
was calculated according to the formula ∑(Gt/Dt), where Gt 
is the number of germinated seeds, and Dt is the corresponding 
time to Gt in days. The formula for MGT = ∑(D × n)/∑n was 
used for calculating the MGT, where D is the number of days, 
and N is the number of germinations in the corresponding 
days. On the 7th day of germination, 10 seedlings were randomly 
selected from each replicate to measure their root length, fresh 
weight (FW), and dry weight (DW). The SVI was calculated 
by following formula: VI = FW × GI.

Determination of Osmotic Potential, 
Soluble Sugar, and Endogenous GABA 
Content
On the 7th day of germination, fresh samples (0.2 g) were 
taken to measure OP according to the method of Blum (1989). 
The samples were soaked in distilled water at 4°C for 8 h and 
tissue blotted to remove surface water. The samples were pressed 
to get cell saps, and then the osmotic pressure (c) of cell saps 
was measured using an osmotic pressure meter. The OP was 
converted according to the formula (Mpa = −C × 2.58 × 10−3). 
The soluble sugar content was measured using 0.2 g of dry 
seedlings samples after 7 days of germination following the 
protocol of Li et  al. (2015). On the 7th day of germination, 
0.1 g of fresh samples were taken to determine endogenous 
GABA content by using ELISA Kit. The Assay Kit (Art. No. 
G1106F) was purchased from Shanghai Enzyme-linked 
Biotechnology Co., Ltd., China.

Determination of Oxidative Damage and 
Antioxidant Metabolism
The superoxide anion (O2·- ) was measured following the method 
of Elstner and Heupel (1976), and hydrogen peroxide (H2O2) 
content was determined according to the procedures of Uchida 
et  al. (2002). Electrolyte leakage (EL) was measured by using 
a conductivity meter (Blum and Ebercon, 1981), and the 
calculation formula was as follow EL = (the conductivity before 
cooking/the conductivity of killed tissues) × 100%. In order to 
estimate the MDA and antioxidant enzyme activities, fresh 
samples were taken and 1.5 ml precooled phosphoric acid buffer 
was added. Then, the mixture was ground mechanically and 
centrifuged for 20 min at 12,000 g and 4°C. The supernatant 
was collected and used for the determination of POD, SOD, 
APX, CAT, glutathione reductase (GR), dehydroascorbate 
reductase (DHAR), monodehydroasorbate reductase (MDHR), 
malondialdehyde (MDA), and soluble protein. The SOD was 
determined following the nitrogen blue tetrazole (NBT) method 
at 560 nm (Ries, 1977). Changes of absorbance every 10 s at 
470 nm were obtained for determination of the POD or CAT 
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activity (Chance and Maehly, 1955). The APX, GR, DHAR, 
and MDHR were measured according to Nakano and Asada 
(1981) and Cakmak et  al. (1993) at 240, 290, 340, 265, and 
340 nm by recording the change of absorbance every 10 s. The 
MDA content was determined according to the method of 
Dhindsa et  al. (1981) by adding reaction solution with 20% 
(w/v) trichloroacetic acid and 0.5% (w/v) thiobarbital into 
extraction solution, and heating in 95°C water bath for 15 min, 
and then cooling rapidly in ice water bath. The absorbance 
of the supernatant was measured at 532 and 600 nm after 
centrifugation for 10 min at 12,000 g. Soluble protein content 
was determined by using the coomassie bright blue method 
(Bradford, 1976). The GSH, GSSG, ASA, and DHA content 
were detected by using the Assay Kit purchased from Suzhou 
Grace Biotechnolgy Co., Ltd., China. (Art. No. G0602F, Art. 
No. G0207F, Art. No. G0201F, and Art. No. G0202W).

Determination of Dehydrin Accumulation
The abundance of DHNs was measured using Western blot 
analysis. About 0.3 g of fresh samples were collected and utilized 
for extracting the protein. Details about assay method have 
been described in our previous study (Li et  al., 2015).

Genes Expression Analysis
On the 3rd and 7th day of germination, 0.1 g fresh samples 
were taken, and four biological replicates and one technical 
replicate were used for extraction RNA. Total RNA was extracted 
from fresh samples using a total RNA extraction kit (Qiagen). 
Later, the extracted RNA was reverse-transcripted into cDNA 
using a reverse transcription kit (Fermentas). Finally, primers 
of tested genes (Table  1) were used for amplification under 
real-time quantitative fluorescence PCR (qRT-PCR). The PCR 
procedure for all genes was: 94°C for 5 min, denaturation at 
95°C for 30 s (40 repeats), annealing at 58–60°C (Table  1) 
for 30 s, and extension at 72°C for 30 s.

Statistical Analysis
The data were analyzed by using Microsoft Excel 2016, and 
the variance analysis and single factor significance relationships 
were tested with SPSS 26.0 (IBM, Armonk, NY, United  States) 
at p ≤ 0.05.

RESULTS

Effects of GABA Priming on Germination 
Characteristics and Endogenous GABA 
Content During Seed Germination Under 
Normal Condition and Water Stress
Water stress significantly decreased GP, GV, GI, and SVI, while 
the MGT significantly increased under water-limited condition 
(Figure  1). Under normal water condition, exogenous GABA 
exhibited no significant effects on GV, GI, and MGT, but 
exogenous application of GABA significantly increased GV and 
GI, and also reduced the MGT under water stress 
(Figures  1B–D). In addition, the GABA-primed seeds 

demonstrated significantly higher GP and SVI than untreated 
seeds under normal condition or water stress (Figures  1A,E).

Figure 2A showed the phenotypic differences among different 
treatments on 7th day of germination under normal condition 
and water stress. On the 7th day of germination, the endogenous 
GABA content in seedlings under normal condition and water 
stress was significantly different between the seeds primed with 
or without GABA (Figure 2B). The GABA-primed seeds exhibited 
28.57 or 18.77% higher endogenous GABA content than the 
non-priming seeds under normal condition or water stress, 
respectively (Figure  2B). Water stress significantly inhibited 
root length of both GABA-primed and non-primed seedlings, 
but the seedlings pretreated with GABA showed significantly 
longer root length than non-primed seeds after 7 days of 
germination under normal and water stress conditions 
(Figure  2C). Seedlings DW and FW declined significantly 
under water stress (Figures  2D,E). The GABA priming did 
not show significantly effect on seedlings DW under normal 
and water stress conditions (Figure  2D), but significantly 
improved seedlings FW under water stress (Figure  2E). These 
results showed that exogenous application of GABA could 
significantly improve endogenous GABA content and germination 
characteristics of white clover seeds under water stress.

Effects of GABA Priming on Osmotic 
Potential and Soluble Sugar Content 
During Seed Germination Under Normal 
Condition and Water Stress
On the 7th day of germination, seeds priming with or without 
GABA showed no significant effect on OP and soluble sugar 
under normal condition (Figure  3). Water stress induced a 
significant decline in OP with marked increase in soluble sugars 
content in the GABA-primed or non-primed seedlings 
(Figures  3A,B). However, GABA pretreated seedlings showed 
significantly lower OP and higher soluble sugar content than 
seeds without GABA priming under water deficient conditions 
(Figures  3A,B). The GABA priming could significantly reduce 
the OP and also promote the accumulation of soluble sugar 
content in seedlings under water stress.

Effects of GABA Priming on Oxidative 
Damage and Antioxidant Metabolism 
During Seed Germination Under Normal 
Condition and Water Stress
On the 3rd and 7th day of germination, the GABA priming 
demonstrated no significant effects on the O2·- , H2O2, MDA 
content, and EL in seedlings under normal condition 
(Figures  4A–D). Under water stress, O2·- , H2O2, and MDA 
increased significantly in both GABA-primed and non-primed 
seedlings when compared to control (Figures 4A–C). However, 
the GABA priming significantly alleviated the oxidative damage 
during seed germination under water stress (Figures  4A–C). 
The EL significantly increased in the non-priming seeds on 
the 3rd and 7th day of water stress, but did not exhibit any 
significant differences between the GABA-primed seedlings 
under water stress and the control (Figure 4D). Under normal 
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water condition, the GABA pretreatment had no significant 
effects on SOD, POD, and CAT activities during seeds 
germination (Figure  5). Compared with normal treatments 
(the “Water” and the “Water+GABA”), SOD and CAT activities 
were significantly increased in the “PEG” and “PEG+GABA” 
treatments, however, the highest values for activities of these 
two enzymes were observed in “PEG+GABA” treatment 
(Figures  5A,C). On the 3rd and 7th day of seeds germination, 
the POD activity significantly decreased under water stress, 
whereas GABA priming significantly alleviated the decrease 
in SOD activity (Figure  5B).

As shown in Figure 5D, osmotic stress significantly inhibited 
APX activity in seedlings without the GABA pretreatment on 
3rd and 7th day of germination. In GABA-pretreated seedlings, 
the APX activity was not significantly affected by water stress 
(Figure  5D). The DHAR activity significantly declined, but 
MDHR and GR activities were significantly increased during 
seeds germination under water stress (Figures  5E–G). 

The  MDHR activity was significantly enhanced by GABA 
pretreatment on the 3rd and 7th day of germination under 
water stress (Figure  5E). However, seeds priming with the 
GABA had no significant effect on the DHAR and GR activities 
on the 3rd or 7th day of germination (Figures  5F,G).

Water stress induced significant increase in GSH contents 
in all seedlings, but no significant difference was detected 
between the “PEG” and the “PEG+GABA” on the third day 
of germination (Figure 6A). The GABA-pretreated seeds exhibited 
significantly higher the GSSG content than the non-pretreated 
seeds on the 3rd day of germination (Figure  6B). On the 7th 
day of germination, water stress significantly reduced the GS, 
GSSG, and the ratio of GSH/GSSG in seedlings without the 
GABA pretreatment, however, the GABA-pretreated seeds had 
a 78.95, 40.15, or 66.46 increase in GSH, GSSG, or GSH/
GSSG than the seeds without GABA pretreatment on the 7th 
day of germination, respectively (Figures  6A–C). The GABA-
pretreated seeds also maintained significantly higher the ASA, 

TABLE 1 | Primer sequences and corresponding GeneBank accession numbers of the analyzed genes.

Targetgene Accession No. Forward Primer (5'-3') Reverse Primer (5'-3') Tm (°C)

SK2 GU443960.1 TGGAACAGGAGTAACAACAGGTGGA TGCCAGTTGAGAAAGTTGAGGTTGT 58
Y2K JF748410.1 AGCCACGCAACAAGGTTCTAA TTGAGGATACGGGATGGGTG 60
Y2SK GU443965.1 GTGCGATGGAGATGCTGTTTG CCTAATCCAACTTCAGGTTCAGC 60
Dehydrin b GU443960.1 TCCAGTCATCCAGCCTGTTG CCAGCCACAACACTTGTCA 60
DREB2 EU846194.1 CAAGAACAAGATGATGATGGTGAAC AAGAAGAAGAATTGGAGGAGTCATG 58
DREB3 EU846196.1 GCTCAATAGGACTCAACCAACTCAC TGACGTTGTCTAACTCCACGGTAA 58
DREB4 EU846198.1 CTTGGTTGTGGAGATAATGGAGC AAGTTGCAATCTGAATTCTGAGGAC 58
DREB5 EU846200.1 GCGATAGGTTCAAAGAAAGGGTG AGAGCAGCATCTTGAGCAGTAGG 58
β-Actin JF968419 TTACAATGAATTGCGTGTTG AGAGGACAGCCTGAATGG 58

A B

D E

C

FIGURE 1 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on germination characteristics [(A) germination percentage (GP), 
(B) germination vigor (GV), (C) germination index (GI), (D) mean germination time (MGT), and (E) seed vigor index (SVI)] of white clover seeds under water stress.
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DHA, and ASA/DHA than the seeds without GABA pretreatment 
on the 3rd day of germination (Figures  6D–F). In addition, 

water stress significantly decreased the ASA, DHA, and ASA/
DHA in all seedlings on the 7th day of germination, whereas 

A

B C

D E

FIGURE 2 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on (A) phenotypic change, (B) endogenous GABA content, (C) root 
length, (D) seedlings dry weight, and (E) seedlings fresh weight on the 7th day of germination in white clover under water stress.

A B

FIGURE 3 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on osmotic potential (OP; A) and soluble sugar content (B) during seed 
germination of white clove under water stress.
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the GABA-pretreated seeds exhibited 53.94, 32.30, and 31.17% 
increase in ASA, DHA, or ASA/DHA than the seeds without 
GABA pretreatment on the 7th of germination, respectively. 
The GABA piming could significantly activate antioxidant 
defense and reduce oxidative damage during seeds germination 
under water stress.

Effects of GABA Priming on Relative 
Expression Levels of DREBs and 
Dehydrins Genes During the Germination 
Under Normal Condition and Water Stress
On the 3rd day of germination, seeds priming with GABA 
showed significantly higher DREB2 expression level than seeds 
without GABA priming under normal condition or water stress 
(Figure  7A). The DREB2 expression level was not affected by 
water stress in the untreated seeds, but enormously increased 
in the treatment with GABA priming (Figure  7A). The GABA 
application demonstrated no significant effect on DREB3 
expression under water stress, but had significant effect on 
DREB3 under normal condition on the 3rd day (Figure  7B). 
Under normal water condition, the DREB4 expression level 
did not show significant differences among four treatments 
on the 3rd day of germination (Figure  7C). On the 7th day 
of germination, water stress significantly inhibited the DREB3 
and DREB4 expression in seedlings without the GABA priming, 
but significantly upregulated DREB3 and DREB4 expression 

in the seedlings primed with GABA (Figures  7B,C). On the 
3rd day of germination, water stress or GABA treatment under 
normal condition significantly upregulated the DREB5 expression, 
and the PEG-stressed treatment primed with GABA 
(PEG+GABA) showed significantly higher DREB5 expression 
than other treatments (Water, Water+GABA, and PEG) on the 
7th day of germination (Figure  7D).

Under normal water condition, seeds priming with GABA 
had no significant effects on the transcription levels of 
Dehydrin b, Y2K, and Y2SK on the 3rd and 7th day of 
germination (Figures  7E,G,H). Water stress significantly 
increased the transcription level of Dehydrin b and the 
GABA priming further enhanced this effect during seeds 
germination (Figure  7E). On the 3rd day of germination, 
the GABA priming significantly increased the SK2 expression 
under normal and water deficient conditions (Figure  7F). 
On the 7th day of germination, only the expression level 
of SK2 was significantly increased in the GABA-priming 
treatment under water stress (Figure  7F). During seeds 
germination (on day 3 and 7), the Y2K transcription level 
significantly increased in response to water stress in GABA-
primed and non-primed treatments, and the GABA-primed 
treatment showed 93.27% increase in the Y2K transcription 
level than the non-priming treatment on the 3rd day of 
germination under water stress, but there is no significant 
difference on the 7th day (Figure 7G). The GABA-pretreated 
seedlings exhibited 20.41 or 65.91% higher Y2SK expression 

A B

C D

FIGURE 4 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on superoxide anion (O2
−; A), hydrogen peroxide (H2O2; B), electrical 

leakage (EL; C) and malondialdehyde (MDA; D) during seed germination of white clover under water stress.
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than the untreated seedlings on 3rd or 7th day of germination 
under water stress, respectively (Figure  7H). In response 
to water stress, the GABA regulated seeds germination of 
white clover associated with DREB and dehydrin  
pathways.

Effects of GABA Priming on Dehydrins 
Accumulation During Seed Germination 
Under Normal Condition and Water Stress
As shown in Figure 8, the GABA priming had no significant 
effect on the DHN (56 KDa) content on the 7th day of 
germination under non-stress condition. Water stress 
significantly decreased the abundance of DHN in non-GABA 
priming treatment, and compare to that, the GABA-primed 
treatment showed 36.48% increase in the abundance of 
DHN under water stress (Figure  8). Figure  9 showed that 
integrative pathways were regulated by the GABA priming 
during seeds germination of white clover. The GABA-induced 
DHN (56 KDa) accumulation could be  one of important 
regulatory mechanisms during seeds germination suffering 
water stress.

DISCUSSION

Seed germination is the most critical phase in plant’s life cycle 
as it determines plants growth and subsequent adaptation to 
various stress conditions. An earlier study has showed that the 
15% PEG could significantly inhibit seeds germination of white 
clover, and with the increase in PEG concentration (18–20%), 
inhibitory effects further aggravated (Li et  al., 2014). It was also 
found that the PEG significantly inhibited rice seed germination 
in the study of Sheteiwy et  al. (2018). In addition, our previous 
study found that the GABA priming effectively alleviated declines 
in GP, GV, GI, and SVI associated with the maintenance of 
higher endogenous GABA content in GABA-pretreated white 
clover seedlings during germination under salt stress (Cheng 
et  al., 2018). The current findings showed that water stress 
significantly inhibited seeds germination of white clover and 
decreased the SVI, FW, DW, and root length. However, the 
GABA priming significantly alleviated stress-induced decreases 
in endogenous GABA content, GV, GI, SVI, FW, and root length 
with substantial reduction in MGT during seeds germination 
of white clover under water stress (Figures  1, 2). These results 

A B C

D

G

E F

FIGURE 5 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on the activities of superoxide dismutase (SOD; A), peroxidase (POD; B), 
catalase (CAT; C) and key ascorbate-glutathione cycle enzymes ascorbate peroxidase (APX; D), monodehydroasorbate reductase (MDHR; E), dehydroascorbate 
reductase (DHAR; F), glutathione reductase (GR; G) during the germination of white clover seeds under water stress.
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indicate the beneficial role function of GABA during seeds 
germination under water stress.

The production and utilization of soluble sugars are the 
most essential processes during seeds germination, as they act 
as energy reservoirs for seeding growth. Being one of the 
most important osmolytes in plants, the accumulation of soluble 
sugars reduces OP in cells so that plants can maintain better 
water requirement and balance under water stress (Morgan, 
1984). Previous studies have found that exogenous GABA 
treatment increased soluble sugars content and reduced the 
OP in cells of different plant species under various abiotic 
stresses, including flooding stress, drought, and salt stress (Gao 
et  al., 2007; Sheteiwy et  al., 2019). Significant decline in OP 
and increase in soluble sugars content were observed in seedlings 
of white clover after 7 days of germination under water stress 
(Figure 3). Similar results were found in previous studies about 
soluble sugars accumulation during seeds germination of white 
clover or other plant species (Abdul et  al., 2011; Cao et  al., 
2018). More importantly, the GABA priming further amplified 
the soluble sugars accumulation and also decreased the OP 
significantly when compared with untreated seedlings under 
water stress (Figure  3A). Our findings inferred that GABA-
mediated tolerance might be  associated with enhanced soluble 
sugar accumulation and osmotic adjustment for seeds germination 
of white clover under water stress.

Plants have evolved many important strategies including 
enzymatic and non-enzymatic antioxidants involved in key 
antioxidant enzymes (SOD, POD and CAT) and ascorbic acid-
glutathione (ASA-GSH) cycle to cope with oxidative damage 

(Li et  al., 2017; Sheteiwy et  al., 2017; Jin et  al., 2019; Tabaldi 
et  al., 2019). The study of Bouché et  al. (2003) found that one 
of possible physiological functions of GABA was to inhibit the 
accumulation of ROS in Arabidopsis thaliana. Many previous 
studies have reported that exogenous application of GABA improved 
the tolerance to water stress in different plant species associated 
with the improvement in antioxidant defense (Rezaei-Chiyaneh 
et  al., 2018; Li et  al., 2018a, 2019b). The PEG-induced ROS 
damage and membrane lipids peroxidation could be  significantly 
alleviated by the Na+ or spermidine priming during seeds 
germination, which was related with the improvements of SOD, 
POD, and APX activities in seedlings of white clover under 
water stress (Li et  al., 2014; Cao et  al., 2018). It has been proved 
that white clover seeds pretreated with the GABA exhibited 
significantly lower ROS level and higher SOD, POD, CAT, APX, 
and MDHR activities than the seeds without GABA priming 
during germination under salt stress (Cheng et  al., 2018). ASA 
and GSH are two major non-enzymatic antioxidants related to 
plant growth, development, stress resistance, and other biological 
activities. The ratios ASA/DHA and GSH/GSSG are also important 
indicators of the oxidation–reduction state in plant cells (Gill 
and Tuteja, 2010). Hydrogen sulfide (H2S) promoted ratios of 
ASA/DHA and GSH/GSSG, which contributed to better 
maintenance of oxidation–reduction for ROS scavenging in leaves 
of wheat seedlings under drought stress (Shan et  al., 2018). A 
previous study has also demonstrated that the GABA pretreatment 
could significantly increase the contents of GSH, GSSG, ASA, 
and DHA and promoted the ratios of ASA/DHA and GSH/
GSSG in leaves of creeping bentgrass under heat stress (Li et  al., 

A B C

D E F

FIGURE 6 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on content of non-enzymatic antioxidants glutathione (GSH; A), reduced 
glutathione (GSSG; B), the GSH/GSSG ratio (C), ascorbic acid (AsA; D), dehydroascorbic acid (DHA; E), and the ASA/DHA ratio (F) during the germination of white 
clover seeds under water stress.
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FIGURE 7 | Effects of seed priming with deionized water or γ-aminobutyric acid (GABA) on the relative expression levels of DREB2 (A), DREB3 (B), DREB4 (C), 
and DREB5 (D) transcription factors and the relative expression levels of Dehydrin b (E), SK2 (F), Y2K (G), and Y2SK (H) during the germination of white clover 
seeds under water stress.
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2016). In addition, the GABA application directly attenuated the 
accumulation of H2O2 and O2·-  induced by high temperature, 
eventually promoting seeds germination of Arabidopsis thaliana 
under heat stress (Zhang et al., 2020). Our findings demonstrated 
that water stress significantly increased the ROS level and MDA 
accumulation during germination in white clover seeds. However, 
the oxidative damage was significantly alleviated by the GABA 
priming during seeds germination, which could be  associated 
with significant increases in activities of SOD, POD, and CAT 
as well as enhanced ASA-GSH cycle in seedlings under water 
deficient condition (Figures  5, 6).

The DREB, known as dehydration response element binding 
protein, is involved in comprehensive regulation of adaptive 
response to abiotic stresses in plants through activating 
downstream target genes such as DHNs, rd29A, and COR15A 
(Baker et  al., 1994; Sakuma et  al., 2002; Gilmour et  al., 2004). 
Tolerance of transgenic plants with elevated levels of DREB/
CBF was enhanced as a result of activation of DHNs encoding 
genes (Jaglo-Ottosen et al., 1998; Kasuga et al., 2004; Lee et al., 
2005; Kobayashi et  al., 2008). A DREB2 could be  significantly 
induced by abiotic stresses, such as drought, cold, and salt 
stress in wheat seedlings, and the transgenic tobacco (Nicotiana 
tabacum) overexpressing a gene DREB2 of wheat showed 
improved tolerance to abiotic stresses through transcriptional 
activation of DHN genes (Kobayashi et  al., 2008). Sakuma 
et al. (2006) found that overexpression of the DREB2A induced 
the expression of DHN genes to enhance tolerance to drought 
and heat shock. In addition, transgenic soybean overexpressing 
a DREB3 exhibited significantly higher SOD activity and lower 
oxidative damage than wild type under water stress (Wu et  al., 
2015). The DREB3-transgenitic wheat showed significantly higher 
survival rates and yield than wild type under water-limited 
condition (Shavrukov et  al., 2015). It has been found that the 
DREB4 and DREB5 were drought-inducible genes in soybean, 
tobacco, and white clover, and the upregulation of their 
expressions was beneficial for drought tolerance (Juliana et  al., 
2015; Ma et  al., 2017; Li et  al., 2018b). A previous study has 
also shown that the overexpression of ARAG1, an ABA-sensitive 
DREB gene, could enhance the germination of rice seeds under 
drought stress (Zhao et  al., 2010). Our results revealed that 
the GABA significantly upregulated the expression of DREB2, 
DREB3, DREB4, and DREB5, indicating that the GABA-induced 
amelioration in seeds germination under drought stress was 
associated with DREB pathways in white clover.

Dehydrins are the key abundant proteins produced by seeds 
for later-stage embryonic development or accumulated in plants 
under various abiotic stresses, including dehydration, high 
temperature, and salt stress. The accumulation of DHNs during 
in late stage of seed germination is an important physiological 
process for maintaining water balance and increasing tolerance 
to water stress, because DHNs also function as hydrophilic 
solutes and ROS scavenging, thus sustaining the flowability of 
cell sap and stabilizing the structure and function of proteins 
to avoid structural collapse of cellular components under adverse 
environmental conditions (Allagulova et al., 2003; Hundertmark 
and Hincha, 2008). Hu et  al. (2010) found that the DHNs 
content (31 and 40 KDa) in bermudagrass (Cynodon dactylon) 
increased significantly under drought stress, which could 
be  associated with the improvement of drought tolerance. The 
DHN gene SiDHN in Tianshan snow lotus (Saussurea involucrata) 
significantly enhanced by abiotic stress positively contributed 
toward the tolerance to low temperature and drought (Guo 
et  al., 2015). It has been reported that overexpression of wheat 
DHN5 enhanced the antioxidant capacity in Arabidopsis thaliana 
resulting in improved tolerance to salt and osmotic stress (Brini 
et  al., 2007). In the current study, water stress significantly 
upregulated SK2, Y2K, Y2SK, and Dehydrin b expression, but 
decreased the abundance of the DHN (56 KDa) in seedlings 

FIGURE 8 | Effects of seed priming with deionized water or γ-aminobutyric 
acid (GABA) on the abundance of dehydrins on the 7th day of germination in 
white clover under water stress.

FIGURE 9 | Integrative pathways were regulated by the γ-aminobutyric acid 
(GABA) priming during seeds germination of white clover.
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of white clover. Interestingly, the GABA priming not only 
further upregulated stress-induced SK2, Y2K, Y2SK, and Dehydrin 
b expression, but also maintained higher DHN (56 KDa) 
accumulation during seeds germination under water stress 
(Figures  7, 8). These findings suggested that the maintenance 
of higher DHNs genes expression and protein accumulation 
could be one of the most important survival strategies regulated 
by the GABA in white clover during seeds germination.

In conclusion, water stress significantly inhibited seeds 
germination of white clover, but seeds priming with GABA 
(2 μmol/l) effectively alleviated the stress-induced the inhibition 
of seeds germination. The GABA priming effectively increased 
the accumulation of soluble sugars associated with significant 
reduction in OP under water stress. Moreover, GABA pretreatment 
substantially reduced the oxidative damage through enhancing 
enzymes (SOD, POD, CAT, APX, DHAR, GR, and MDHR) 
activities and contents of non-enzymatic antioxidants (ASA, DAH, 
GSH, and GSSG), which were involved in ASA-GSH cycle during 
seeds germination under water stress. In addition, the GABA-
induced stress tolerance and improved seeds germination could 
be related to the accumulation of DHNs (56 KDa) and the higher 
expression of genes encoding DHNs (SK2, Y2K, Y2SK, and Dehydrin 
b), and transcription factors (DREB2, DREB3, DREB4, and DREB5) 
during seeds germination. In this study, the GABA could act as 

an important signaling molecule to regulate various physiological 
and biochemical responses to water stress during seed germination. 
However, metabolic functions of GABA such as regulation of 
GABA shunt pathway for supplying energy and carbon skeletons 
along with avoiding ROS accumulation, polyamine pathways, or 
other metabolic pathways deserves to be  further studied during 
seeds germination in our future works.
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