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Crop Agnostic Monitoring Driven by
Deep Learning
Michael Halstead*, Alireza Ahmadi, Claus Smitt, Oliver Schmittmann and Chris McCool

Agricultural Robotics, Institute of Agricultural Engineering, University of Bonn, Bonn, Germany

Farmers require diverse and complex information to make agronomical decisions about

crop management including intervention tasks. Generally, this information is gathered

by farmers traversing their fields or glasshouses which is often a time consuming and

potentially expensive process. In recent years, robotic platforms have gained significant

traction due to advances in artificial intelligence. However, these platforms are usually tied

to one setting (such as arable farmland), or algorithms are designed for a single platform.

This creates a significant gap between available technology and farmer requirements.

We propose a novel field agnostic monitoring technique that is able to operate on

two different robots, in arable farmland or a glasshouse (horticultural setting). Instance

segmentation forms the backbone of this approach from which object location and class,

object area, and yield information can be obtained. In arable farmland, our segmentation

network is able to estimate crop and weed at a species level and in a glasshouse we

are able to estimate the sweet pepper and their ripeness. For yield information, we

introduce a novel matching criterion that removes the pixel-wise constraints of previous

versions. This approach is able to accurately estimate the number of fruit (sweet pepper)

in a glasshouse with a normalized absolute error of 4.7% and an R2 of 0.901 with the

visual ground truth. When applied to cluttered arable farmland scenes it improves on the

prior approach by 50%. Finally, a qualitative analysis shows the validity of this agnostic

monitoring algorithm by supplying decision enabling information to the farmer such as

the impact of a low level weeding intervention scheme.

Keywords: plant classification, artificial intelligence, deep learning, convolutional neural network, image

segmentation, field plant observation

1. INTRODUCTION

Agricultural robotics and automation is a rapidly developing field, driven by advances in artificial
intelligence (AI). For agricultural robotics, advances in AI and robotic vision has meant that
interaction with crops has been enabled, exemplified by robotic seeding (Utstumo et al., 2018),
weed management (Bawden et al., 2017), and harvesting (Lehnert et al., 2017; Arad et al., 2020). To
date, agricultural automation researchers have used coarse inputs such as temperature, lighting, and
CO2 which are inputs to AI-based approaches to control the outputs (e.g., lighting and nutrients)
to the crop (Hemming et al., 2019). Yet, there are obvious gains to be made by providing more
frequent and finer-grained inputs about the state of the crop.

From the stakeholder (farmer) perspective, monitoring plants and their ecosystem is a key
element to making informed management decisions. Without robotics or automation, a farmer has
to physically view (traverse or spot check) their farm multiple times and pay attention to critical
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markers such as the number of fruit or crop, or the presence of
weeds, pests, or diseases, as advised by LWK-Rheinland (2020) in
Germany. Robotic platforms have the potential to both automate
and enhance these observations by performing these repetitive
tasks with a high degree of accuracy, as outlined in Figure 1.
This high degree of accuracy comes from recent advances in
robotic vision.

From a robotic monitoring, perspective platforms need to

be designed to ascertain relevant information, not just all

information, simplifying data collection for the end user. From
a cost perspective, these monitoring platforms need to reduce

the impact of labor on costs (from physical viewing) which is
a key expenditure for farming operations (ABARES, 2018). As
an example, in arable farming, the farm should be monitored
multiple times to measure crop germination and the current
growth stage, enabling decisions, such as fertilization, herbicide,
fungicide, and insecticide treatments (LWK-Rheinland, 2020).
Robotics provides a potential mechanism to automate the

crop monitoring process, however, currently, the platforms are

designed for a specific purpose or their algorithms are designed

for a specific platform, limiting uptake.
From the robotics and robotic vision fields, research has

progressed considerably over the past decade with a particular
focus on estimating the presence or potential yield of the
crop. In the previous decade, specialized vision algorithms were
developed for particular crops, such as grapes (Nuske et al., 2011,
2014), apples (Wang et al., 2012), tomatoes (Yamamoto et al.,
2014), and almonds (Hung et al., 2013). These methods relied on
traditional computer vision approaches and hand crafted features
were defined for each crop. However, more recently, deep
learning approaches such as DeepFruits have been proposed by
Sa et al. (2016). Such approaches are amenable to being deployed
to multiple crops. These, more generalizable, approaches are

FIGURE 1 | The agnostic monitoring algorithm provides up-to-date information to the farmer based on instance segmentation with ripeness or species information

and area estimation. This assists in making more informed management decisions such as weeding or harvesting using a tracking-via-segmentation approach for

yield estimation. The approach is evaluated on two robotic platforms PATHoBot (Left) and BonnBot-I (Right) which work in significantly different environments:

glasshouse or arable fields. Area estimation values are in m2.

integral if we are to perform automated monitoring without
human intervention.

More recently, robots that better integrate vision systems,
deep learning, and robotics have been proposed. These robots
can perform not only a specific action, or intervention, but also
repeatedly estimate the state of the field. An example of this is
PATHoBot (Smitt et al., 2021) which aims to combine advances
in deep learning with robot (platform) information to provide
a more robust crop monitoring approach. In this approach, the
camera parameters and wheel odometry were utilized to refine a
tracking algorithm based on deep learned semantic masks.

In this article, we present a platform agnostic algorithm
for monitoring the state of arable farmland (crop/weed
management) and glasshouses (crop management). We propose
to improve the AI and tracking components outlined in Halstead
et al. (2018, 2020) and evaluate it on both PATHoBot (Smitt
et al., 2021) (glasshouse) and BonnBot-I (Ahmadi et al., 2021a)
(arable farmland). This approach monitors the crops in the
various environments and assists the farmer in making informed
management decisions. Our technique is evaluated on two robots
across two vastly different environments and demonstrated the
potential to

• Perform generalized plant segmentation in arable farmland
and provide more fine-grained classification labels;
• Sweet pepper segmentation and ripeness classification using

the same network as arable farmland;
• Incorporation of area estimation calculations of both the

crop (sugar beet (SB), and sweet pepper) and weeds where
appropriate;
• Tracking-via-segmentation matching criterion evaluation and

novel approach to alleviate cluttering issues; and,
• Fuse all techniques into a single monitoring technique for

agriculture.
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The paper is organized as follows: section 2 outlines the prior
work in this field; the materials being used are described in
section 3; the methods are outlined in section 4; we display and
discuss our results in section 5; and finally we conclude the paper
in section 6.

2. RELATED WORK

Crop monitoring is an important facet of any farm, from arable
farming (wheat, corn, SB, etc.) to horticulture (apples, tomatoes,
sweet peppers, etc.). An example in the context of horticultural
farming is knowledge about the state of the field, such as
the number and quality of fruit by Halstead et al. (2018) or
estimating the final yield by Nuske et al. (2011). For arable
farming the presence and number of weeds are important, and
several platforms have been designed to manage them (Bakker
et al., 2010; Peruzzi et al., 2017).

From a monitoring perspective, weed management highlights
the need for the entire process to be strategic, from monitoring
to intervention. This is because the indiscriminate removal
of weeds can have a negative impact on both soil and crop
health (Blaix et al., 2018). Therefore, informed monitoring of
crop can help improve the bio-diversity by using selective
weeding protocols (Blaix et al., 2018; Adeux et al., 2019).
Using a well-designed monitoring platform can ensure that
the crop can be positively impacted by weeds which can
increase pollinators when the herbicide is decreased (Raven
and Wagner, 2021). Arable farmland is just one area where
careful monitoring paradigms can increase the health of the crop
through perceptive information. The key enabling technology
for these are agricultural robots and their associated robotic
vision algorithms. Below, we briefly describe relevant prior work
in terms of robotics in agriculture, the vision systems to enable
robotic systems and the object tracking systems that enable
them to summarize the content of the field (a key element of
this work).

2.1. Robotics in Agriculture
Robotics and robotic vision have long been thought to provide
a way to perform regular autonomous crop monitoring. This
includes increasing the frequency, both spatially and temporally,
of field monitoring to improve management. Several robotic
platforms have been proposed with either cropmonitoring (Smitt
et al., 2021) or intervention (Utstumo et al., 2018) (performing
an action on the crop) in mind. Yet, in agriculture (arable and
horticultural farming), the robotic platform and their robotic
vision algorithms have been inexorably intertwined.

From an arable farming perspective, the most prevalent
robotic platforms deal with weed management. Slaughter et al.
(2008) produced an early study into various weeding techniques
and outlined the negative impact of herbicides. Bakker et al.
(2010) developed a weeding platform that was able to operate
inside crop-row fields, particularly between the crop. The
primary goal of their technique was to replace manual weeding.
A review conducted by Peruzzi et al. (2017) outlined many of the
possible weeding techniques, along with automated versions, for
crop-row fields. While this article did not concentrate specifically

on robotic platforms, it does provide a solid overview into
weed management techniques not dependent on herbicide. From
an automated weeding perspective, AgBot II (Bawden et al.,
2017) was able to designate the type of intervention, mechanical
or chemical, based on the type of weed and a vision based
detection routine. To reduce herbicide use, Utstumo et al. (2018)
used machine learning (ML) and computer vision to control a
drop-on-demand weeder. Their technique also allowed for more
powerful herbicide use as crop health was assured with their
spraying approach.

From a horticultural farming perspective, the harvesting
of fruit has been a commonly tackled issue. Lehnert et al.
(2017) built a sweet pepper harvesting robot that was able
to operate independently of the cropping scenario using a
mixture of computer vision and ML techniques. To harvest
strawberries, Kirk et al. (2020) used a Thorvald robot (Grimstad
and From, 2017) with an RGB-D camera and on-board
computing with AI components. This technique was able to
localize and harvest strawberries with high accuracy using an
automatically controlled specialized gripper. Sweeper (Arad et al.,
2020) is a robotic platform, built on a lifting trolley with a
harvesting arm at the front, capable of harvesting sweet pepper in
a commercial greenhouse setting. Their traditional ML technique
was able to accurately segment the fruit and detect the stem for
harvesting. Despite the intertwined nature of robotic platforms
and their algorithms, robotic vision algorithms are becoming
more general.

2.2. Vision in Agriculture
In the previous decade, multiple specialized vision algorithms
were developed for detecting crops. An early example of this
was the work for grapes in a vineyard by Nuske et al. (2011,
2014) who primarily concentrated on predicting yield. To detect
the key points of grapes, they explored radial symmetry and
their own novel maximal point detection algorithm, along with
investigating several other tradition ML and computer vision
approaches. Interestingly, these techniques were developed to
reduce human impact when surveying the fields. Similarly, while
investigating yield, Wang et al. (2012) used stereo cameras
at night with controlled artificial light to count apples. Their
approach employed traditional computer vision techniques
including detection in the HSV space. For detection and yield
estimates of tomatoes, Yamamoto et al. (2014) also collected data
at night with a known light source. They segmented the tomatoes
using a pixel-wise decision tree which they trained using channels
from five different color spaces. Overall, they achieved impressive
results, particularly for mature (red) tomatoes. Hung et al.
(2013) proposed a yield estimation approach for almonds and
achieved impressive performance using a combination of a sparse
auto-encoder and conditional random fields (CRF). Using a
similar pipeline to Hung et al. (2013) and McCool et al. (2016)
exploited these techniques for one of the earliest techniques for
sweet pepper predictions. Their approach was able to achieve
results similar to a human. Object (sweet pepper, tomatoes, and
almonds) segmentation is an important component in many
state-of-the-art robotic platforms for a number of tasks. Early
works such as Nuske et al. (2011) and Hung et al. (2013) aimed
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to exploit various ML techniques to semantically locate and
classify small objects, grapes, or almonds. However, it was noted
that these techniques were heavily impacted by occlusions which
degraded performance. In an effort to alleviate these occlusion
issues, Zabawa et al. (2019) turned a two class problem into a
three class segmentation task by incorporating edge information
and utilizing deep learning methods.

These methods, excluding Zabawa et al. (2019), all relied
on traditional computer vision approaches where hand crafted
features were defined for each crop, however, more recently, deep
learning approaches, such as DeepFruits, have been proposed by
Sa et al. (2016). Such approaches are amenable to being deployed
to multiple crops. These, more generalizable, approaches are
integral if we are to perform automated monitoring without
human intervention.

In recent years, deep learning based approaches are becoming
more prevalent due to their accuracy and diversity from
classification to segmentation. These are generally data driven
approaches that rely heavily on labeled inputs at training time,
which drives both a learned feature space and impressive results.
Sa et al. (2016) was one of the first to apply Faster region-
based convolutional neural network (Faster-RCNN) (Ren et al.,
2015) for fruit detection. Koirala et al. (2019) and Tian et al.
(2019) compared Faster-RCNN and Yolo (Redmon et al., 2016)
for mango and apple detection, respectively, with Yolo capable
of real-time performance with high levels of accuracy. Wan and
Goudos (2020) proposed methods to speed up Faster-RCNN for
fruit detection and achieved similar speed to Yolo-v3 (Redmon
and Farhadi, 2018) while obtaining higher accuracy. Again for
fruit detection in an orchard, Zhang et al. (2019) used a multi-
task cascaded convolutional network and showed that network
fusion had benefits for detection, however, the cascaded network
structure added system complexity. Bargoti and Underwood
(2017) outlined the benefits of convolutional neural networks
(CNN) for fruit segmentation. More recently, the potential to
perform fruit detection in the wild was explored by Halstead
et al. (2020). It was shown that impressive performance for fruit
detection could be achieved in vastly different fields by leveraging
multi-task learning. In general, these approaches concentrate on
detection, however, for yield estimation tracking approaches are
necessary to ensure objects are only counted once.

2.3. Object Tracking in Agriculture
Tracking techniques have vast applications from simple particle
filters for pedestrians (Denman et al., 2015) to precision
agriculture from UAVs (López et al., 2021). These techniques
have varying complexity and often rely on intricate hyper-
parameter tuning or require innate knowledge about the network
being used (Wang et al., 2019).

For tracking sweet pepper in agriculture, Halstead et al. (2018)
and Smitt et al. (2021) make similar assumptions. As a robotic
platform traverses a row, the scene between two consecutive
images can be considered static in nature both spatially and
temporally (i.e., objects in the image are spatially similar). These
assumptions depend heavily on the frames per second (fps)
of the camera and the velocity of the platform, if the fps is
low or velocity is high this creates larger displacement between

consecutive images and the assumption of a static scene no
longer holds. Halstead et al. (2018) exploits this static scene for
detection, relying heavily on the overlap between objects at t
and the same object at t + 1. Smitt et al. (2021) extends this by
creating a more accurate representation of an object in frame t
at frame t + 1 using reprojection based on the wheel odometry.
This approach was also able to reconcile larger distances between
frames (i.e., t to t + N) creating a more robust and accurate
tracking approach. While there are significantly more complex
tracking algorithms (Jayaraman and Grauman, 2016; Stein et al.,
2016; Wang et al., 2019) in our data, we are able to assume and
leverage this spatial and temporal consistency.

More recently, robotic platforms that better integrate vision
systems, deep learning, and robotics have been proposed. These
robots can perform not only a specific action or intervention but
also repeatedly estimate the state of the field. An example of this
is PATHoBot (Smitt et al., 2021) which we proposed to combine
advances in deep learning with robot (platform) information
to provide a more robust crop monitoring approach. In this
approach, the stereo data and wheel odometry was utilized to
improve a tracking algorithm by reprojecting the masks detected
by a deep learned model. However, the proposed robotic vision
algorithm was applied on a single robot (PATHoBot) and to a
single crop (sweet pepper).

We greatly extend our prior work (Smitt et al., 2021) and
demonstrate the potential of the algorithms to be crop and
robotic platform agnostic. For this, we propose and evaluate
extensions to the reprojection for tracking. This is employed
on two robots, PATHoBot (Smitt et al., 2021) and BonnBot-
I (Ahmadi et al., 2021a), in both an arable farming and
horticultural setting.

3. MATERIALS

In this article, we extend our prior work on PATHoBot (Smitt
et al., 2021) to develop a platform and environment agnostic
monitoring algorithm. The algorithm is deployed on a glasshouse
robot (PATHoBot) and an arable farming robot (BonnBot-I),
as shown in Figure 1. For each robot, we have collected a
dataset and example images that are presented in Figure 2. The
data for PATHoBot is used for the monitoring of sweet pepper
(BUP20) and BonnBot-I is used for monitoring sugar beet and
the associated weeds (SB20).

There are two critical aspects to these datasets. First, they have
labeled instance segmentationmasks and full temporal sequences
for tracking. Second, they have important robot and scene
information, such as registered depth images, camera parameters,
and wheel odometry information.

For training and evaluation of the instance segmentation
algorithm, both datasets consist of non-overlapping annotated
images. SB20 consists of 71, 37, and 35 images for the training,
validation, and evaluation sets, respectively. BUP20 consists of
124, 63, and 93 images for the training, validation, and evaluation
sets, respectively. Furthermore, a specific row is assigned only to
training, validation, or evaluation to ensure there is no overlap.
This allows us to track an entire row assigned to validation or
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FIGURE 2 | Two examples (one RGB and one ground truth mask for each

example) from each of the two datasets. Top row outlines the sweet pepper

dataset (BUP20) where the colors represent the sub-class ripeness labels.

Bottom row shows the sugar beet dataset (SB20) where the colored masks

represent the plant species.

evaluation without bias from the training data. The tracking set
of four rows for the SB20 dataset contains between 1,151 and
1,525 images and the five rows for BUP20 have approximately
1,799 frames.

3.1. Sweet Pepper Dataset (BUP20)
The sweet pepper dataset was captured at the University of Bonn’s
campus Klein-Altendorf (CKA) in a commercial glasshouse. The
dataset was captured by Smitt et al. (2021) on PATHoBot under
similar conditions to that captured by Halstead et al. (2020).
Figure 2 (top row) outlines two examples of the RGB and masks
from the BUP20 dataset. We use the same images as Smitt
et al. (2021), which were captured on an Intel RealSense 435i
camera (Intel Corporation, Santa Clara, California, USA.) (with
a resolution of 1280× 720), for evaluation purposes.

The BUP20 dataset captured two different cultivars: Mavera
(green-yellow) and Allrounder (green-red). A breakdown of the
training, validation, and evaluation sub-classes (ripeness/quality)
can be seen in Table 1. While green dominates, there is still a rich
representation of all the sub-classes.

To quantitatively evaluate the performance of the tracking
algorithms, we performed further annotation of the data. Using
the available video sequences, three annotators visually counted
the presence of the five sub-classes in the image sequences and
ensured that each sweet pepper was only counted one time. This
provided us with the ground truth data with counts for each sub-
class over an entire row. These results are summarized in Table 2,
where we calculate the average count of the three annotators for
each sub-class then rounded up to the nearest integer. BUP20
was a complicated dataset to annotate as fruit could appear in the
image from distant rows. Annotators were instructed to use the
heat rails, which are approximately 1.05 m from the sensor, as
a guide; if fruit appeared beyond this point, it was not counted.
This interpretation of fruit location along with juvenile peppers

TABLE 1 | The training, validation, and evaluation breakdown of the two datasets,

the sweet pepper dataset (BUP20) and the sugar beet dataset (SB20).

Name Abbreviation Train Validation Evaluation

BUP20

Red Rd 158 52 100

Yellow Yl 318 98 181

Green Gn 2774 1285 1466

Mixed Red Mr 100 62 70

Mixed Yellow My 189 101 143

SB20

Sugar Beet SB 388 151 231

Chenopodium Album Ch 106 37 89

Thlaspi Arvense Th 317 392 67

Fallopia Convolvulus Bi 166 64 16

Persicaria Lapathifolia Pe 313 171 139

Unknown Uk 116 58 37

Chenopodiastrum Hybridum Cy 10 7 47

Anthemis Arvensis An 8 8 3

TABLE 2 | The yield counts based on the average and rounded values from three

annotators for the BUP20 dataset across the validation and evaluation rows.

Row Red Yellow Green Mixed Red Mixed Yellow Total

24-R4 10 17 212 6 15 260

24-R5 10 6 157 8 21 202

01-R4 13 24 231 9 15 292

01-R5 6 26 158 4 7 201

01-R6 11 13 192 11 12 239

appearing similar to leaves and varying levels of occlusion lead to
some ambiguity in the annotations.

3.2. Sugar Beet Dataset (SB20)
The sugar beet 2020 dataset was captured using BonnBot-
I (Ahmadi et al., 2021a) also at CKA. BonnBot-I is a
modified Thorvald robotic platform and the data was captured
using a downward facing Intel RealSense D435i camera (Intel
Corporation, Santa Clara, California, USA). The D435i provides
RGB and registered depth while BonnBot-I provides wheel
odometry. Together this makes it ideal for segmentation
and tracking.

The sugar beet 2020 dataset, as shown in Figure 2 (bottom
row) for example, is a challenging dataset created for weed
classification and segmentation purposes with a resolution of
480× 640. Plants are labeled into seven species plus an unknown
label as outlined in Table 1, along with their fine-grained
location. The unknown class is used for samples that are too small
to classify or where there is high uncertainty about the species.
The SB in this dataset primarily range from early youth (two seed
leaves) to late youth stage (up to four foliage pairs) as described
by Meier (1997), however, outliers exist. A key challenge of this
dataset is the large difference in sample numbers, in the training
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TABLE 3 | The yield counts based on the average and rounded values from three

annotators for the SB20 dataset across the validation and evaluation rows.

Row SB Ch Th Bi Pe Uk Cy An Total

R1 120 16 185 49 80 43 6 5 504

R3-03 93 45 207 36 159 20 6 3 569

R3-09 167 16 12 14 15 24 1 1 250

R11 128 60 33 18 131 24 47 3 444

set, there are 388 SB samples while Chenopodiastrum hybridum
(10) and Anthemis arvensis (8) contain significantly less.

Similar to BUP20, the video sequences were analyzed to
provide a summary of the number of plants present in the
field. Three annotators counted the presence of the sub-classes
in the sequences and the counts were then averaged over the
three annotators; the average count value was rounded up to the
nearest integer. A summary of the visual ground truth number
of plants in the field is provided in Table 3 where it can be
seen that the species’ distribution is representative of pixel-level
annotations in Table 1 (i.e., poor sample distribution of some
classes). Compared to BUP20, the ground plane significantly
reduced annotation complexity as plants could not appear
beyond this point.

3.3. Evaluation Measures
For the task of object detection, we employ the F1 metric,
which summarizes the precision-recall curve into a single value.
For semantic segmentation, we use the intersection over union
(IoU) and for classification, we use confusion matrices with an
average accuracy score (confacc). Finally, for tracking, we use
the coefficient of determination (R2) and the mean normalized
absolute error (µNAE). We provide more details on each of
these below.

The precision-recall curve describes the performance of a two-
class classifier (e.g., object detector) and can be summarized by
the F1 score. The precision P = TP

TP+FP
and recall R = TP

TP+FN
are defined by TP which is the number of true positives (correct
detections), FP which is the number of false positives (false
detections), and FN which is the number of false negatives (miss
detections). The value for P and R will vary as the threshold
for the classifier varies and to summarize the resultant curve,
we calculate the F1 score. This score is the point at which the
precision equals the recall,

F1 = 2×
P · R

P+ R
. (1)

The IoUmetric describes the accuracy of semantic segmentation.
Given the output of a systemO and the ground truthGT, the IoU
is given by

IoU (O,GT) =
O ∩ GT

O ∪ GT
. (2)

The maximum IoU is 1.0, which indicates perfect semantic
segmentation.

For sub-class performance, we also calculate the average
accuracy based on the confusion matrix, such that

confacc =
1

I

I
∑

i

Cii, (3)

where C is a normalized I × I confusion matrix and the
accuracy is calculated by summing the diagonals and dividing
by the number of rows. This provides the average accuracy of
the confusion matrix where a value closer to 1.0 indicates the
higher performance.

Finally, for our tracking analysis, we utilize two metrics,
the coefficient of determination (R2), and the mean normalized
absolute error (µNAE),

µNAE =
1

I

I
∑

i

|GTi − Pi|

GTi
(4)

where I is the number of rows being evaluated, GT is the ground
truth, and P is the predicted count. These results are calculated
on the total number of objects counted against the ground truth
to allow direct comparison to Smitt et al. (2021). It should be
noted that this metric has a lower bound of zero (our desired
outcome) but it is unbounded in the opposite direction. This is
due to the prediction being scaled by the ground truth; if the
prediction is significantly higher than the ground truth, this value
can exceed 1.

4. METHODS

We propose extensions to our prior work (Smitt et al., 2021)
and demonstrate that the algorithms are both crop and robotic
platform agnostic. Figure 1 provides a general overview of
our monitoring method. For this, we propose and evaluate
extensions to the reprojection for tracking and deploy them
on PATHoBot and BonnBot-I in a horticultural and an arable
farming setting, respectively.

The robotic vision pipeline is identical for both robots, only
the deep learned model varies (with varying sub-classes). First,
the robot scans the row, segments the desired objects, and then
calculates their individual areas. The next step uses tracklets to
aggregate the segmented data using a tracking-via-segmentation
approach. Finally, the tracklet information is interpreted to
supply a final yield and maximum area estimation.

4.1. Instance-Based Semantic
Segmentation
The accurate localization of objects in the scene plays a key
role in the overall impact of this technique. To achieve this,
we utilize instance segmentation masks from Mask region-based
convolutional neural network (Mask-RCNN) (He et al., 2017) as
the base network. In its standard form, Mask-RCNN is able to
provide classification scores (of N classes), bounded regions, and
instance masks.

We enhance our previous work in Halstead et al. (2018,
2020), where the quality (ripeness) was introduced as a parallel
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FIGURE 3 | An overview of the Mask-RCNN network with the parallel sub-class classification layer included to calculate the quality (ripeness) of sweet pepper in the

glasshouse or the species of crops/weeds in arable farmland.

classification layer, by extending it to an arable field setting.
Our work in Halstead et al. (2018) clearly describes the network
architecture and evaluates its performance. Figure 3 outlines the
proposed super-class (category) and sub-class (category) layout
for both the arable farmland and glasshouse. This fully connected
parallel layer is added after the final embedding layer of the
network. The super-class represents either plants (SB20) or fruit
(BUP20) and the sub-class represents the N finer-grained classes.
For SB20, N = 8 species of plants and for BUP20, N = 5
ripeness estimates (red, yellow, green, mixed-red, and mixed-
yellow). We use this approach as our previous work (Halstead
et al., 2018, 2020) demonstrated that introducing a single super-
class provided superior performance for the detection of sweet
pepper (compared to N super-classes). This was attributed to
the fact that all samples could be used in a single network
structure to derive a strong generalized super-class classifier to
detect the presence of sweet pepper (BUP20). The benefit of our
approach is that we maintain super-class generalizability while
also performing fine-grained classification in the sub-class. In this
article, we show that our network can also be derived for plants
(SB20).

We implement ourMask-RCNN style network (with sub-class
layer - see Figure 3) in PyTorch for 500 epochs and a learning rate
of 0.001 using the stochastic gradient descent (SGD) optimizer.
For BUP20, similar to Ahmadi et al. (2021b) we resize the images
to 704 × 416 and use the full resolution of SB20 (480 × 640).
A batch size of six is used during training and the validation
set is used to select the best model for evaluation; this means a
model can be selected earlier than the 500th epoch. These hyper-
parameters are identical for each dataset where the only variation
comes from the information and name of the super-class (plant
and sweet pepper) and the number of classes for cross entropy
loss in the sub-class layer (five for BUP20 and eight for SB20).

4.2. Estimating the Area
Section 4.1 outlined the instance segmentation component of this
technique. For intervention decision, the quality or species of the
object alone is not enough for truly informed decisions. Area
estimation of the object provides an extra layer of information
relevant to both weeding and harvesting. This allows for better
decision for crop, labor force, and business management (i.e.,
numerous full size ripe sweet pepper - harvest).

To calculate the object area (plant or sweet pepper), we exploit
the stereo vision ability of the sensors on both platforms. Once
object segmentation is obtained (section 4.1), we calculate the
area using the registered depth and camera focal length. The area
(A) of themth object is calculated such that,

Am =

N
∑

i

d2i
fx × fy

(5)

whereN is the total number of pixels in the segmented region (1D
vector) and the depth values (d - in meters) are taken from the
registered depth image. Finally, fx and fy are the two focal length
parameters of the camera, taken from the camera intrinsics.

This highlights the advantage of using an RGB-D sensor. By
exploiting this sensor framework, we are able to provide richer
information about the farm to the end user. No prior assumption
to determine the scene scale is required, like height in Lüling
et al. (2021), to directly extract depth (and consequently area)
information of crop surfaces, since the employed sensors provide
pixel-wise depth information.

4.3. Tracking-via-Segmentation
Tracking crop (objects) in a field is imperative if the aim is to
count the yield. This ensures that double-counting of the crop is
avoided. To achieve this, we propose a tracking-via-segmentation
approach based on Halstead et al. (2018) and Smitt et al. (2021).
Both approaches exploit the static nature of an agricultural scene
as a robot traverses a row where over a short timeframe scenes
remain relatively unchanged. Smitt et al. (2021) further expands
this by incorporating the wheel odometry and depth images
to reproject the masks of the objects at t into a subsequent
frame at t + N. Reprojection in conjunction with the instance
based segmentor creates a more robust matching framework
between frames.

An overview of our IoU based approach is outlined
in Algorithm 1. Initially, the algorithm requires three base
parameters: γ as the IoU matching threshold between tracklets
and new masks, α a parameter to allow missed detections, and
an empty tracklets list. The tracklets form the baseline of this
approach and are used to maintain the identity of an object
(crop/fruit) and aggregate the instance segmentations as the
robot traverses the scene. The algorithm starts by iterating over
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Algorithm 1 Tracking-via-segmentation algorithm.

γ , α, tracklets
for img ∈ images do

masks = 2(img)
m = masks ⊂ FOV
if tracklets == None then

tracklets← m
else

IoU ← 8(tracklets,m)
whilemax(IoU) > γ do

i← index(max(IoU))
tracklets[i](m[i])
IoU[i] = 0 ⊲ Ensures this set is not reused

end while

tracklets← Unused(m)
9(tracklets,α)

end if

end for

the sequence of images in an ordered manner. Our Mask-RCNN
network with sub-classes (2) is used on the image to extract the
mask and other relevant information (like sub-classes).

Mask-RCNN (2(.)) provides a set of masks which are then
processed. First, these masks are compared to a field of view
(FOV) operator to ensure the mask is fully visible within the
image (initialization and exit zones per, Halstead et al., 2018).
The masks from the current frame are compared to all existing
tracklets in a greedy manner, where the operator 8

(

tracklets,m
)

outputs a matrix of IoU values; when reprojection is used the
last mask in the tracklet is reprojected to the current frame. If
no tracklets exist, a new set is initialized based on the current set
of masks.

The IoUmatrix is used tomatch between the tracklets and new
regions in m. To assign tracklets to new segmented regions in
m we calculate the maximum IoU in the matrix, this generates
a tracklet and m matched pair. If this IoU value is above γ the
tracklet is updated with the assigned m information. To ensure
this pair is removed from further consideration their associated
IoU values are set to zero (below γ ). This matching process
continues until the maximum IoU value is below γ or all of
the tracklets are exhausted. The unused m detections are used
to create new tracklets while 9 is used to turn off any existing
tracklets that have not been updated for α frames.

The matching criteria in 8 is critical to the tracklet updating
based on the new information m. We investigate four criteria:
intersection-over-union (IoU) with and without reprojection and
a novel dynamic radius with and without reprojection. The two
primary approaches (IoU and dynamic radius) are described
individually and then the reprojection which is common to both,
when used, is outlined.

4.3.1. IoU Threshold
The IoU thresholding technique relies heavily on the pixel and
shape consistency between images. Halstead et al. (2018) used
this technique successfully for detection where they relied on
bounding boxes rather than segmented regions. This approach

was investigated in Smitt et al. (2021) for a segmentation
based approach, however, the unconstrained shape (compared
to bounding boxes) was limiting. The IoU criterion compares
all active tracklets at t − 1 to all new segmentation masks at t,
such that,

8(T, s) =
T

⋂

s

T
⋃

s
, (6)

where T indicates a tracklet and s is the segmented region from
Mask-RCNN. This criterion is then used to match tracklets to
segmented regions based on the lower bound threshold γ (i.e.,
low IoU values are not matched).

The primary issue with the IoU metric is that small shifts
can greatly impact this score. This is particularly pronounced
for small objects where, due to their size, small shifts can lead to
disproportionately large changes in the IoUmetric (see Figure 4).
For this reason we explore a novel approach which we call
dynamic radius.

4.3.2. Dynamic Radius
The dynamic radius (DR) aims to overcome the limitations of a
pixel-wise IoU approach. This is achieved by representing each
object as a center point with a radius that is proportional to its
size. Such an approach no longer relies on precise alignment
which is central to the IoU approach. A visual comparison
between DR and IoU is provided in Figure 4 with both small
(bottom row) and large (top row) objects; the smaller plant is
zoomed in further for visualization. The final two images of
Figure 4 show the matching potential of DR with a small shift
of five pixels in each direction. The IoU version (second from
the right) has minimal overlap in the smaller plant, while the DR
(right most image) still easily reconciles the new location within
the matching region. Furthermore, even in the larger example,
the unconstrained nature of the shapes makes it more difficult to
match based on the IoU criterion.

The DR approach consists of the following steps. The center
point is calculated directly as the center of mass (i.e., mean of x
samples and mean of y samples). Next, we calculate the DR as the
greatest distance based on the bounding box in either the x or y
direction (Figure 4 - the third set of images from the right). This
DR is then used to filter (i.e., cannot be matched) objects outside
of this radius value using a Euclidean distance. For the tracking
approach, the center of mass of a mask which is located closest to
the tracklet (and inside the DR) will be matched.

4.3.3. Reprojection
In both the IoU and DR metrics, there is a strong reliance on
limited spatial shifts between frames and this can be confounded
by several factors. For example, if the spatial shift is large enough,
then the objects will not be tracked or if there is misalignment
between the tracklets (between t − 1 and t), new objects can
be instantiated. To alleviate some of these issues, Smitt et al.
(2021) proposed to use reprojection so that the tracklets from
t − 1 would be better aligned to the new segmented instances at
t. This reprojection technique was able to increase tracking-via-
segmentation performance in sweet pepper scenes.

To reproject a segmented tracklet mask from the previous
frame i to the current frame j, the wheel odometry information
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FIGURE 4 | The dynamic radius calculation, far left is the original RGB image where we select two of the plants in the scene. Top row is a large crop example and the

bottom row is a small weed. From left to right (after the RGB) the segmentation map, finding the center of mass location, calculating the radius of the search, the IoU

after a small shift (5 pixels in each direction), and finally the centroid locations and the search radius. Bottom row has been scaled up in resolution to match the top

row and is in fact a significantly smaller plant.

is used. We calculate the camera homogeneous transform (Hij),
such that,

Hij = E−1WijE, (7)

where W and E represent the wheel odometry transform and
camera extrinsics to the odometry frame, respectively. Now pixel
coordinates m at frame i belonging to a detection mask Mi =

[mi1,mi2, . . . ,miN] can be reprojected to frame j with,

mjk = π(Hij(π
−1(mik, dmik

))), (8)

where k = [1, . . . ,N], π(.) is the camera projection function,
dm is each mask coordinate’s depth value, and H(.) applies a
homogeneous transform between frames.

The appearance of sweet pepper in distant rows is an
additional complicating factor in BUP20. Depth filtering was
found to help the tracking algorithm in Smitt et al. (2021).
This ensures that only objects in the current row are tracked,
regardless of the segmentation output. To do this, we count the
number of pixels in the segmentation mask that fall between a
lower depth threshold (τl) and an upper depth threshold (τh),
such that,

q =
1

P

P
∑

i

g(di)× 100, (9)

which returns q as a percentage of depth pixels within the range
τl and τh. In this case, P represents the total number of pixels in
the segmented region and d represents the registered depth values
associated with that region. The function g(.) returns a one if di
is within τl and τh else it returns zero. The value q can then be
compared to a static threshold indicating whether the region falls
within the filtered depth range.

5. EVALUATION AND DISCUSSION

Our platform agnostic agricultural monitoring approach is
deployed on two robots, PATHoBot and BonnBot-I, for
horticultural and arable farming systems, respectively. We
perform extensive evaluations for each component of our

proposed approach. First, we evaluate the performance of the
instance-based semantic segmentation algorithm. This includes
the performance of crop detection as well as instance-based
segmentation and sub-class classification accuracy. Second, the
performance of the tracking approaches with and without
reprojection are explored. We highlight the robustness of the
reprojection approach by analysis the impact of large skips
between subsequent frames. Third, a qualitative analysis of the
results for two considerably different crops (sweet pepper and SB)
is presented to highlight the potential of our approach.

5.1. Instance-Based Semantic
Segmentation
Instance based segmentation forms the backbone of our
proposed approach. We use Mask-RCNN and add a parallel
layer for sub-class classification. The parallel structure ensures
both general (super) and specific (sub) classification information
is learned. Halstead et al. (2018, 2020) showed that using this
parallel layer had considerable advantages when applied to sweet
pepper detection (super-class) and ripeness estimation (sub-
class). We demonstrate, for the first time, that this parallel layer
can also be applied to plants in the field to perform plant
detection (super-class) and species (sub-class) classification. Our
models are evaluated in three steps: first, how well we detect
objects in the scene; second, how well do we segment objects; and
third, how accurate is our sub-class layer.

5.1.1. Object Detection
Object detection is a common metric for evaluating localization
techniques. If the detected object overlaps sufficiently with its
ground truth position, then it is considered to be a true detection,
TP. The top row of Figure 5 (BUP20 left and SB20 right)
outlines detection performance at different IoU values across the
two datasets.

From this figure, it is evident that IoU values up to 0.4
perform well with noticeable degradation beyond. For system
performance, we evaluate at an IoU of 0.4 as this reflects high
performance and also ensures considerable overlap between the
ground truth and the prediction. For the SB20 dataset, we are able
to achieve a precision, recall, and F1-score of 0.865, 0.752, and
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FIGURE 5 | Evaluation results. Top row is the precision recall curves of the detection only system, left hand side is the BUP20 and right is SB20. Bottom row

outlines the sub-class confusion matrix results based on the extended Mask-RCNN network, left is the BUP20 dataset, and right is SB20.

0.804 for plant detection alone. The BUP20 accuracy is somewhat
less with scores of 0.783, 0.638, and 0.703 for precision, recall, and
F1-score respectively, although the F1-Score was commensurate
with Halstead et al. (2020) who achieved 0.762 on a similar
sweet pepper dataset. We attribute this performance difference
to the fact that BUP20 has high levels of occlusion and a more
complicated scene with crop present across multiple depths (both
near and far), as can be seen in the top row of Figure 2. By
comparison, SB20 has a relatively easy to detect background
with a simpler scene structure, as shown in the bottom row of
Figure 2. For both environments, the result of object detection
can be considered to be quite promising for extracting useful
in-field information.

5.1.2. Instance Segmentation
Instance segmentation relates not only if an object is detected
(found) but also if all of the pixels relating to that object are
found. For matching a ground truth and segment pair, similar

to Halstead et al. (2018, 2020), we use an IoU threshold of
0.4. This threshold also outlined the best trade-off between
overlap and accuracy from Figure 5. Once a ground truth and
detection pair are matched using this threshold, we use the
segmented pixel-wise IoU to determine performance. We report
three metrics: background IoU (BG IoU), foreground IoU (FG
IoU), and the average of the two µIoU. The BG IoU is the pixel-
wise comparison between the ground truth background and the
predicted background. Similarly, the FG IoU describes the super-
class segmentation accuracy (ground truth to prediction). This
pixel-wise comparison provides a more complete evaluation of
the systems, performance by directly comparing the output from
Mask-RCNN with the ground truth masks. The segmentation
results are displayed in Table 4.

The parallel layer based Mask-RCNN approach achieves
interesting instance based segmentation performance. From
Table 4, for SB20, we achieve a foreground IoU (FG IoU)
performance of 0.498 and 0.433 for BUP20. This outlines the
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TABLE 4 | Instance and semantic segmentation results for the two datasets.

Dataset BG IoU FG IoU µIoU

Instance segmentation

SB20 0.999 0.498 0.748

BUP20 0.999 0.433 0.716

Semantic segmentation

SB20 0.977 0.726 0.851

BUP20 0.986 0.718 0.852

For comparison, the background IoU (BG IoU), foreground IoU (FG IoU), and the average

IoU (µIoU) are displayed.

impact that false and missed detections have on instance based
performance. If we neglect these two properties (false and missed
detections), we achieve FG IoU values of 0.765 for SB20 and
0.754 for BUP20. This indicates, on a pixel-wise level, that when
we accurately predict a region our segmentation performance is
high. However, the presence of both missed and false detections
deteriorates the performance considerably.

To further illustrate this, we consider the two class semantic
segmentation problem using the same network output (i.e., plant
vs. background or sweet pepper vs. background). To achieve
semantic evaluation, we create a single binary ground truth
map where any pixel assigned to an object is scored as the
positive class. Similarly, for the prediction, we use the calculated
instances and assign positive pixels to the semantic prediction
mask. This creates two binary masks, one based on the ground
truth instances and one based on the predicted instances.

This result is shown in Table 4 where the µIoU is above
0.85 for both SB20 and BUP20. Furthermore, for semantic
segmentation, the FG IoU performance is high and in fact, is
similar to the instance-based segmentation results when missed
and false detections are removed. This indicates two things. First,
that the lower performance of the instance-based segmentation
is due to errors from the detection module. Second, because the
instance-based metric is an average of IoUs from instances (even
false ones), this can give the impression that the quality of the
pixel-wise segmentation is low. Therefore, this further analysis
shows that even though the detection module can introduce
errors the overall quality of the pixel-wise segmentation is high.

5.1.3. Sub-class Accuracy
In our previous work (Halstead et al., 2018, 2020), we exploited
the super-class and sub-class properties of sweet pepper.
Generally, sweet pepper share similar features in terms of shape
and reflection with only color differences. For the first time, we
extend this to arable farmland to investigate its performance
for classifying specific species of crop and weed (plants). This
is a considerably more difficult problem as these species have
different growth properties, including unconstrained shapes. In
these confusion matrices, we only compare IoU (i.e., above
0.4) matches between the ground truth and predictions which
removes the impact of false positives (FP) and missed detections
(FN). While both FP and FN play an important role in the

overall accuracy of the system, the previous sections outline the
limitations of the detection routine. The metric displayed in
Figure 5 (bottom row) outlines our sub-class performance when
we accurately detect an object.

Figure 5 (bottom right) outlines the sub-class performance
for plant species classification using a confusion matrix. Overall,
we achieve a confusion matrix average accuracy of 0.619.
Chenopodiastrum hybridum (Cy) and Anthemis arvensis (An) are
the worst performing species with accuracies of 0.256 and 0.333,
respectively. Overall, we can attribute this low accuracy to the
lack of samples both in the training (8 and 10) and evaluation
(47 and 3) sets. By contrast, the species with a higher number
of training samples achieve higher accuracy. For instance, SB
and Persicaria lapathifolia (Pe) which have 388 and 313 training
samples achieve accuracies of 0.930 and 0.964, respectively. The
high accuracy for SB is of particular importance as both crop
monitoring and precision weeding are primarily concerned with
identfying the crop (in this case SB) and thus misclassifying
weeds is less detrimental.

For the under represented sub-classes, data collection and
annotation was a considerable bottleneck. To create a more even
distribution, the weeds need to be present in the field, and this
was not the case for the SB20 dataset. To alleviate the impact
on a trained model, two key possibilities exist that could be
explored in the future. First, data augmentation has been shown
to improve networks while maintaining a small sample size by
reproducing the same images with small augmentations. This
approach could be considered in the future, however, it does
not solve the skewed distribution of the dataset. Second, the
data can be balanced through a weighting scheme at the sub-
class classification layer. Weighting can create a more robust
classification by focusing on accuracy for under represented
classes creating a more even distribution.

For the BUP20 results, we refer to the confusion matrix on the
left hand side of Figure 5 (bottom row). In this setting, we achieve
an average accuracy of 0.772, which is considerably higher than
SB20. We attribute this to the fact that color is a dominant factor
and also to the fact that for SB20, there are two classes with a
low number of samples. However, we do note that color is also
a cause for confusability for BUP20. In particular, the mixed-red
and mixed-yellow classes are often confused with full red and full
yellow sweet pepper, respectively.

In summary, both SB20 and BUP20 were able to achieve
promising performance for super-class and sub-class
classification. This includes the novel environment of arable
farmlands where species have significantly different visual
properties. Overall, the pixel-wise object location along with the
species (arable farmland) or ripeness (glasshouse) estimation is
able to provide important additional phenotypic information to
the farmer.

5.2. Tracking
Based on section 4.3, this section evaluates the performance of
the tracker on both the BUP20 and in a novel environment SB20.
From our previous work (Halstead et al., 2018; Smitt et al., 2021),
we define the following hyper-parameters for the tracker. The
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TABLE 5 | BUP20 tracking results using the four criteria at three different depth

filtering values, 1.0 m, 1.4 m, and no filtering.

Approach Depth 1.0 Depth 1.4 No filtering

R2
µNAE R2

µNAE R2
µNAE

IoU 0.886 0.125 0.636 0.186 0.035 1.371

IoU Reproj 0.881 0.045 0.607 0.335 0.005 1.252

DR 0.897 0.039 0.673 0.294 0.015 1.743

DR Reproj 0.901 0.047 0.603 0.375 0.001 1.392

Results display the R2 value and the mean normalized absolute error (µNAE).

keep running parameter which allows the tracklet to miss frames
are set to 5. A minimum of 10 segmentation matches is required
for a tracklet to be considered a valid track. For the IoU based
criterion, we use a minimum threshold of 0.1 for reconciling
tracklets to new regions. We also empirically evaluated values of
0.5, 0.75, and 1.0 for weighting the DR and found that a value of
1.0 was optimal.

5.2.1. Sweet Pepper Tracking Evaluation
Table 5 outlines our BUP20 performance where we use theµNAE
metric described in section 3.3. This evaluation is performed over
three maximum depth filtering values τh = [1.0, 1.4,None], and
the minimum depth value τl is constant at 0.4 m. The value of 1.0
was selected as it approximated the distance from the heating rails
to the sensors and 1.4 and None as a direct comparison to Smitt
et al. (2021). For filtering out objects based on the depth we set
a threshold such that q > 50, ensuring that at least 50% of the
pixels appear in the depth range.

These results reflect the annotation directive to not count
objects appearing beyond the heat rails. From this, depth filtering
plays a crucial role in obtaining accurate yield estimations. At a
depth of 1.0, our best approach scored 0.039 compared to 1.252
for no depth filtering. While the no depth filtering score appears
to indicate poor performance it more reflects the ability of Mask-
RCNN to accurately reconcile small objects (such as those past
the heat rails). From a segmentation perspective, the changes
in illumination due to the position of the sun and platform
had a minor impact, particularly in row six where the greatest
illumination variation existed.

Overall, from Table 5, a depth filtering value of 1.0 achieved
the best results, where even the worst performing approach
(IoU only) scored 0.125. Interestingly at a depth of 1.0 m, the
technique both under and over estimated the total yield across
the four techniques, somewhat explaining the slightly low R2

values. While the DR approach scored similarly with and without
reprojection its impact with IoU is clear improving the µNAE
score from 0.125 to 0.045. For DR, we attribute the reduced
performance with reprojection to the limitations of the spatial
criterion, it can match 360 degrees around the center mass.

5.2.2. SB Tracking Evaluation
A benefit of the SB20 dataset is that the objects only appear on
the ground plane, and there is little impact from the weather

TABLE 6 | SB tracking results using the four different criteria.

Approach R2
µNAE

IoU 0.937 0.396

IoU Reproj 0.947 0.274

DR 0.957 0.214

DR Reproj 0.970 0.137

Results display the R2 value and the mean normalized absolute error (µNAE).

TABLE 7 | The impact of skipping five frames on the four different criteria in the

BUP20 and SB20 datasets.

BUP20 SB20

Approach R2
µNAE R2

µNAE

IoU 0.221 0.731 0.950 0.633

IoU Reproj 0.823 0.076 0.870 0.499

DR 0.977 0.327 0.857 0.366

DR Reproj 0.776 0.066 0.960 0.329

(both sun and wind). This enables a single tracking evaluation
without depth filtering requirements, the results are displayed in
Table 6. The high R2 values (all greater than 0.93) consistently
explain the differences between our predictions and the ground
truth using a linear model. Contrasting with BUP20, the SB20
yield consistently under counted, which could explain the higher
R2 values. To better understand the performance of the different
tracking criteria, we once again use the µNAE score.

Based on the µNAE score, it can be seen that incorporating
reprojection considerably improves performance. Incorporating
reprojection into the IoU and DR criteria improves their absolute
µNAE score by 0.122 and 0.077, respectively. This is a relative
improvement in estimating the number of plants present of 30.8
and 36.0% for IoU and DR, respectively. Also, in all cases, the
DR approach outperforms the IoU approach (with or without
reprojection). DR with reproejection achieves a score of 0.137,
which is an improvement of 50% over IoU with reprojection.

5.2.3. Tracking Over Large Skips
In the previous tracking evaluations, it was assumed that the
frame rate was consistent. To fully analyze the reprojection
performance, we evaluate the system performance when
there is a skip of five frames between segmentation. This
five frame skip explores the robustness of the approaches to
inconsistencies such as faster or slower moving vehicles. In
these experiments, we reduce the minimum tracks parameter
to three due to the shorter amount of time objects remain in
the scene. Table 7 clearly outlines the benefits of reprojection
when the frame jump is large or inconsistent. The R2 value
for the DR is high and misleading for two reasons, first it
counts significantly less sweet pepper than actually exists.
Second, due to the frame skip, tracklets reconcile with new
objects passing through their stored region. For BUP20,
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FIGURE 6 | An example image from the area estimation analysis, from right to left, the original RGB image, depth for visualization, manual segmentation, and a visual

approximation of the manual measuring points.

the µNAE value for IoU and DR both with reprojection
scored 7.6 and 6.6%, respectively. This is considerable
when contrasted to the standard IoU which has the worst
performance at 73.1%. Overall, the ability to reconcile tracks
over larger spatial distances, allowing for frame drops or
faster vehicle motion, is a key benefit in using the reprojection
based techniques.

5.2.4. Current Limitations
Despite the impressive and robust performance that we have
presented, there is a limitation with the proposed approach. The
main limitation is the low performance with sub-class counting
accuracy. For sugar beet, when we compare the total yield
(or super-class) to species specific (sub-class) performance for
DR reprojected, the µNAE is degrades to 0.440 (from 0.137).
Similarly for sweet pepper, for the best performing systems, the
µNAE for the sub-classes degrades from 0.039 to 0.35. This
indicates that while we are able to achieve accurate localization,
our fine-grained species classification, while promising, still
requires improvement.

5.3. Qualitative Analysis
In parallel with our quantitative evaluations, we also perform
two qualitative analyses. First, we evaluate the accuracy of our
area estimation component. Second, we analyze the impact our
monitoring technique could have on informed decision making.

5.3.1. Area Estimation
For a qualitative analysis of the area estimation, we coarsely
measured then recorded ten sweet pepper on PATHoBot. Both
the depth and RGB images were captured, and sweet pepper were
manually segmented in the image. An example of these images
with their annotations can be seen in Figure 6.

The coarse ground truth was measured with vernier calipers
at the approximate positions shown in Figure 6. First, the
maximum height (h) and width (wmax) were measured, then, a
value near the bottom of the sweet pepper (wmin) that created a
trapezoid shape were also measured. Using these distances, we

TABLE 8 | Qualitative analysis of the area estimation of manually segmented

sweet pepper.

Sweet pepper recA trpA Visual

0 76.8 47.2 66.4

1 75.4 44.3 70.5

2 85.5 58.2 66.6

3 81.2 47.0 72.0

4 80.2 48.6 76.3

5 81.9 55.8 71.3

6 81.9 53.4 72.0

7 86.7 56.1 71.5

8 90.2 65.3 76.1

9 84.6 57.9 76.6

The visually calculated sweet pepper area should fall between the coarsely calculated

upper bound (recA ) and lower bound (trpA). All values are in cm
2.

create two area values for each sweet pepper, an upper bound of
the sweet pepper area,

recA = h× wmax (10)

and a lower area bound measured such that,

trpA = recA−h× (wmax − wmin) (11)

which creates the trapezoid shape. We assert that this is the
lower bound of the object area as it does not include volumetric
information about the object nor the rounded shape.

It can be seen from our results in Table 8 that our vision
system consistently falls within the upper and lower bounds
of the ground truth. This indicates that our vision only area
estimation component is able to accurately define the seen area
of the sweet pepper.

5.3.2. Monitoring Algorithm
The individual components of our approach perform well
on two different robots, one in arable farmland and the
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other in a glasshouse. The final qualitative analysis fuses
these components into a single monitoring algorithm in both
environments. We evaluate two rows from each environment
with data captured a week apart, in between the captures,
various crop management tasks were manually performed
which augmented results. In all experiments, we used the
DR with reprojection for tracking as it performed the best
for SB20 and had a similar performance with the best
in BUP20.

From the BUP20 dataset, captured on PATHoBot, we
investigate two captures of rows four and five. We review this
for both the sub-class yield and the area estimation. During this
time periods some pruning and minor harvesting was completed
by the staff.

Overall, harvestable yield counts went from 33 to 39 for row
four and 24 to 38 for row five. Similarly, green sweet pepper
broke to the mixed color with 243 to 236 (row four) and 184 to
151 (row five) resulting green peppers between the monitoring
days. Interestingly, for green sweet pepper, for row four, the
area increases from in 38.1 to 44 cm2, while row five stayed
somewhat consistent 38.1 cm2 then 37.7 cm2. We attribute this to
the almost ripe sweet pepper breaking color to mixed red/yellow
and juvenile sweet pepper growing. This monitoring technique
also provides marketing information; for row four, a total of
289 sweet pepper existed to potentially sell, compared to 220 for
row five.

For the SB20 analysis, we choose data that was in the
lowest controlled herbicide group (0–30%). This limited the
intervention on the weeds ensuring they grew in size and
amount. Overall, the average weed area grew for both row
one and row eleven: 76 to 101 cm2, and 98.3 to 138
cm2. While there was not an increase in weed count for
row one, row eleven increased from 292 to 351. Both of
these values indicate the potential impact on crop growth
as the weeds are growing which creates competition for
soil nutrients.

The impact of the weed growth, and the nature of the
DR criterion, is outlined in the row, one crop yield estimate
which reduces from 111 to 99. Figure 7 outlines two of the
reasons for this drop in yield based on the DR criterion. The
green bounding box indicates a missed detection when tracking,
irrespective of Mask-RCNN accurately segmenting it. This is
primarily due to the large objects surrounding it confusing the
DR. Similarly, the red dashed lines outline a key limitation of
DR, which matches based on the smallest Euclidean distance
within the radius, regardless of the previous trajectory of the
tracklet or the robot (i.e., it can match 360 degrees). While
DR is generally a more accurate matching criterion, there are
issues associated with the methodology, and future work can
alleviate these.

Overall, this platform and environment agnostic monitoring
algorithm provided important information to farmers to inform
decisions. This approach also included marketing information
about the crop or fruit yields and the impact of weeding
paradigms on the crop in arable farmland.

FIGURE 7 | Examples of where the dynamic radius criterion fails. The green

box indicates a completely missed SB plant, and the red dashed lines show

how the criterion can change directions rapidly regardless of the direction of

travel.

6. CONCLUSION

In this article, we show that robotic monitoring algorithms can
be designed to be platform and environment agnostic. We show
that this deep learning approach, once data is provided, can be
accurately segmented in either an arable farm or horticultural
setting. Using the segmented output, we are also able to
calculate phenotypic information in the form of plant size. This
is a first step toward providing a summary of the state of
the field.

Our crop agnostic monitoring algorithm extends a
parallel classification structure in Mask-RCNN. This
parallel structure was previously applied to sweet pepper
in a glasshouse for crop detection (super-class) and
ripeness estimation (sub-class). We show for the first
time, that this parallel structure can be used to perform
plant detection (super-class) and species-level classification
(sub-class). This demonstrates the generalizability of
our approach.

To accurately provide information to the farmer, we
evaluated varying matching criteria for a tracking-via-
segmentation approach. The key benefit of our novel dynamic
radius with reprojection approach was its ability to match
unstructured shapes more accurately than a pixel-matching
based approach. While similar performance was achieved
for sweet pepper, the strength of this spatial matching
approach was seen in an arable farmland where the scenes
were cluttered and the growth of objects unconstrained;
we achieved a performance boost of 50% over the pixel
dependent approach. This agnostic monitoring algorithm
leveraged computer vision, deep learning, and robotics to
reduce physical monitoring of fields by farmers. The fusion
of these techniques provided raw information, such as the
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impact of weeding paradigms, to support intervention and
management decisions.
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