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Phenotyping is considered a significant bottleneck impeding fast and efficient crop
improvement. Similar to many crops, Brassica napus, an internationally important
oilseed crop, suffers from low genetic diversity, and will require exploitation of diverse
genetic resources to develop locally adapted, high yielding and stress resistant cultivars.
A pilot study was completed to assess the feasibility of using indoor high-throughput
phenotyping (HTP), semi-automated image processing, and machine learning to capture
the phenotypic diversity of agronomically important traits in a diverse B. napus breeding
population, SKBnNAM, introduced here for the first time. The experiment comprised
50 spring-type B. napus lines, grown and phenotyped in six replicates under two
treatment conditions (control and drought) over 38 days in a LemnaTec Scanalyzer 3D
facility. Growth traits including plant height, width, projected leaf area, and estimated
biovolume were extracted and derived through processing of RGB and NIR images.
Anthesis was automatically and accurately scored (97% accuracy) and the number of
flowers per plant and day was approximated alongside relevant canopy traits (width,
angle). Further, supervised machine learning was used to predict the total number of
raceme branches from flower attributes with 91% accuracy (linear regression and Huber
regression algorithms) and to identify mild drought stress, a complex trait which typically
has to be empirically scored (0.85 area under the receiver operating characteristic curve,
random forest classifier algorithm). The study demonstrates the potential of HTP, image
processing and computer vision for effective characterization of agronomic trait diversity
in B. napus, although limitations of the platform did create significant variation that limited
the utility of the data. However, the results underscore the value of machine learning for
phenotyping studies, particularly for complex traits such as drought stress resistance.
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INTRODUCTION

Ensuring and increasing food security for a growing global
population faced with uncertain environmental changes is one
of the main challenges of agricultural research in the 21st
century (Tilman et al., 2011; Hickey et al., 2019; Lenaerts et al.,
2019). In addition to increasing the productivity of current
arable land, it will be crucial to increase crop yield to meet
rising global demand; however, yield improvement is currently
progressing at an insufficient pace (Tilman et al., 2011; Ray et al.,
2013). Even though technological advances, such as genomic
selection and doubled haploid technology, have resulted in
substantial acceleration of the breeding process, development
of new high yield, pest and disease resistant, and climate-
smart crop varieties is still hampered by several factors. These
include long generation times and time-consuming steps such as
phenotypic evaluation of large populations (Hickey et al., 2019).
Accurate phenotyping, in particular, is considered one of the
major bottlenecks of modern crop breeding, which has led to a
strong emphasis on the development of automated, scalable, non-
destructive, and high-throughput imaging approaches (High-
Throughput Phenotyping, HTP). HTP could augment traditional
methods of phenotypic trait quantification that are time and labor
intensive, subjective, and often destructive. Over recent years,
HTP applications have seen dramatic advances afforded by the
continual improvement to sensor and automation technologies
(Yang et al., 2020). In addition to corresponding advances in
data acquisition, one of the biggest innovations in the field of
HTP is the use of machine learning for automated analysis of the
vast amounts of data generated by HTP platforms (Zhao et al.,
2019). However, application of machine learning to the problem
of phenotyping is still in its infancy and widespread deployment
of these tools will require further refinements to algorithms and
analysis pipelines.

Many pressing challenges with regards to crop phenotyping
remain, including the measurement of multigenic or
multidimensional traits and the dissection of complex
phenotypes that are hard to reliably reproduce in field settings,
such as abiotic stress responses, which are often the culmination
of multiple environmental factors acting simultaneously (Yang
et al., 2020). Some of these challenges can be overcome using
indoor phenotyping systems, where growing conditions and
imaging parameters can be controlled more precisely allowing
individual plant architectural and physiological traits to be
measured with greater accuracy. This renders controlled
environment phenotyping particularly suitable for forward and
reverse genetics, as well as quantitative genetics and genetic
mapping (Mir et al., 2019; Yang et al., 2020). However, due to the
limited space available in the small number of existing large-scale
indoor phenotyping facilities as well as the high costs associated
with running these experiments, only a handful of annotated
benchmark image datasets are currently publicly available,
mostly in Arabidopsis and grain crops (e.g., Fahlgren et al., 2015;
Choudhury et al., 2016; Cruz et al., 2016; Minervini et al., 2016;
Veley et al., 20171,2).

1https://plantvision.unl.edu/dataset
2https://www.quantitative-plant.org/dataset

Brassica napus is a multipurpose crop of major economic
importance, especially the oilseed morphotype, which is a source
of vegetable oil for human consumption, industrial feedstock,
and protein rich meal used in animal feed (Friedt et al., 2018).
Due to its relatively recent allotetraploid origin, B. napus has
a narrow genetic base which was further eroded during initial
domestication and extensive breeding activities throughout the
last century (Diers and Osborn, 1994; Becker et al., 1995;
Rahman, 2013; Gazave et al., 2016). Similar to other crops, this
erosion needs to be addressed and further crop improvement will
require the introduction of new genetic variation into current
elite cultivars (Rahman, 2013; Friedt et al., 2018; Rebetzke
et al., 2019). Among other approaches, this will necessitate
the systematic screening of diverse germplasm collections for
desirable phenotypic traits as well as extensive pre-breeding
activities. In addition, dissection of the genetic basis for key
traits targeted in rapeseed breeding is considered crucial for
accelerated crop development (Knoch et al., 2020). Development
of automated HTP protocols optimized for B. napus, paired
with effective genomic trait dissection strategies, holds great
promise to accelerate the achievement of breeding targets, such as
short crop cycles, high yield, and resistance to heat and drought
conditions (Delourme et al., 2018). However, comprehensive,
publicly available indoor HTP datasets of B. napus are currently
limited to 2D root phenotyping (Thomas et al., 2016a,b; Zhang
et al., 2016) and early stage phenotyping (Kjaer and Ottosen,
2015; Pommerrenig et al., 2018; Knoch et al., 2020), thus
the full potential of HTP technologies for above ground trait
quantification has yet to be explored.

Here, we used a diverse panel of 51 spring-type B. napus lines,
selected as founders for the development of a large, spring-type
B. napus Nested Association Mapping (NAM) population called
“SKBnNAM,” to test the feasibility of using current indoor HTP
technology for rapid, semi-automated phenotyping of several
key traits, including flowering and canopy architecture traits
(timing of anthesis, number of flowers, and number of raceme
branches) and resistance to drought. NAM is a powerful trait
dissection strategy that combines association and linkage genetic
mapping with genome sequencing, and it has been used to
elucidate the underlying genetic architecture of several important
agronomic traits in other crops, such as maize (Yu et al., 2008),
barley (Maurer et al., 2015), and soybean (Song et al., 2017).
The work provides a comprehensive reference image dataset for
B. napus, as well as computational methods that can be used
to extract maximal information from such datasets, including a
novel method for prediction of drought stress. The work also
exposes some limitations of current HTP platforms, which should
be considered when considering such an approach.

MATERIALS AND METHODS

NAM Founder Selection and Genotyping
A total of 297 B. napus lines from global breeding collections
were genotyped using the Brassica 60K Illumina Infinium array as
described in Clarke et al. (2016) (Supplementary Table 3.1). The
genotype data was visualized using the GenomeStudio software
suite (Illumina, Inc.) and a custom cluster file developed for
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B. napus was applied to screen out poorly performing and multi-
locus SNPs as described in Clarke et al. (2016). The data was
filtered for a minor allele frequency of 0.05 and a minimum
separation of the homozygous A and B clusters of 0.8 to eliminate
monomorphic and multi-locus SNPs resulting in a total of 30,933
SNPs for 297 accessions. PCA was carried out using the R package
SNPRelate (Zheng et al., 2012). Vcftools v.0.1.16 (Danecek et al.,
2011) was used for additional data filtering (maximum missing
proportion of 0.8).

A total of 51 spring-type (or annual) lines were selected from
the larger dataset to establish a Brassica napus NAM population
(SKBnNAM) (Supplementary Table 3.2). Founder line selection
was based on an assessment of levels of heterozygosity,
relatedness, available phenotype data, as well as geographic
origin. The chosen founder lines encompassed material from
countries where spring rapeseed production is an economic
priority and these were augmented with material from a diverse
geography as well as the inclusion of synthetic rapeseed. The
genotype data allowed the selection of the most diverse array of
inbred material. The line N99-508 (NAM 0) was selected as the
common parent for the NAM population. N99-508 is adapted to
the Canadian environment, which potentiates the evaluation of
the NAM population under Canadian field conditions.

LemnaTec Dataset
Plants were grown in the LemnaTec Scanalyzer 3D facility
at University of Nebraska, Lincoln campus. In total, 50 out

of 51 NAM founder lines were grown in six replicates, as
NAM 10 failed to germinate. All plants were sown, and grown
at 18–22◦C for 20 days (for detailed growing conditions,
see Supplementary Table 3.3) before being loaded onto the
phenotyping platform. From 21 days after seeding (DAS) to
34 DAS, plants were weighed before and after watering, and
imaged once a day. During the treatment phase (35–55 DAS),
three plants each were subjected to one of two different
watering regimes (A: control, 100% field capacity and B: drought
treatment at 40% field capacity) and imaged and weighed every
day for the first 3 days, then every other day (Figure 1).
During the post-treatment phase (57–67 DAS), all plants were
watered equally and imaged and weighed every other day.
At each phenotyping time point, images were captured for
the following camera types and angles: Visible light (RGB)
from 10 angles, Infrared from 6 angles, Near Infrared (NIR)
from top view, fluorescent light (FLUOR) from 6 angles and
hyperspectral wavelengths (HYP) from one angle. The full image
dataset is openly available at https://p2irc-data-dev.usask.ca/
dataset/10.1109.SciDataManager.2020.7284788 (Dataset name:
P2IRC Flagship 1 Data). Camera specifications and more
detailed descriptions of the phenotyping facility are available
in Choudhury et al. (2016, 2018).

Dataset annotations (ground truths) were generated via
manual evaluation and scoring of selected traits in both treatment
groups. First, all images were assessed for presence of open
flowers (0 = not flowering, 1 = flowering), with the earliest date

FIGURE 1 | Experimental set-up of high-throughput indoor phenotyping of 50 B. napus founder lines at LemnaTec Scanalyzer 3D facility at University of Nebraska.
Six replicates were grown of each genotype and three plants were subjected to one of two watering regimes between 35 DAS and 55 DAS: control plants (C) were
kept at 100% field capacity (blue bars), while drought treated (D) plants were maintained at 40% field capacity during that period (orange bars).
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FIGURE 2 | Image segmentation workflow and corresponding examples of top view (left) and side view (right) images.

of open flowers being counted as the date of anthesis. Then,
the number of raceme branches was counted for each plant
and phenotyping time point. Finally, plants were assessed for
symptoms of drought stress using both top view and side view

RGB images, using a binary scoring scheme in which healthy
looking plants were scored as unstressed (0) and any plant
exhibiting mild to severe drought stress (e.g., drooping leaves)
was scored as stressed (1). Due to considerable time investment
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FIGURE 3 | NIR image processing workflow. (A) Top view RGB image. (B) Corresponding image segmentation resulting from workflow described in Figure 2.
(C) Original top view NIR grayscale image. (D) Resized and rescaled RGB image segmentation used as an image mask for NIR image. (E) Segmented plant outline
overlaying NIR image (yellow boundary). (F) Segmented plant area overlaying NIR image (yellow region).

necessary to score this trait as well as the exploratory nature of
this study, this ground truth was restricted to 49 DAS, which was
toward the end of the experimental treatment phase but before
the majority of plants had started to flower.

Image Processing
For the purpose of this study, we concentrated on processing
the RGB images using top view (90◦) and side view (0◦), and
the NIR images (top view, 90◦) between 21 DAS and 57 DAS.
In order to remove as much background as possible, RGB
images were segmented in Python 3 using PlantCV v.2 (Gehan
et al., 2017) according to the steps outlined in the program
documentation (Figure 2, see Supplementary Appendix 1 for
extended methods). In short, this procedure involves converting
the RGB image to the HSV (Hue, Saturation, and Value) and the
CIELAB color space, followed by several thresholding steps, and
the creation of a binary mask which is then applied to the original
image to retain only plant-related information. Although manual
identification of a range of thresholds made the segmentation
process semi-automated, the lack of available ground truth data
was the primary reason for not using automated segmentation
methods with machine learning approaches. There were 300
plants and ca. 28 imaging days including both side and top view
images for a total of 15988 images. Annotating these images
would have been significantly more time consuming than finding
the appropriate set of thresholds. Note that the segmentations
were evaluated visually, by making graphs of extracted convex-
hull of the plant areas. The graphs and images of 300 plants

were visually checked to iteratively improve segmentation and
finalize threshold values. Following image segmentation, several
basic, holistic phenotypic values were extracted from each image
which allowed for a numeric characterization of each plant at
each phenotyping time point: the convex hull area of each plant
from both top view and side view, the number of plant pixels
(projected leaf area) from both top view and side view, and the
plant height and width. In addition, in order to track minor leaf
color changes, which could be indicative of drought stress, the
Excess Green Index (ExG = 2G – R + B, Woebbecke et al., 1995)
was extracted from the segmented RGB images.

Leaf spectral reflectance is known to be substantially driven
by leaf water content and NIR wavelengths have been shown
to be useful in tracking plant water status (Berger et al., 2010;
Briglia et al., 2019). Thus image masks from the RGB top view
segmentations were fitted to the NIR images in order to extract
the plant pixels of the grayscale NIR images (Figure 3). Following
Vello et al. (2015) and Janni et al. (2019), NIR pixel intensities
were summarized using mean and 75th percentile NIR values
for each plant and day of imaging. However, due to divergent
fields-of-view of the RGB and NIR cameras, this was only possible
between 37 DAS and 59 DAS.

The plant boundary curvatures were extracted from the
segmented top view images using the histogram of curvature
over scale method (HOCS; Kumar et al., 2012). This robust, and
rotation-invariant shape descriptor computes the curvature at
each point on the region boundary (plant boundary) at a range
of different scales, and then quantizes curvature via histograms
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FIGURE 4 | Flower and raceme branch detection workflow. (A) Exemplary RGB top view image of a flowering B. napus individual. (B) Segmented image. (C) Image
components in the blue yellow channel after pixel-based thresholding. (D) Binary image components mapped according to their x and y coordinates and number of
pixels. Colors correspond to clusters assigned via hierarchical clustering and roughly correspond to raceme branches.

(Van Vliet and Verbeek, 1993). Boundary curvatures on 49 DAS
were computed over the normalized area integral invariant
(Manay et al., 2006) at 25 different circle radii (scales) ranging
from 5 to 125 (increment of 5) and summarized as histograms of
curvature over scale using 5 bins per histogram at each scale.

Semi-automated flower detection and quantification was
performed by applying the segmented RGB top view image as a
mask to the blue yellow channel of the converted LAB color space
top view image (Figure 4). Then, pixel-based thresholding was
performed according to plant age and treatment group, and the
number of pixels (“flower pixels”) in the thresholded blue yellow
channel image was extracted (see Supplementary Appendix 1 for
full details). The components (i.e., pixel clusters) of the resulting
binary image were considered to be either single, or several
overlapping flowers (Figure 4C) and their descriptive properties

(number of component pixels, component centroid coordinates,
minimum and maximum x and y coordinates of bounding box
around each component, area of each bounding box, convex hull
area) were used to plot the flowers (Figure 4D) and derive several
additional properties (e.g., maximum canopy width and canopy
angle). The predicted flower annotations were then compared to
manual flower scores as described above.

Data Analysis
All image processing data was analyzed under the tidyverse
framework in R v. 4.0.2 (R Core Team, 2020) and RStudio v.
1.2.1335. Besides manually removing all data for plants which
did not germinate, a threshold-based outlier removal procedure
(median ± 3 standard deviations) was applied for each trait and

Frontiers in Plant Science | www.frontiersin.org 6 January 2022 | Volume 12 | Article 780250

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-780250 January 5, 2022 Time: 12:0 # 7

Ebersbach et al. HTP of B. napus NAM Founders

FIGURE 5 | Principal Component Analysis of genotypic diversity of 297 spring (light blue dots) and semi-winter (gray dots) B. napus varieties. Founder lines of
SKBnNAM introduced in this study are colored according to their mean total aliphatic glucosinolate (TAG) levels.

day, separately (Knoch et al., 2020). In order to track day-to-
day changes in plant development, day-to-day differences were
calculated for most extracted traits of interest (denoted by 1).
Further, image-based phenotypes were used to derive estimated
biovolume [

√
(side projected leaf area2 * top projected leaf area);

Junker et al., 2015], which has previously been shown to be a
suitable proxy for plant biomass in canola (Knoch et al., 2020).
In addition, the results from the flower detection protocol (see
above) were used to extract the maximum canopy width and
the approximate canopy angle in order to identify genotypes
with particularly loose or particularly compact inflorescences, a
common consideration for breeders.

The number of components in the blue-yellow channel,
excluding those of less than 100 pixels, was used to estimate the
number of flowers per plant and imaging day. Large components,
that likely included several overlapping flowers, were split
by dividing their total number of pixels by the approximate
number of pixels of a fully opened flower viewed from the top.
Hierarchical clustering was applied using the hclust function in R
using the extracted coordinates of the filtered flower components
(min x, max x, min y, max y, centroid x, and centroid y) followed
by pruning the resulting hierarchical tree at the total number of
manually assessed raceme branches (i.e., groups, k). Spearman
correlation coefficients and significance levels for selected traits
were calculated in R using cor.test. Processed trait data was
visualized using the R package ggplot2 (Wickham, 2016).

Machine Learning
Several supervised machine learning models were tested for
prediction and identification of two key agronomical traits: the
number of raceme branches and drought stress. The manually
assessed ground truth of the number of raceme branches
consisted of 789 observations from 39 genotypes that started
flowering within the experimental period with 34 different class
labels (number of raceme branches). Since raceme branch counts
were unevenly distributed [e.g., 198 of 789 images were of
flowering individuals with one inflorescence branch (main stem)
while only 21 images featured plants with 10 raceme branches],
this was considered a regression rather than a classification
problem. The data set was randomly divided into 5 sets for a
5-fold cross validation, with 4 sets serving as training data and
one set serving as testing data in 5 replicate experiments. For
each set, plant age in DAS, the filtered number of pixels in
the blue-yellow channel (i.e., “flower pixels”) and the estimated
number of flowers were used as input features for raceme
branch number prediction. The widely used linear regression
and Huber regression algorithms were applied to predict the
inflorescence branch numbers (Huber, 1992; Freedman, 2009).
Prediction accuracy of different machine learning algorithms was
then gauged by comparing to the manually established ground
truth of raceme branch numbers.

With regard to drought stress, the number of stressed plants
(n = 166) was randomly down-sampled to match the number
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FIGURE 6 | Visualizations at three resolutions comparing SNPs in 50 B. napus genotypes against a reference genotype (NAM 0) with the genotypes ordered by their
increasing erucic acid content. The visualizations are all organized with rows representing different lines, and columns of pixels representing each SNP. The color at
each SNP indicates whether that SNP is the same (blue) as or different (red) from the allele in the reference genotype shown at the top of the view and missing data
is encoded in white. Additionally, at each resolution, a map of phenotypic trait values (erucic acid content, total aliphatic glucosinolate levels, and genotype origin) are
shown on the left. (A) Genome-level overview of the entire B. napus genome horizontally separated by chromosome. (B) Chromosome-level view of chromosome 8
in B. napus. (C) SNP-level view of chromosome 8 (9.73 mb to 13.03 mb) that displays SNP names at the top of the column, nucleotides for each SNP, and a gene
map below the main view.

of unstressed plants (n = 133), resulting in a total dataset of
266 observations. Combinations of several input features were
used to test machine learning for stress detection, including mean

and 75th percentile NIR, difference in plant pixels between 47
DAS and 49 DAS (1 pixelsTV, assuming that drooping leaves
might result in a reduction in plant size as seen from above),
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FIGURE 7 | Morphological diversity among founder lines of SKBnNAM based on eight selected growth traits extracted from the dataset. (A) Images show individuals
representing minimum and maximum values for each growth trait (except for days to flowering). (B) Mean values for each trait and genotype (control group only).
Tiles are colored based on normalized trait means (darker colors indicating lower values, lighter colors indicating higher values). Absolute mean values are given in
each tile. Only genotypes that started to flower before DAS 59 are included in this plot (n = 37).

the convex hull area (top view), total number of plant pixels (top
view), 1 convex hull (top view), plant height and width, 1 plant
height and 1 plant width, ExG, and number of raceme branches.
Again, the data set was randomly divided into 5 subsets for a
5-fold cross validation, with 4 sets serving as training data and
one set serving as testing data in 5 replicate experiments. Stress

identification was tested with the commonly used supervised
machine learning algorithms Random Forest Classifier, Linear
Discriminant Analysis, Logistic Regression model, K-nearest
Neighbor, Decision Tree, and Support Vector Machine, most of
which had been previously employed for stress detection in plants
(Singh et al., 2016).
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FIGURE 8 | Flowering phenology and intensity for 50 B. napus genotypes ranked by date of anthesis and flower output. (A) Flowering onset and intensity of
B. napus genotypes that flowered during the LemnaTec experiment. Dots represent average estimated number of flowers recorded from three individuals (control
group) of each genotype. The dots are colored according to previous greenhouse observations of flowering time. Underlying gray bars represent variation in flowering
onset. (B) Flowering intensity per phenotyped day of flowering. Sizes and colors of circles represent average number of flowers recorded from three individuals
(control group) of each genotype. Order of genotypes is shown in left-hand column in (A).

RESULTS

The Brassica napus Germplasm
A total of 30,933 single nucleotide polymorphism (SNP) markers
assayed from the Illumina Brassica Infinium SNP array were
used to evaluate the genetic diversity among a wide collection
of Brassica napus lines (Supplementary Table 3.1). The first two
principal components of a principal component analysis (PCA)
of 297 spring and semi-winter lines jointly explained 18.94%
of the genetic variance and, similar to other studies, showed
that these are positioned along a genetic gradient rather than

constituting discriminate clusters (Lu et al., 2019). The founder
lines of the SKBnNAM were selected to be well distributed
among the genotyped spring-type accessions to capture most of
the available variation (Figure 5). The available pedigrees and a
summary of key seed quality traits (aliphatic glucosinolate and
erucic acid content) segregating among the founders are provided
in Supplementary Table 3.2. The SNP data for the founder lines
has been represented in a novel graphical visualization tool3 that
allows relationships between the lines to be interrogated at the

3https://genomevis.usask.ca/haplotype-map-tree
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genome, chromosome and SNP level (Figure 6). The lines can
be arranged according to user-specified trait data in order to
facilitate exploration of underlying genetic variation.

Plant Image Capture, Segmentation, and
Trait Extraction
The initial HTP experiment intended to capture variation of
the founder lines of the SKBnNAM in response to low water
availability. Six replicates of each line were grown and imaged
in a LemnaTec Scanalyzer 3D plant phenotyping facility (for an
overview of growing conditions, see Supplementary Table 3.3).
Thirty-four days after seeding (DAS) three of the replicates
were maintained at field capacity (control group), while three
were subjected to reduced watering to approximate 40% field
capacity (treatment group). Imaging was carried out every day
initially and every second day after DAS 37, and RGB images
(top view, 90◦ and side view, 0◦) as well as near-infrared (NIR)
images were processed for specific phases of the experiment
(see Materials and Methods). There was high variation for all
extracted plant traits within genotypes and treatment groups
(Supplementary Figure 3.1) and plants of both treatment
groups displayed symptoms of drought stress (Supplementary
Figures 3.2,3.3). This was likely caused by uneven watering
administered during plant growth, mainly resulting from the
large basal leaves blocking the automated watering system. Due
to this variation, data analyses mainly focused on assessing
and improving the efficacy of semi-automated image analysis
protocols. Whenever genotype-specific traits were extracted (e.g.,
flowering time and canopy traits), analysis was limited to
the control group.

Despite these challenges, the described image analysis pipeline
allowed for extraction of holistic and derived phenotypic traits,
including plant height, plant width and plant volume, a proxy for
biomass, as well as plant phenology and canopy architecture traits
(Figure 7 and Supplementary Figure 3.4A, Supplementary
Appendix 2). The method efficiently captured the wide-ranging
diversity of growth and flowering traits among 50 out of 51
SKBnNAM founder lines (Figure 7), thereby demonstrating the
potential of the population. While the exact thresholds used in the
image segmentation and trait extraction process (Supplementary
Appendix 1) are specific to this particular experiment, the

outlined process used to derive these thresholds can be applied
for other crops and experimental setups.

Flower Detection and Quantification
A semi-automated pipeline for flower detection was designed
that allowed flowering to be accurately and precisely tracked
throughout the experiment (Figures 4, 8). This pipeline involved
using the segmented top view RGB image as an image mask
on the blue-yellow channel image of the same view, obtained
by converting the RGB image to the LAB color space. Results
of automatic flower detection were compared to manually
determined dates of anthesis for each plant. After identification
of the appropriate thresholds (see Supplementary Appendix 1),
anthesis was correctly detected in 170 out of 175 flowering plants
(97.14% accuracy). In four of the five cases where detection
was not accurate, flower buds were observed in which the
yellow petals were protruding from the sepals (Supplementary
Figure 3.5A). The last case was caused by a single flower petal
that had fallen from another plant (Supplementary Figure 3.5C).
Following the successful detection of anthesis, the number of
pixels as well as the number of components in the segmented
image of the blue yellow channel (Figure 4C) were used to
estimate the number of flowers for each plant and phenotyping
time point. This approach allowed the flowering period of
each plant to be measured through time, and for the different
genotypes to be compared in terms of their phenology, flowering
intensity, and variability among these characteristics (Figure 8).
Early flowering varieties were clearly identified and the flowering
behavior of these genotypes was consistent with those measured
from previous field characterization (Spearman’s rho = 0.76,
Supplementary Table 3.2).

In order to facilitate the description of canopy architecture,
quantification of raceme branches was explored by using
the output from the flower detection pipeline as input to
supervised machine learning algorithms; the results were then
compared against manually counted raceme branch numbers
for every plant at each phenotyped flowering time point. It
was found that raceme branch numbers could be predicted
from the estimated number of flowers and the total number
of flower pixels with an accuracy of 91% ± 0.02 with both
tested machine learning algorithms (Linear regression and
Huber regression, both with 5-fold cross validation, Table 1).

TABLE 1 | Mean accuracies for inflorescence branch number prediction from image-derived traits for 50 B. napus genotypes using different machine learning algorithms.

Raceme branch number prediction

Number of observations
(total/training data/testing data)

789/631/158

Mean accuracy with 5-fold cross validation (SD)

All features All features except for “flower pixels” All features except for estimated number of flowers

Linear Regression 91% (±0.03) 90% (±0.04) 85% (±0.05)

Huber Regression 91% (±0.02) 90% (±0.02) 85% (±0.06)

Total number of observations, number of observations in training data, and number of observations in testing data are given. 5-fold cross validation was used. Input
features for inflorescence branch number prediction were plant age, “flower pixels,” and number of flower components (estimated number of flowers). SD = Standard
deviation across cross validation replicates.
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As some input features were correlated [flower pixels and
number of flower components (estimated number of flowers),
Spearman’s correlation coefficient: r2 = 0.99], the prediction
was tested without the flower pixels feature and achieved
90% ± 0.03 accuracy. Overall, the number of the flower
components feature seemed to have more impact on branch
prediction accuracy than the flower pixels feature. Consecutively,
individual components from the thresholded blue-yellow channel
were assigned to individual raceme branches (Figure 4D), by
using hierarchical clustering. Taken together with additional
image-derived traits such as canopy width and plant height,
this allowed canopy architecture for the different genotypes
included in this experiment to be broadly characterized
(Supplementary Figure 3.4).

Drought Phenotyping
It was anticipated that withholding water from a subset of actively
growing plants would result in a reduced growth rate, an increase
in temperature resulting from reduced evapotranspiration, and
wilting from reduced turgor pressure. In order to test semi-
automated detection of these symptoms, drought stress was
visually scored for all plants of both control and drought-
treatment groups using a binary scheme (0: unstressed, 1:
symptoms of drought stress) and the top and side view RGB
images on DAS 49.

First, three individual image-based traits were tested for
their efficacy as proxy traits in semi-automated drought stress
detection: NIR intensity, Excess Green Index (ExG), and 1
pixelsTV (the change in the number of plant pixels from top
view between DAS 47 and DAS 49, assuming that wilting would
result in a smaller number of plant pixels captured from the top).
However, taken on their own, none of these three traits showed
substantial differences in plants displaying visible drought stress
compared to unstressed plants on DAS 49 (Supplementary
Figure 3.6). Similarly, two-way combinations of any of the three
traits could not reliably distinguish between stressed and non-
stressed plants (data not shown).

Next, curvature of the segmentation boundary was tested
as an indicator of drought stress. The histogram of curvature
over scale (HOCS; Kumar et al., 2012) method was applied to
the top view plant boundary on DAS 49, assuming that plants
experiencing water deficit would exhibit rolling of leaf edges.
Although the histograms of curvature of stressed and unstressed
plants did exhibit differences in their proportions at different
scales, their within-group variation was too high to reliably
distinguish between these two phenotypes (Figure 9).

Finally, the potential of machine learning algorithms in semi-
automated drought stress detection was assessed by comparing
the results of supervised machine learning to the manually
determined stress scores of DAS 49. Using only the curvature
of the top view plant boundary (summarized by HOCS), the
highest accuracy achieved in initial tests was 66.6% using the
KNN algorithm (K = 1), which was judged too low to be
investigated any further. In contrast, using a combination of
21 phenotypic traits and image attributes extracted from the
image dataset (mean and 75th percentile NIR, total number
of plant pixelsTV, 1 pixelsTV, the convex hull areaTV, 1

convex hullTV, total number of plant pixelsSV, 1 pixelsSV,
the convex hull areaSV, 1 convex hullSV, weight before, and
after watering, plant area below pot rim, plant height, plant
width, 1 plant height (between DAS 47 and 49), 1 plant width,
ExG, flowering group (early, intermediate, late), and number
of raceme branches) with several supervised machine learning
algorithms was able to detect drought stress with the area under
the receiver operating characteristic curve (ROC AUC) > 0.8
with 5-fold cross validation (Table 2). The maximum mean
ROC AUC was achieved using the Random Forest algorithm
(0.85 ± 0.03), Linear Discriminant Analysis (0.82 ± 0.04),
and Logistic Regression (0.82 ± 0.08) algorithms. We also
calculated the accuracy and achieved a maximum mean accuracy
of 81% for 5-fold cross validation with the Random Forest
Algorithm. Removing single features resulted only in very small
changes to overall identification of ROC AUC in most cases
(Supplementary Table 3.4).

DISCUSSION

The potential of HTP combined with automated image
processing and machine learning for accelerating crop
improvement has been increasingly acknowledged; however,
deployment is currently hampered by the lack of reliable, robust,
and easy to implement data processing methods. The results
presented here show that scoring of basic plant traits, such as
plant height and width, but also more complex traits such as
flowering traits and canopy architecture in a streamlined, semi-
automated fashion can be reliably achieved, once a workflow has
been optimized. In addition, the potential of machine learning
to identify multi-dimensional plant phenotypes such as drought
stress resistance was shown. This methodology thus shows
great promise for application in targeted breeding programs for
B. napus and other crops.

Introduction of the Diverse Founder
Panel for SKBnNAM
Since their introduction more than a decade ago, NAM
populations have proven to be invaluable tools for the dissection
of the genetic architecture of complex traits and have been
adopted for a number of economically important crops (Yu
et al., 2008; Gage et al., 2020). The lines phenotyped in this
study form the founder panel for a new spring-type B. napus
NAM population, SKBnNAM. Besides the common founder,
N99-508, this panel includes seven Canadian adapted, five
Australian, 13 European, 18 Asian as well as seven other
(e.g., Argentinian and yellow-seeded) lines (Supplementary
Table 3.2), which capture the genetic spectrum of spring-type
B. napus (Figures 5, 6). This population represents a useful
complement to the previously published Bn-NAM population
(16 founder lines, 2425 F6 recombinant inbred lines) which was
developed from mostly semi-winter-type rapeseed, a morphotype
that is predominantly grown in China (Hu et al., 2018), as
well as to a large B. napus NAM population developed from
winter and synthetic lines (51 founder lines, Snowden et al.,
2015). Based on preliminary genotype data and available field
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FIGURE 9 | Summary of histogram of curvature over scale (HOCS) method for all unstressed (0, blue) and all visibly stressed (1, orange) individuals on DAS 49. Each
plot shows a series of 25 histograms that are composed of 5 bins each summarizing the curvature of the segmentation boundary at a given scale. Error bars give
standard deviations across all individuals in each group (unstressed, visibly stressed). Overall histogram distributions were visibly different between these two groups
(highlighted by red column portions signifying absolute mean differences for each bin). However, high within-group variation across the diversity panel masked these
between-group differences and prevented accurate drought stress prediction from curvature of segmentation boundaries alone.

TABLE 2 | Mean ROC AUC, and mean accuracies for drought stress identification from image-derived traits for 50 B. napus genotypes using different machine
learning algorithms.

Drought stress identification

Number of down-sampled observations
(total/training data/testing data)

266/212/54

Mean ROC AUC with 5-fold cross validation Mean accuracy with 5-fold cross validation (SD)

Random Forest 0.85 0.81 (±0.03)

Linear Discriminant Analysis 0.82 0.77 (±0.04)

Logistic Regression 0.82 0.79 (±0.08)

Decision Tree 0.73 0.75 (±0.12)

KNN classifier (K = 1) 0.72 0.73 (±0.08)

Support Vector Machine (SVM) 0.76 0.67 (±0.23)

Total number of observations, number of observations in training data, and number of observations in testing data are given. 5-fold cross validation was used. Input
features for drought stress identification on 49 DAS were mean and 75th percentile NIR, total number of plant pixelsTV, 1 pixelsTV, the convex hull areaTV, 1 convex
hullTV, total number of plant pixelsSV, 1 pixelsSV, the convex hull areaSV, 1 convex hullSV, weight before, and after watering, plant area below pot rim, plant height,
plant width, 1 plant height, 1 plant width, ExG, flowering group (early, intermediate, late), and number of raceme branches. All 1 plant values represented differences
between 47 DAS and 49 DAS. ROC AUC = Area Under the Receiver Operating Characteristic Curve. SD = Standard deviation across cross validation replicates. Achieved
maximum results have been highlighted in bold.

phenotype data it was expected that SKBnNAM would be
a valuable resource for dissecting the genetic architecture of
complex traits in B. napus, and thus be instrumental for rapeseed

crop improvement. However, it was still necessary to establish
a clear picture of the level of phenotypic variation potentially
segregating within the population.
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FIGURE 10 | Examples of B. napus individuals exhibiting mild to moderate
drought stress on 47 DAS. All images show plants from control group. For
further examples of drought stress symptoms, see Supplementary
Figure 3.3. (A) NAM 12, Ind 423; (B) NAM 0, Ind 497; (C) NAM 30, Ind 492;
(D) NAM 75, Ind 422; (E) NAM 33, Ind 479; and (F) NAM 75, Ind 457.

Considerations for Controlled
Environment HTP Experiments in
B. napus
The data presented represents one of the longest controlled
environment HTP datasets for B. napus published to date. While
this dataset will certainly become a valuable resource for image
analysis refinements and innovations in rapeseed phenotyping,
experimental problems that were encountered should be taken
into consideration for future experiments. As mentioned above,
higher than expected within genotype × treatment variation
suggested that watering regimes were not administered as
precisely as planned, leading, for example, to some individuals
of the control group exhibiting symptoms of drought stress
(Supplementary Figures 3.2,3.3). This was likely due to a
combination of relatively small pot sizes (9 L pot volume,
Supplementary Table 3.3) and automated overhead irrigation
which led to larger rosette leaves effectively shielding the

soil in some individuals. In addition, the automated plant-
to-sensor movement within the phenotyping facility presented
additional challenges during the experiment, as some plants
were damaged (some larger, overhanging rosette leaves were
torn, Supplementary Figure 3.3) while being moved through
the system. Most of these challenges are connected to the plant
architecture of B. napus as compared to other crop species
frequently used in indoor HTP experiments (e.g., maize and
rice) which suggests that scaling this system to different crop
species requires crop-specific expertise and adjustments. Despite
these challenges it was possible to focus on plant traits that
were unaffected and further test the feasibility of different image
analysis approaches for B. napus.

Flower Phenotyping/Growth Stages
Major breeding objectives in B. napus include early germination,
improved seedling root development, early onset of flowering,
high yield, favorable aerial plant architecture, reduced pod
shatter, improved seed oil content, and quality as well as tolerance
to biotic and abiotic stresses (Delourme et al., 2018). A focus
of the current study was the semi-automated evaluation of
flowering traits, plant aerial architecture and, where feasible,
resistance to drought stress. It was demonstrated that it is possible
to efficiently and accurately track flowering time and intensity
through time using overhead RGB imaging (Figure 8). While we
are not aware of any previous indoor HTP studies of B. napus
that proposed flower detection and quantification to a similar
degree of precision as this one, the approach presented here was
similar to the one outlined by Chen et al. (2019) who separated
flower volume from plant volume on the basis of pixel color.
However, flowering traits were not the primary focus of their
study and the authors did not investigate the possibility of using
this method to track flower timing throughout their experiment.
The results demonstrated that anthesis in B. napus does not
need to be scored manually in greenhouse settings [as done
by Chen et al. (2019)] but can be accurately detected semi-
automatically (97.14% accuracy). This represents a significant
extension of previous approaches as it further allows us to
approximate flower numbers per plant and phenotyping time
point. Accurate flower tracking also enabled the characterization
of plant aerial architecture throughout the growing period (e.g.,
canopy width, canopy height, canopy angle, as well as number of
raceme branches, Figure 7, and Table 1). Although not possible
in the current experiment, the same methodology could easily
be applied to capture the end of the flowering period and thus
compare the length of the flowering period across genotypes
and treatments. Semi-automated and eventually fully automated
detection of flowering will facilitate high-throughput germplasm
screening for early flowering varieties as well as extraction of
other informative image traits or spectral indices that are scored
during flowering, for example leaf spectral features which have
been shown to be strongly correlated to seed yield (R2 = 0.71)
when measured during the flowering stage (Zhang and He,
2013). Due to a number of additional factors (e.g., in-field
variability of growing conditions, presence of parasites/disease
agents, spectral signal of canopies rather than single plants, and
shadows from overlapping plants), field phenotyping requires a
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slightly different approach to automated tracking of flowering
in rapeseed. However, similar to our findings, the blue and
green spectral bands of RGB images (e.g., used to calculate the
normalized difference yellowness index, NDYI) have proven to
be the most useful for distinguishing between flower and overall
canola canopy signals in field settings (Sulik and Long, 2020).

Drought Phenotyping
Drought stress caused by moderate loss of water is characterized
by a reduction in water content, diminished leaf water potential
and turgor loss, accompanied by stomata closure, and decrease
in cell enlargement and growth, while desiccation (severe water
stress) can result in arrest of photosynthesis and even plant death
(Jaleel et al., 2009). However, there is considerable plasticity in
the degree to which water loss can be minimized and high-
water status can be sustained among and within species (Farooq
et al., 2013). This can lead to a broad spectrum of drought
stress symptoms among closely related crop varieties. These
wide-ranging symptoms are often visually scored by experienced
breeders, but this integrated task is much harder to translate into
automated stress detection protocols.

Using single or dual image-based plant traits such as NIR
intensities, ExG (a measure of greenness), and daily changes in
projected leaf area (1 pixelsTV) were not reliable ways to identify
drought stress in our experiment (Figure 6 and Supplementary
Figure 3.6). This is in contrast to findings from other indoor
phenotyping experiments. For example, Janni et al. (2019)
found significantly different NIR intensities and greenness values
for drought-stressed and well-watered tomato plants. Similarly,
Vello et al. (2015) found that they could accurately identify
A. thaliana individuals in a water-limited treatment group using
an NIR intensity threshold. Finally, Briglia et al. (2019) reported
a clear correlation between stem water potential and both,
NIR intensities and greenness parameters for drought-treated
grapevines. One likely explanation for this difference is the degree
to which drought was imposed during these experiments. While
plants were often stressed irreversibly, to the extent of wilting, leaf
yellowing or browning (senescence), and even lethal dehydration
in previous studies (e.g., Vello et al., 2015; Duan et al., 2018;
Briglia et al., 2019), individuals exhibited only comparatively
mild drought symptoms in our experiment (e.g., leaf rolling,
loss of turgor, Figure 10, and Supplementary Figure 3.3). It
thus appears that both NIR intensities and greenness indices
such as ExG are more suitable for detecting severe levels of
drought stress. In addition, the second half of the treatment
phase coincided with the onset of flowering leading to temporal
overlap in flowering and more severe drought stress. This
created substantial problems for the utility of NIR for drought
detection since yellow B. napus flowers refract NIR the same
way that senescent leaves would and thus, flowering-dependent
changes in NIR intensities effectively mask the effects of drought
stress (also seen by a significant positive relationship between
NIR intensity and the number of flower pixels, Spearman’s
rank correlation rho = 0.38, Supplementary Figure 3.7A).
Unsurprisingly, ExG was also driven by presence of flowers
(rho = −0.68, Supplementary Figure 3.7B). Thus, the suitability
of previously applied image-based traits for measuring drought
stress strongly depends on experimental timing of drought stress

and flowering in B. napus. Finally, very few previous drought
phenotyping studies included diversity panels of the studied
crops. The genotypic variation in leaf color, leaf thickness, leaf
shape and size, and plant size made it impossible to define
common thresholds of the tested parameters that would have
allowed accurate semi-automated drought stress identification
across all 50 assayed B. napus lines (Supplementary Figure 3.8).
This illustrates the limitations of using these traits in complex
experimental settings, such as diverse pre-breeding trials.

Instead, the data revealed the promise of supervised machine
learning for stress identification in such complex situations.
To the best of our knowledge, plant boundary curvature as
summarized by the HOCS method, was used here for the first
time to evaluate drought stress in an indoor HTP experiment.
While promising overall, using this metric on its own was judged
to be not effective for reliably distinguishing between stressed and
unstressed plants, again likely due to genotype-specific variation
overriding any shared symptoms of drought stress. However,
using combinations of plant traits and image attributes derived
from RGB and NIR images, it was possible to achieve stress
identification accuracies of more than 80%. This mirrors previous
studies that reported promising results using a variety of machine
learning algorithms for drought detection and prediction in other
crops (e.g., Römer et al., 2012; Raza et al., 2014); however,
here for the first time with the added complexity of a large
diversity panel. This added complexity clearly identified drought
stress to be a multi-dimensional phenotype that could not be
described by single attributes or traits but instead required a
combination thereof. Compared to hyperspectral imaging, which
has successfully been used in drought stress identification (e.g.,
Römer et al., 2012; Susič et al., 2018; Asaari et al., 2019), but which
can be substantially more costly and difficult to acquire, process,
and store (Holzapfel, 2007), our results underline the utility of
NIR and multispectral RGB for this kind of problem.

Despite these promising results, several drawbacks remain
to be solved. Image data preprocessing, one of the most
crucial steps for successful use of machine learning methods
(Singh et al., 2016), is time-consuming and requires deep-rooted
knowledge of the organism of interest for input feature selection.
For example, even though several different combinations of
input features were tested (Supplementary Table 3.4), it was
not possible to achieve stress identification ROC AUC of
>85% in this experiment. Yet, further refinement of the input
feature combinations for reliable drought stress identification,
for example using additional plant attributes or traits could
lead to higher identification accuracies. In addition, further
improvements could likely be achieved through expansion of the
manually scored stress ground truth to multiple days in order
to allow for better genotypic-specific trait learning. However,
this would require a significant time investment as manually
scoring mild drought symptoms from images can be relatively
tedious and somewhat subjective even to the experienced eye.
The ultimate goal of stress phenotyping is stress prediction
before the onset of stress symptoms that can be distinguished
by the human eye. Even though our study makes a valuable
contribution to this overall problem, future work will be needed
to solve the puzzle of drought stress prediction in B. napus
and other crops.
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CONCLUSION

Phenotyping is considered a major bottleneck slowing the
development of new crop varieties. This study illustrates the
utility of semi-automated image processing and supervised
machine learning for pre-breeding activities in B. napus by
demonstrating their efficacy in scoring key agronomic traits
including flowering characteristics (e.g., timing and volume),
canopy architecture traits (e.g., raceme branch numbers), and
early symptoms of drought stress in a diverse panel of spring
lines. Despite several methodological challenges connected
to scaling an indoor HTP platform to different crops, the
results presented underline the promise of state-of-the-art HTP
technologies, semi-automated image processing, and supervised
machine learning for crop improvement, in particular when
combined with genomics and systematic breeding strategies.
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