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Terrestrialization of vascular plants, i.e., Angiosperm, is associated with the development
of cuticular barriers that prevent biotic and abiotic stresses and support plant growth
and development. To fulfill these multiple functions, cuticles have developed a unique
supramolecular and dynamic assembly of molecules and macromolecules. Plant
cuticles are not only an assembly of lipid compounds, i.e., waxes and cutin polyester,
as generally presented in the literature, but also of polysaccharides and phenolic
compounds, each fulfilling a role dependent on the presence of the others. This
mini-review is focused on recent developments and hypotheses on cuticle architecture–
function relationships through the prism of non-lipid components, i.e., cuticle-embedded
polysaccharides and polyester-bound phenolics.
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INTRODUCTION

Terrestrial colonization of plants came along with the development of four sophisticated
hydrophobic macromolecular assemblies, i.e., cuticle, suberin, lignin and sporopollenin (Yeats and
Rose, 2013; Graça, 2015; Li et al., 2019; Ralph et al., 2019), which enabled plants to resist to the
harsh conditions of the environment, to stiffen their architecture, to ensure nutrient and water
adsorption, their reproduction and land dispersion. Cuticle has a high plasticity, especially adapted
to organ growth. This plasticity was recently illustrated in the case of the cuticle of lateral root
primordia which controls further lateral root emergence (Berhin et al., 2019). Indeed, any defects
in the cuticle biosynthetic pathways induce defects in cuticle assembly and impact organ growth
and morphology (Fich et al., 2016; Berhin et al., 2019). Cuticle fulfills multiple functions, e.g., in the
control of water and gas exchanges, in the defense signaling against biotic and abiotic stresses, in
plant development with many interactions with hormone signaling and cell wall biosynthesis, in the
protection against UV radiation, in the retention of environmental pollutants, in the induction of
responses to mechanical stimuli, and constitute an habitat for the plant microbiome (Schönherr and
Riederer, 1989; Martin and Rose, 2014; Meder et al., 2018; Cordovez et al., 2019). These multiple
functions impact crop yields and quality, including post-harvest quality and processing which
has boosted research on the structure, assembly, and biosynthesis of their macromolecular and
molecular constituents. Finally, recent data showed that cuticle functions could not be regarded
only through the lens of their chemical composition, but resulted from a spatial organization
of molecules and macromolecules, i.e., a 3D architecture, finely regulated at the genetic and
physiological levels. This mini-review reports recent data on cuticle structural features and the
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ensuing hypotheses on its architecture, its evolution during organ
development and its relationship with their functional properties.

FROM MOLECULAR DIVERSITY TO
CUTICLE ARCHITECTURE

Plant cuticles are composed of three main types of chemical
components, i.e., lipids, carbohydrates, and phenolics. Lipids
give the cuticles their hydrophobic properties. They consist
of molecules easily extractable with organic solvents, i.e., epi-
and intra-cuticular waxes, dispersed at the surface and within
the cuticles, respectively, and of insoluble lipid polymers, i.e.,
cutan and cutin. While cutan polymer contains non-hydrolysable
bounds that limit structural investigation (Bhanot et al., 2021),
cutin is a polyester of oxygenated fatty acids (mainly with
hydroxyl and/or epoxide groups, but in less proportion with
oxo groups) of 16 and 18 carbon atoms (Yeats and Rose, 2013).
In some plants and, especially those of the Brassicaceae family,
high amounts of dicarboxylic acids (DCA) are found while
they are minor compounds in other plants (Franke et al., 2005;
Razeq et al., 2021).

The diversity of cutin monomer compositions has to be
analyzed in relation to the architecture of the cutin polyester. Two
physical parameters characterize the architecture of polymers,
their size and their reticulation (Caccavo et al., 2018). In contrast
with synthetic polyesters, measuring precisely the size of the
cutin polymer is not possible since it cannot be solubilized.
However, in planta, the cutin synthase (CUS1)-catalyzed cutin
polymerization from 2-monoacylglycerol (2-MAG), gives rise to
polyester with glycerol at the carboxylate terminus (Yeats and
Rose, 2013). Therefore, the molar ratio of glycerol to hydroxy-
fatty acid (HOFA) ratio allows the comparison of the polymer
sizes of cutins between plant species or mutants. Indeed, this
ratio is highly variable between plants suggesting a diversity of
cutin molecular sizes (Graça et al., 2002) and in cus1 tomato
mutants, the increase of this ratio regarding the wild-type
suggested a lower cutin polymer size (Philippe et al., 2016).
This chemical rule has however some limit for DCA-rich cutins
of Brassicaceae, where this particular composition came along
with a high amount of glycerol and a DCA:glycerol molar ratio
of 1:2 consistent with the formation of glycerol-DCA-glycerol
polyesters (Yang et al., 2016).

Concerning cutin reticulation, it is necessary to consider
the basic chemical reaction of polyesterification of components
bearing both hydroxyl and carboxylate groups and two
carboxylate groups and leading to branched polyesters (McKee
et al., 2005) or cross-linked polymer networks (Gu et al., 2019).
Branched vs. linear cutin polyesters, will depend (i) on the
presence of mid-chain hydroxyls as for the 9(10),16-dihydroxy
hexadecanoic acid (diOHC16) and (ii) on the OH/COOH
molar ratio in the global monomer composition and especially
on the level of DCA. It is also important to consider the
hydroxyls of glycerol in this ratio, although this triol displays
relatively low contents in cuticles. Indeed, as a branching
point, it seems involved in the reticulation of tomato cutin
(Philippe et al., 2016).

However, while tomato cutin contains more than 75%
diOHC16, it is surprising to observe that more than 80% of
the midOH groups of tomato cutin are esterified and can
reach up to 90% in the cutin of red ripe fruit (Philippe et al.,
2016). Furthermore, in the cus1 mutant, the lower expression
of CUS1 induces a high decrease of midOH esterification
(Philippe et al., 2016). In these mutants, the cutin deposition
and cutin density are also lowered suggesting that CUS1 could
also facilitate esterification of the mid-chain secondary alcohol
group when the cutin density is sufficient to create a favorable
hydrophobic environment (Girard et al., 2012; Philippe et al.,
2016). Esterification of midchain hydroxyl could also involve
another enzyme and especially a cutin: cutin transacylase activity
recently described (Xin et al., 2021). Whatever the mechanism
of polymerization, in diOHC16-rich cutins, the polyesterification
would typically lead to hyperbranched macromolecules that are
easily soluble in organic solvents (Testud et al., 2017) while
cutin is insoluble. Furthermore, branching through the midOH
group should lead to an increase of non-esterified ω-OH groups
while this was not observed (Philippe et al., 2016). It is therefore
necessary to consider the links between cutin and the other cuticle
compounds, i.e., phenolics and polysaccharides (Figure 1).

Phenolics, generally regarded as minor components, are also
embedded in the cuticles. These phenolics comprise two main
types of molecules, phenolic acids (e.g., para-coumarate) and
flavonoids (e.g., naringenin). Hunt and Baker (1980) suggested
that they are associated with the cutin by ester bonds since all
the phenolic acids are released after alkaline hydrolysis (Hunt
and Baker, 1980). However, ester links with polysaccharides is
also possible and are described in the xylan and pectin fractions
of the cell walls of both monocots and dicots (Mnich et al.,
2020). An ester link with the cutin polymer must be also
considered regarding the characterization of an enzyme of the
BAHD family capable to esterify the ω-position of HOFA by
a phenolic acid (Rautengarten et al., 2012; Molina and Kosma,
2015). Unexpectedly, these minor ester bonds of the cutin
polymer seem essential for the cuticle architecture of tomato
fruit (Lashbrooke et al., 2016). The importance of such chemical
bonds is also strengthened by the evolution of plant hydrophobic
polymers, and especially in mosses where cutin is a co-polyester
of HOFA and phenolic acids (Renault et al., 2017). On the
contrary, a part of flavonoids is extractible with methanol while
the other was extracted only after alkaline hydrolysis of the
cuticle (Hunt and Baker, 1980). Ester bonds between cutin and
flavonoids are unlikely due to the absence of carboxylate on
these molecules. From sorption studies of naringenin into tomato
cuticles, it was suggested that flavonoids can form solid clusters
within the cuticles which can be dissociated only after cutin
depolymerization (Dominguez et al., 2009). In agreement with
this equilibrium partition within the cuticle, the ketone group
of flavonoids could form hemiacetal and/or acetal derivatives
with the alcohol group of cutin, and especially with the glycerol
moieties of cutins (Moity et al., 2015) (Figure 1). In this regard,
such bonds can be also considered with minor cutin fatty acids
containing oxo groups.

The ester bonds between phenolic acids and cutin could be
questioned regarding cutin reticulation. These HOFA-phenolic
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FIGURE 1 | Schematic model for the complex architecture of plant cuticles. Plant cuticle (gray background) is a natural hydrophobic composite. The lipid scaffold of
the cuticle is the cutin polymer (blue background) embedded with waxes (yellow background), and associated to the cuticle-embedded polysaccharides (CEP, red
background). Cutin is a polyester network of HOFA mainly formed by the activities of CUS1 (a protein from the multigenic GDSL family of esterase/lipase) (Girard
et al., 2012) and cutin:cutin acyl transferase (CCAT, the protein associated with this activity has not yet been identified) during the expansion of the plant cuticle (Xin
et al., 2021). Para-coumaric acid esterification of the primary alcohol group of HOFA (co-position) is catalyzed by an enzyme of the multigenic BAHD family (Molina
and Kosma, 2015) and could form covalent bridges between the polyester chains through peroxidase oxidation (Kerr and Fry, 2004; Arrieta-Baez and Stark, 2006).
The strong association of flavonoids (e.g., naringenin and naringenin chalcone in tomato), especially at the end of fruit growth (Hunt and Baker, 1980) could involve
hemiacetal bond with primary hydroxyl groups (e.g., with the glycerol end residue of 2-monoacylglycerol, the precursor of CUS1). The cutin:xyloglucan transferase is
a good candidate to link covalently the cutin network to the CEP (Xin and Fry, 2021). In contrast to the non-cutinized polysaccharides (NCP), the CEP concentrates
crystalline cellulose, highly esterified pectins and acetylated xyloglucans (Philippe et al., 2020) associated by non-covalent bonds (yellow ellipses). In addition, the
hydrophobicity of these polysaccharides is compatible with non-covalent interactions (Ngouémazong et al., 2015; Dai et al., 2020; Lindman et al., 2021) with the
cutin network and intracuticular waxes. Finally, cellulose can also interact with phenolics (Phan et al., 2015). The cutin network and CEP form gradients in the cuticle
thickness create a spatial heterogeneity in the plant cuticles.

esters could dimerize through carbon–carbon bonds under
oxidative reactions as suggested for suberin (Arrieta-Baez and
Stark, 2006). As for arabinoxylan cross-linking (Kerr and Fry,
2004), a similar chemical mechanism could be considered for
the anchoring of polysaccharides and cutin (though phenolic
acids in plant cell walls are commonly found on arabinose
moieties that are not a dominant sugar in tomato cuticle)
and/or for the cross-linking of cutin linear chains. The role of
phenolics is strengthened by the polyesterification of diOHC16
and phenolic-rich fractions of tomato pomaces. This non-
catalyzed and temperature-controlled process induces oxidation
of the phenolic compounds and the formation of an insoluble
cross-linked polymer network and not of soluble branched
polyesters (Marc et al., 2021). In planta, this oxidation could be
driven by peroxidases that accumulate at the end of fruit growth
(Andrews et al., 2000).

The presence of polysaccharides in the cuticular layer leads
to the concept of the cell wall continuum of the epidermis

(Fich et al., 2016). The fine structure of the cutin-embedded
polysaccharides (CEP) was first investigated by immunolabeling
studies on leaves or fruit epidermis from pear and tomato and
resulted in either very faint or no labeling of cellulose and
pectin within the cutin matrix (Guzman et al., 2014a,b; Segado
et al., 2016) probably due to the masking of the glycoside
epitopes. By combining different investigation methods, it was
recently shown that these CEP display specific features regarding
those of the sub-cuticular, non-cutinized cell walls. Especially,
in the tomato cuticle, the pectin and hemicelluloses (enriched
in xyloglucan) are highly esterified, while a higher content
in crystalline cellulose is observed (Philippe et al., 2020).
Pectins embedded in the cuticle display a low ramification
of rhamnogalacturonan (RGI). These CEP structural features
are in favor of a lipid-polysaccharide association. Indeed, high
methyl- and acetyl-esterification of pectin and hemicellulose
increase their apolarity making interactions with lipids possible.
Indeed, pectin methyl- and acetyl-esters have often been
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related to oil/water emulsification and emulsion stabilization
(Ngouémazong et al., 2015). Low ramified RGI in the CEP
with the apolar rhamnose residue and the acetyl esters are also
expected to participate in pectin–lipid interactions. Cellulose
is an amphiphilic polysaccharide that stabilizes lipid emulsion
through hydrophobic interactions (Lindman et al., 2021). Its
crystalline assemblies also interact with lipids to stabilize
emulsions via the hydrophobic face of the crystals (Dai et al.,
2020). Furthermore, phenolic derivatives of lipids can also
contribute to lipid–polysaccharides interactions since phenolics
can interact with cellulose (Phan et al., 2015). Thus, lipids and
derivatives can physically form hydrophobic association with
polysaccharides in the cutinized cell-wall domain of the cuticle.
As observed for the xyloglucan-cellulose-pectin assemblies of cell
walls, the non-covalent links between the polysaccharides and
cutin should be sufficient to give the cuticle both strength and
flexibility needed for organ growth.

If a covalent link was highlighted after partial
depolymerization of lime fruit (Tian et al., 2008), no other studies
reported similar heteromers in plant cuticles. Interestingly, an
enzyme activity capable of linking HOFA and polysaccharides,
and specific for xyloglucans, i.e., a cutin:xyloglucan transacylase
(CXT), was recently characterized (Xin and Fry, 2021).
Furthermore, in tomato fruit, both the CXT activity and
xyloglucan contents increase in the epidermis during fruit
expansion (Takizawa et al., 2014). CXT could play a significant
role in the construction of the cuticle architecture since
xyloglucans are embedded in cuticles (Philippe et al., 2020).

In summary, the cutin polyester can be considered as a
branched or hyperbranched polyester architecture which is
insolubilized by the multiple covalent and non-covalent links
created during organ growth with polysaccharides and phenolics
(Figure 1). The cuticle image portrayed from numerous
microscopy investigations described cuticle architecture as two
hierarchically organized layers including an upper cuticular
proper mixing cutin and waxes, and a lower cuticular layer
containing cutin, polysaccharides, and intra-cuticular waxes
(Jeffree, 2006). Much progress has been done in imaging,
especially thanks to the development of Raman, infrared
and MALDI mass imaging that provide information on the
distribution of lipid, carbohydrate and phenolic compounds
within cuticles (Vrkoslav et al., 2010; Velickovic et al., 2014;
Philippe et al., 2016; Sasani et al., 2021). Actually, compositional
gradients were observed both on the surface (Philippe et al.,
2016) and within the thickness of the cuticular layer (Philippe
et al., 2020; Sasani et al., 2021). The cutin/polysaccharide ratio
decreases from the outer cuticle to the inner cell wall-cuticle
interface (Philippe et al., 2020) while phenolic compounds
are mainly associated with the waxes and cutin-rich regions
(Sasani et al., 2021). The question of the lipid-polysaccharides
molecular orientational order was also raised recently on leaves
models (Hama et al., 2019). Furthermore, deep cutinization
of cell walls can occur between epidermal cells creating
anticlinal pegs adjacent to epidermis cells (Buda et al., 2009).
Discontinuities can also occur with the presence of trichomes
creating small polysaccharide transcuticular channels (Fich
et al., 2020) or the presence of suberized lenticels in apple

fruit (Velickovic et al., 2014). Therefore, cuticle architecture
displays chemical heterogeneities in all the dimensions of
the 3D space. This architecture seems also finely regulated
and mutations affecting a specific component of the cuticles
induce modification of the expression of genes involves in
the synthesis and assembly of the others. For example, in
tomatoes, downregulation of GPAT6, an enzyme involved in
the biosynthesis of the cutin substrate of cus1, modifies the
expression of genes involved in the synthesis of polysaccharides
and phenolics (Petit et al., 2016). It is also interesting to note that
major cuticle-associated transcription factors, e.g., SHINE or
MIXTA regulate coordinately the synthesis of polysaccharides,
cutin monomer, wax and phenolics, and epidermal patterning
(Shi et al., 2011; Lashbrooke et al., 2016). This fine regulation
comes along with a dynamic of the cuticle architecture needed
for and occurring during organ growth. This is well illustrated
with the recent observation of a cutin: cutin transacylase
activity capable of rearranging the architecture of the cutin
polyester by a cut and paste mechanism during the growth of
plant epidermis (Xin and Fry, 2021), similar to the xyloglucan
endotransglucosylase/hydrolase (XTH) for polysaccharides
remodeling during organ growth (Rose et al., 2002) or to
the suberin polymerization-degradation process catalyzed by
clusters of enzymes from the GDSL-family of esterase/lipase
during lateral root formation (Ursache et al., 2021).

FROM CUTICLE ARCHITECTURE TO
FUNCTIONAL PROPERTIES

The complexity of the architecture of plant cuticles can explain
controversies in the role of the different components in their
properties. This is well illustrated by the role of waxes and cutin
on the water permeability of cuticles. If a consensus exists on the
major role of waxes on water permeability, this is still debated
for cutin. Previous studies showed differences in Clivia miniata
leaf cuticle permeability between young and old leaves and were
related to structural differences of the cutin matrix reticulation
(Schmidt et al., 1981). It was suggested that wax filling of the
cutin matrix depends on the cutin scaffold to explain the impact
of cutin defects on cuticle water permeability (Goodwin and
Jenks, 2005). However, water permeance of tomato cutin from
gpat6 tomato mutant (not affected in cutin polymerization) and
from cus1 mutants (affected in cutin polymerization) was not
significantly different (Philippe et al., 2016), suggesting that the
rule developed by Goodwin and Jenks cannot be applied to the
cuticle of tomato fruit. Cuticle water permeability seems also
related to the presence of small polysaccharide transcuticular
channels, as illustrated in remnants of trichomes in some tomato
accessions (Fich et al., 2020; Slot et al., 2021). The data on cuticle
water permeability clearly illustrate that the functional properties
of cuticles are due to the combination of the properties of each
cuticular component and their hierarchical organization in a
complex architecture.

Likewise, the cuticle mechanical properties are driven by
the association of the cuticular components, while the direct
contribution of each cuticle component is difficult to determine
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in planta. Many studies have examined the mechanical properties
of isolated cuticles from different botanical origins, primarily
through tensile tests (Khanal and Knoche, 2017). The resulting
data demonstrated that the mechanical properties of cuticles
are mainly determined by their: (i) anatomy (Allende et al.,
2004; Matas et al., 2004), (ii) relative humidity (Matas et al.,
2005), and (iii) relative proportions of constituents in particular
during the fruit development. The accumulation of waxes and
non-esterified flavonoids has been associated with an increase
in cuticle stiffness (Bargel and Neinhuis, 2004; Espana et al.,
2014). Notably, the contribution of esterified phenolic acids to
cuticle mechanical properties is not documented although the
absence of this link impairs the mechanical properties of the
cuticle (Lashbrooke et al., 2016).

The cutin polyester fraction is described as a typical
viscoelastic material (Knoche and Lang, 2017) whose mechanical
properties would be impacted by its reticulation index. Indeed,
AFM surface analyses of cutin from cus1 tomato mutant showed a
lower Young’s elastic modulus than the corresponding wild-type
(Isaacson et al., 2009). This result was recently strengthened by
studies on synthetic biomimetic copolyesters of cutin HOFA and
glycerol where a decrease in the cutin-like polyester reticulation
has been associated with a decrease in Young’s elastic modulus
and a twofold increase in the strain at break (Marc et al., 2021).

The impact of different CEP on mechanical properties is less
documented (Khanal and Knoche, 2017). However, paralleling
the data available from the cell wall polysaccharides models,
the recent identification of the specific feature of the CEP
should bring new hypotheses on their impact on the cuticle
mechanical properties. Indeed, reversible interactions of methyl
esterified pectin with cellulose have been observed in vitro
(Lin et al., 2016, 2018). Moreover, in pectin-cellulose model
composites, an increase in the methyl esterification rate was
associated with an increase in their elastic storage modulus (Lin
et al., 2016, 2018). In similar model composites, hemicellulose
(xyloglucan and glucomannan) affects the cellulose structuring
and the mechanical properties of the composites. In particular,
xyloglucan increases the composite extensibility and the decrease
of its tensile elastic modulus while glucomannan leads to the
opposite effect (Chanliaud et al., 2002; Berglund et al., 2020).

These data open the way to the conception of new biomimetic
models combining pectin, hemicellulose, and cellulose with lipids
and to target specific genes in plant mutants to affect the
construction and assembly of these polysaccharides and lipids
to assess their specific function on the viscoelastic mechanical
and/or barrier properties of cuticle.

CONCLUSION

The cuticle can be considered as a polymeric composite
displaying spatial heterogeneity. Our knowledge of the
architecture of cuticles is rapidly progressing thanks to the
development of physical instrumentation and in the future,
probably with the development of correlative investigations
coupling different physical techniques and modeling. Most of
the studies are performed with tomato fruit which is amenable
to delineate cuticle architecture. Indeed, tomato cuticle can be
isolated easily, has a thickness compatible with the resolution of
most physical techniques, its cutin is dominated by diOHC16 and
different genetic tools are available to modify their composition.
The architecture–function relationships of cuticles are still in
their infancy, but should also progress rapidly and should
benefit in particular (i) from the delineation of the architecture-
associated enzyme network (CUS1, CXT, CCT, etc.) and (ii) from
biomimicry approaches. Biomimicry will especially extend the
concept of a spatially tunable architecture of the cuticle to fulfill
their multiple functionalities while tailoring original bioinspired
materials (Heredia-Guerrero et al., 2017).
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