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Herbarium sheets present a unique view of the world’s botanical history, evolution,

and biodiversity. This makes them an all–important data source for botanical research.

With the increased digitization of herbaria worldwide and advances in the domain of

fine–grained visual classification which can facilitate automatic identification of herbarium

specimen images, there are many opportunities for supporting and expanding research

in this field. However, existing datasets are either too small, or not diverse enough, in

terms of represented taxa, geographic distribution, and imaging protocols. Furthermore,

aggregating datasets is difficult as taxa are recognized under a multitude of names

and must be aligned to a common reference. We introduce the Herbarium 2021

Half–Earth dataset: the largest and most diverse dataset of herbarium specimen images,

to date, for automatic taxon recognition. We also present the results of the Herbarium

2021 Half–Earth challenge, a competition that was part of the Eighth Workshop on

Fine-Grained Visual Categorization (FGVC8) and hosted by Kaggle to encourage the

development of models to automatically identify taxa from herbarium sheet images.

Keywords: herbarium specimen image, fine-grained visual categorization, machine learning competition,

hierarchical classification, datasets

1. INTRODUCTION

Herbaria, like other natural history collections, are immense primary data repositories
documenting biodiversity across space and time over the last 500 years (Stefanaki et al., 2019).
Each specimen contains a wealth of information including geographic occurrence data, phenotype,
genotype, phenological status, and biotic interactions (Funk, 2003; Heberling and Burke, 2019).
Collectively herbarium specimens are analyzed for studies in taxonomy, systematics, floristics,
ecology, phenology, conservation, and global environmental change (Funk, 2003; Calinger et al.,
2013; Willis et al., 2017; Lang et al., 2019; Albani Rocchetti et al., 2021).
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Worldwide efforts to digitize and electronically mobilize
biodiversity data for the estimated 396 million herbarium
specimens, housed in 3,400 herbaria (Thiers, 2021), have greatly
amplified their use in research (Heberling et al., 2019; Nelson
and Ellis, 2019), including projects to understand, predict,
and ameliorate increasing environmental threats to biodiversity
(Intergovernmental Science–Policy Platform on Biodiversity and
Ecosystem Services, 2019; Lang et al., 2019). Plants are essential to
life on Earth, yet an estimated 37–44% of all vascular plant species
are threatened with extinction (Nic Lughadha et al., 2020),
underscoring the urgency to identify and classify the estimated
70,000 flowering plant species not yet described (Bebber et al.,
2010; Joppa et al., 2011). Half of these new species are predicted
to be already preserved in herbaria, awaiting an average of
35 years for detection and description from the date of first
specimen collection (Bebber et al., 2010). Contributing to this
delay is the dwindling number of taxonomists with broad plant
identification skills to recognize new species, who are under ever
increasing demands on their time and expertise (Secretariat of the
Convention on Biological Diversity, 2007).

Recent advances in machine learning and computer vision as
well as increased biodiversity data mobilization through global
data aggregators, such as the Global Biodiversity Information
Facility (GBIF), enable the development of models to address
a variety of plant–science–related questions and potentially
overcome such “taxonomic impediments” (Secretariat of the
Convention on Biological Diversity, 2007; Heberling et al.,
2021). For example, the automatic identification of specimens
has shown particularly promising results from learning–based
approaches (review by Wäldchen and Mäder, 2018). Many
studies have focused on small sets of closely–related plant taxa
(Clark et al., 2012; Nasir et al., 2014; Unger et al., 2016; Kho et al.,
2017; Schuettpelz et al., 2017; Pryer et al., 2020) whereas others
tackle the more challenging problem of automatic identification
of a large number of taxa (Carranza-Rojas et al., 2017; Younis
et al., 2018; Little et al., 2020). Many automatic identification
studies focus on recognition from leaves alone (Wijesingha and
Marikar, 2012; Nasir et al., 2014; Unger et al., 2016; Wilf et al.,
2016; Kho et al., 2017). Similar techniques have also been used
for phenological studies and trait recognition (Clark et al., 2012;
Ubbens and Stavness, 2017; Younis et al., 2018; Lorieul et al.,
2019; Brenskelle et al., 2020; Davis et al., 2020; Goëau et al., 2020;
Pearson et al., 2020; Pryer et al., 2020).

Citizen science initiatives, such as iNaturalist (Horn et al.,
2018), Pl@ntNet (Joly et al., 2016), and ObsIdentify (Hogeweg
et al., 2019), have popularized species recognition as a challenging
real–world classification task among the computer vision
community. They are particularly popular because of the size as
well as the imbalanced and fine–grained nature of their respective
datasets. Through a series of online algorithm competitions (e.g.,
Horn et al., 2018; Little et al., 2020), automated identification
techniques have become increasingly accurate.

Existing digitized herbarium specimen datasets designed for
computer vision approaches present some limitations: they are
either small, targeted at specific taxa, representative of only a
small geographic region, or contain images produced using only
one imaging protocol (generally institution specific; Table 1). In

this paper we introduce the Herbarium 2021 Half–Earth dataset,
which aims to address the limitations aforementioned and is the
largest and most diverse dataset of herbarium specimen images
for automatic taxon recognition to date. We also present the
results from the challenge of the same name: the Herbarium 2021
Half–Earth challenge, a competition that was organized as part of
the 8th workshop for Fine–Grained Visual Categorization at the
Computer Vision and Pattern Recognition conference (CVPR)
in 2021. The competition was hosted on Kaggle1 and took place
between March 10th and May 27th 2021.

The goal of the competition was to encourage the
development of models to automatically identify a very
large number of taxa from herbarium sheet images, and evaluate
which deep learning approaches have the best performance in
this setting. This is the third iteration of the Herbarium challenge:
the Herbarium 2019 challenge (Tan et al., 2019; Little et al., 2020)
focused on the flowering plant family Melastomataceae and
contained 46,469 digitally imaged herbarium specimens
representing 683 species. The Melastomataceae is a large family
with 166 recognized genera and 5,892 species (Freiberg et al.,
2020). The Herbarium 2020 dataset contained 1,169,039 images
representing 32,094 plant species. This challenge focused on
vascular land plants of the Americas. Compared to the previous
datasets the 2021 Half–Earth dataset is larger in terms of both
number of taxa, and number of images, with 2,500,779 images
and 64,500 taxa. After introducing the dataset and presenting
the results of the competition, we discuss possible outlooks in
order to leverage the full potential of deep learning models and
herbarium data.

2. METHODS

2.1. The Herbarium 2021 Half–Earth
Dataset
The Herbarium 2021 Half–Earth dataset2 includes more than 2.5
million images of vascular plant specimens (including lycophytes,
ferns, gymnosperms, and flowering plants) representing 64,500
taxa from the Americas, Oceania, and Pacific3. The images
are provided by the New York Botanical Garden (NY),
Bishop Museum (BPBM), Naturalis Biodiversity Center (NL),
Queensland Herbarium (BRI), and Auckland War Memorial

1https://www.kaggle.com
2https://github.com/visipedia/herbarium_comp
3Images of specimens from American Samoa, Anguilla, Antigua and Barbuda,

Argentina, Aruba, Australia, Bahamas, Barbados, Belize, Bermuda, Bolivia,

Brazil, Canada, Cayman Islands, Chile, Colombia, Cook Islands, Costa Rica,

Cuba, Curaçao, Dominica, Dominican Republic, Ecuador, El Salvador, Falkland

Islands, Fiji, French Guiana, French Polynesia, Greenland, Grenada, Guadeloupe,

Guatemala, Guyana, Haiti, Honduras, Indonesia (island of New Guinea only),

Jamaica, Kiribati, Marshall Islands, Martinique, Mexico, Micronesia, Montserrat,

Nauru, New Caledonia, New Zealand, Nicaragua, Niue, Norfolk Island, Northern

Mariana Islands, Palau, Panama, Papua New Guinea, Paraguay, Peru, Philippines,

Pitcairn, Puerto Rico, Saint Barthélemy, Saint Kitts and Nevis, Saint Lucia, Saint

Martin, Saint Pierre and Miquelon, Saint Vincent and the Grenadines, Samoa,

Solomon Islands, Suriname, Tokelau, Tonga, Trinidad and Tobago, Turks and

Caicos Islands, Tuvalu, United States Minor Outlying Islands, United States of

America, Uruguay, Vanuatu, Venezuela, Virgin Islands (both British and US), and

Wallis and Futuna were included in the dataset.
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TABLE 1 | Summary of existing herbarium sheet image datasets.

Dataset Images Taxa Vascular plant representation (%) Institutions Geographic range

Dillen et al., 2019 1,900 1,580 0.34 9 Global

Lorieul et al., 2019 163,233 7,782 1.66 1 Americas

Herbarium 255 (Carranza-Rojas et al., 2017) 11,071 255 0.05 1 Costa Rica

Herbarium 1K (Carranza-Rojas et al., 2017) 253,733 1,204 0.26 1 France

Herbarium 2019 (Tan et al., 2019) 46,000 680 0.15 1 Americas

Herbarium 2020 1,169,039 32,094 6.85 1 Americas

Herbarium 2021 2,500,779 64,500 13.76 5 Americas, Oceania, and Pacific

The percent of vascular plant taxa represented is based on the 468,759 LCVP (Freiberg et al., 2020) “accepted” and “unresolved” taxa. Because different taxonomies were used as

standards for the various datasets, the reported percentage can only be considered an approximation. Note that the Herbarium 2019 dataset focuses on the flowering plant family

Melastomataceae, while the other datasets include representatives across vascular plants.

FIGURE 1 | Distribution of training images per taxon. The Herbarium 2021 Half–Earth dataset is highly imbalanced. Featured taxa are from top to bottom: Ericameria

nauseosa (Pall. ex Pursh) G.L. Nesom & G.I. Baird (Asteraceae), Bidens sulphurea (Cav.) Sch. Bip. (Asteraceae), and Solanum rixosum A.R. Bean (Solanaceae). Taxon

names are usually followed by name of person(s) first formally describing the taxon in the scientific literature. Here, higher level hierarchy of each taxon is followed by

family name in parentheses.

Museum (AK). The most exact labels are, in many cases,
infraspecific (subspecies, varieties, forms, etc.) or nothospecies
(hybrids), neither of which can be characterized as “species”,
thus the terms “taxon” and “taxa” are used as generic descriptors
of taxonomic labels. In addition to labels for species–level and
below, labels at higher levels in the taxonomic hierarchy are also
included: family and order. This allows for experimentation with
methods that address label hierarchy and label similarity. These
labels may also be supplemented by more fine–grained estimates
of difference among taxa available from other sources (e.g., Jin
andQian, 2019). The dataset is characterized by a skewed long tail
distribution (Figure 1). Whereas some taxa can be represented
by more than 1,000 images, other taxa have only three images.

This dataset includes only images of vascular plants—the group
of plants that includes lycophytes, ferns, gymnosperms, and
flowering plants (Figure 2).

2.1.1. Dataset Challenges
The Herbarium 2021 Half–Earth dataset is challenging for
multiple reasons. First, of course, the large imbalance (Figure 1):
the imbalance factor (ratio of the number of images for the
most represented class to the number of images for the least
represented class) for the dataset is 1,654.5. Second, the variation
within species is high: herbarium specimens capture plants at
different growth–stages (e.g., juvenile vs. adult) , with different
sets of plant parts (e.g., leaves and flowers vs. leaves and
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FIGURE 2 | Example of images in the Herbarium 2021 Half–Earth dataset.

fruit; Figure 3) or simply different individuals can present
different visual appearances. In addition, the techniques used
to press, dry, and mount specimens vary among collectors
and collecting expeditions—these differences can change the
appearance of specimens dramatically (e.g., collecting in alcohol
often causes leaves to turn black). Arbitrary aesthetic decisions
made while processing specimens can result in specimens that
differ dramatically in appearance even though they are simply
different parts of the same individual plant (Figure 4). In a
herbarium collection, every attempt to conserve dried specimens
is made, but in practice older specimens become more fragile
and suffer damage as they age leading to some specimens being
less complete and more damaged than others. Third, the visual
similarity among species can be high (Figure 5). Finally, the
diagnostic morphological features that botanists use to identify
species are often very small and thus require a model that is
able to handle high–resolution images and can focus on specific
details (Cope et al., 2012; Wäldchen and Mäder, 2018).

2.1.2. Data Preprocessing
In this section, we give an overview of how the Herbarium
2021 Half–Earth dataset was preprocessed. Figure 6 presents
some example herbarium sheet images before and after the
preprocessing steps.

2.1.2.1. Label Alignment
Herbarium specimens of the same taxon may have been labeled
in various ways due to differences in the interpretation of taxon

circumscriptions, nomenclature changes, and/or errors. For
example, over time Pilosella piloselloides (Vill.) Soják (Asteraceae)
has been known by at least 526 different names (Freiberg
et al., 2020). To ameliorate this situation as much as possible,
image labels are standardized to the Leipzig Catalogue of
Vascular Plants (LCVP v1.0.2; Freiberg et al., 2020). Labels
in the dataset have an LCVP status of either “accepted” or
“unresolved”. The data exported from the institutional databases
were first processed to find labels that exactly matched LCVP. For
labels that did not precisely match, we then searched for long
unambiguous partial matches to LCVP: the label was shortened
by removing the rightmost word and then searched for a match
that produced only one LCVP output taxon; if no match was
found, this was repeated until the label contained only two
words. Labels that still did not unambiguously match LCVP,
were matched using tre-agrep (Wu and Manber, 1992) allowing
an increasing amount of mismatch (10–30% of label length;
all weights were set to 1). Matches returned by tre-agrep were
manually reviewed (8,430 labels passed manual review). Images
with labels that could not be coerced into matching LCVP were
excluded from the dataset (c. 73 thousand images).

2.1.2.2. Image Blurring
Herbarium specimens always have a hand–written or printed
label on the sheet (usually lower right–hand corner), which
includes information about the name of the taxon, the geographic
location where it was collected, the date of collection, and
the person or team of people who collected it. In addition,
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FIGURE 3 | Example of visually different images corresponding to the same species: Abarema brachystachya (DC.) Barneby and J. W. Grimes (Fabaceae). The

observed differences are primarily due to different reproductive stages: early flowering, late flowering, and fruit.

FIGURE 4 | Different specimens of Arbutus xalapensis Kunth (Ericaceae) made from the same individual plant at the same time by the same collector using the same

pressing, drying, and mounting protocol.

FIGURE 5 | Example of visually similar images from different Alyssum species (Brassicaceae): A. alyssoides (L.) L., A. desertorum Stapf, A. simplex Rudolphi,

A. szovitsianum Fisch. and C. A. Mey.
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FIGURE 6 | Example of images before (left) and after (right) preprocessing.
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annotation labels are often added to the specimen to correct or
update information on the original label—these are sequentially
added in the empty space above the original label. Specimens
often also have institutional labels or stamps indicating the
herbarium in which the specimen is archived and a barcode
label corresponding to an institutional database entry. Specimens
may also include field tags with identification numbers attached
directly to the plant. Images usually include color and
measurement scales as well as institutional logos. All of these
labels can of course, help identify the specimen, thus this
information in the dataset was blurred in order to force models
to learn about the plants themselves rather than the label text.
A pretrained EAST text detection model (Zhou et al., 2017) was
used to detect these labels. This model outputs bounding boxes
around the detected text. The bounding boxes that overlapped
by a sufficient margin were merged and those that were too
small were filtered out. The resulting regions were then heavily
blurred. First, a mean blur was applied, then a single Gaussian
blur with added noise, and then a smooth alphamap to blend into
the original (Figure 6). Finally, images where more than 25% of
the image was blurred were excluded from the dataset, as those
represent, in most cases, wrong predictions from EAST. The text
detection model was deliberately tuned to have a high specificity,
in order to avoid unnecessarily blurring plant parts. Even though,
this means that there are images where part of the labels are
missed by the blurring algorithm.

2.1.2.3. Image Resizing
Herbarium sheets are digitized as very high–resolution images to
preserve as much of the detail as possible. A common image size
is around 6000×4000 pixels. This is very large even for networks
that are designed to work with higher resolutions. All images
in the dataset are resized to a dimension of 1,000 pixels (while
preserving the aspect ratio), in order to make the overall size of
the dataset more accessible.

2.1.2.4. Dataset Split
Herbarium 2021 contains images from 64,500 taxa at the species–
level or below with 2,257,759 in the training set and 243,020 in
the test set. The data has been split to obtain an approximately
even number of images across taxa in the test set by capping
the maximum number of images per taxon at 10. For taxa that
have few images a 80%/20% split for training/test is used—each
category has a minimum of three images: at least one in the test
set and two in the training set.

2.1.2.5. Hierarchical Labels
In addition to the name of the taxon, labels for the family and
order are provided. The herbarium sheet images provided in this
dataset represent 64,500 different taxa, belonging to 451 families
and 81 orders. This enables the development of methods that
utilize hierarchical information. Ideally, mistakes between closely
related taxa should not be treated equal to mistakes between very
distant taxa. See Section 2.2 for an example of a loss function that
leverages hierarchical labels.

2.2. Baselines
In order to have a reference value for the dataset performance,
a standard ResNet-50 (He et al., 2016) was trained as a baseline
method. A balanced sampling strategy was used to mitigate
the impact of the imbalance on the classifier. The images were
resized to 256×256 pixels and standard data augmentations were
applied (small rotations, horizontal flips, color–jitter, and center–
crop to 224×224 pixels). The model was initialized with weights
pretrained on ImageNet (Deng et al., 2009). Finally , the model
was trained using the standard cross–entropy loss, a batch size of
32, a stochastic gradient descent with a learning rate of 1× 10−3

which is further reduced when a plateau was reached and a
momentum factor of 0.9. The model was trained for a total of
10 epochs (with 70,555 batches per epoch).

To integrate hierarchical labels, the marginalization loss
function proposed in Kumar and Zheng (2017) was adopted. The
basic idea behind the marginalization loss is to simultaneously
apply a classification loss at all the levels of the hierarchy. In order
to compute the marginalization loss the label and the predicted
distribution at each level of the hierarchy are needed: the label
can simply be obtained by looking up the family and order; the
predicted distribution for the family (or order) can be estimated
from the sum of scores for all the taxa in each family (or order)
in what resembles a marginalization procedure. Note that if the
network predicts a distribution over the taxa, the marginalization
over family and order also leads to a valid categorical distribution.
A cross–entropy loss at the taxa level as well as the family
and order level of hierarchy can be applied—this should ideally
improve the regularization power of the network.

2.3. Evaluation Metrics
In order to evaluate the classification performance the main
metric chosen for the Herbarium 2021 challenge was the F1 score,
which is equal to:

F1 = 2
Pre · Rec

Pre+ Rec
, (1)

where Pre denotes the precision and Rec the recall. This score is
computed for every taxon separately and then averaged across all
taxa to get the final score. Accuracy Acc and mean class accuracy
Mca (also know as per–class accuracy) are also reported.

As an additional performance metric, the patristic distance
between the expected and the predicted classes is also reported.
Patristic distances were extracted from a dated genus–level
phylogeny pruned to include only the taxa in the dataset (Jin and
Qian, 2019). Within genera, distances among taxa were crudely
interpolated by adding 10% of the distance between each genus
and its sister genus.

3. RESULTS

3.1. Competition Results
The Herbarium 2021 Half–Earth challenge received 573 entries
submitted by 108 competitors divided across 80 teams. As seen
in Figure 7, there are large gaps in performance between the
competitors. Focusing on the top–five teams of the competition:
all had F1 performance above 0.680 on the test set. The teams
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FIGURE 7 | F1 scores of the 50 best performing teams.

are (in order of decreasing F1 scores): CIPP (0.757), HaeC
(0.735), Brendan Rapazzo (0.689), Qidian213 (0.687), Undergrad
& Botany Joe (0.682;Table 2). All of the top–five approaches used
relatively high resolution images (352×352 pixels or higher). The
top–three solutions were ensembles of models, with the top–two
teams combining the predictions from different models and the
third place team combining predictions made by the same model
at the different stages of the training process.

Collectively, the top–five teams used seven different base
neural network architectures:

• ResNeXt The ResNeXt architecture introduced by Xie et al.
(2017) is a popular network architecture that extends ResNet
(He et al., 2016). It leverages the split–transform–merge
(proposed in Inception; Szegedy et al., 2015) to split the
input into multiple blocks and then merge those blocks after
convolution.

• ResNeXt-IBN-a Pan et al. (2018) proposed IBN-Net as
an extension to any existing network—in this case the
ResNeXt architecture. IBN stands for Instance and Batch
Normalization—the main modifications used in IBN-Net to
achieve domain/appearance invariance. This modificaiton is
a simple way to increase both modeling and generalization
capacity without increasing computational burden.

• SE-ResNeXt The SE network introduced by Hu et al.
(2018) focuses on channel relationships instead of the spatial
component of convolutional blocks. This is done by using
the “Squeeze–and–Excitation” (SE) block, that adaptively
recalibrates channel–wise feature responses by explicitly
modeling interdependencies among channels. In this case the

standard convolutional blocks in the ResNeXt architecture are
replaced by these new SE blocks.

• ResNeSt The ResNeSt architecture proposed by Zhang et al.
(2020) is a variant of the ResNet model which instead stacks
Split–Attention blocks which are effectively channel–wise
attention on different network branches.

• TResNet The TResNet architecture proposed by Ridnik et al.
(2020) is designed to be highly efficient in training time and
inference time while achieving a better performance than a
comparable ResNet.

• ECA-NFNet-L0 The ECA-NFNet is a variant of the
Normalization–Free neural Network (NFNet; Brock et al.,
2021) with Efficient Channel Attention (ECA) layers (Wang
et al., 2020) instead of SE blocks, which results in one third of
the number of parameters of the original NFNet.

• GENet The GENet proposed by Lin et al. (2020) is designed to
be efficient when trained on a GPU. In fact, it achieves a similar
performance, but is up to 6.4 times faster than EfficientNet
(Tan and Le, 2019).

Interestingly, the top–two teams leveraged recently proposed
deep metric learning losses in addition to the standard cross–
entropy loss used for classification. The goal of deep metric
learning is to learn an embedding where the features extracted
from examples of the same class (in this case, the same taxon) are
closer than the ones extracted from examples of different classes.
The issue with standard cross–entropy loss preceded by a softmax
is that it learns separable features that are not discriminative
enough—this problem is exacerbated in the Herbarium 2021
dataset where the training set is extremely long–tailed and
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TABLE 2 | Summary of the top competitors’ solutions and performance.

Team ranking 1st 2nd 3rd 4th 5th

Team name (Organization) CIPP (Alibaba Group) HaeC (Postech) Brendan Rapazzo

(Cornell University)

Qidian213 Undergrad & Botany

Joe (The University of

Tennessee)

Team members Baoming Yan, Bo Gao,

Xiao Liu, Lin Wang, and

Chao Ban

Brendan Rapazzo — Dax Ledesma and Joey

Shaw

Model architecture ResNest101,

ResNeXt101-IBN-a,

ResNeXt101

TResNet-M,

TResNet-M-21k,

TResNet-L, GENet-L,

ECA-NFNet-L0

SE-ResNeXt101 — SE-ResNeXt50

Feature extractor parameters (M) 48.3+89+89 = 226.3 29.4+ 29.4+ 54.7+

31+ 24 = 169.5

95 — 28

Input image resolution 256×256, 256×256,

352×352

448×448 448×448 — 448×448

Loss function Triplet, AM-softmax,

LDAM

SoftTriple,

Cross-entropy,

BM-Softmax.

Cross-entropy — Cross-entropy

F1 0.757 0.735 0.689 0.687 0.682

Acc 0.845 0.837 0.793 0.799 0.786

Mca 0.787 0.761 0.706 0.725 0.693

Note that the fourth place team did not respond to the post–competition survey. We define as a feature extractor the part of the model that extracts the feature maps on which the

classification is based. The feature extractor parameters are taken from the publications associated with the respective model architectures.

performance is measured on a relatively well-balanced test set.
One way to produce a deep metric learning embedding is to
cast it as an optimization problem with triplet constraints, which
correspond to the Triplet loss: learning is performed on a set of
three images, the anchor (the baseline image), the positive image
(another image belonging to the same class as the anchor), and
the negative image (an image belonging to a different class). The
goal is then to have features which correspond to the anchor and
the positive image (or images) close in the embedding space while
the anchor and the negative image (or images) are far in the
embedding space. However, this procedure is time consuming
and it is very sensitive to the selection of anchor, positive, and
negative images. As a result there has been a number of loss
functions proposed as extensions of the standard cross–entropy
loss, that achieve the objective of the distance metric learning
paradigm without having to compare multiple image samples in
embedding space: Additive Margin Softmax loss (AM–softmax;
Wang et al., 2018), Balanced Meta–Softmax loss (BM–softmax;
Ren et al., 2020), and SoftTriple loss (Qian et al., 2019) are
examples. Finally the Label–Distribution–Aware Margin Loss
(LDAM; Cao et al., 2019) is designed to replace the cross–entropy
loss—it is designed specifically for the case in which the training
dataset is heavily imbalanced while the testing criterion requires
good generalization on less frequent classes.

Regarding the losses, unfortunately none of the teams
leveraged the provided hierarchical labels. In Table 3, we
highlight the potential increase in performance that could be
achieved by using them. In fact, there is clearly a substantial
improvement when comparing the performance of the baseline
model trained with a standard cross–entropy loss to the
performance achieved when training the same model with the
marginalization loss (Section 2.2). The marginalization loss is

TABLE 3 | Ablation study for marginalization loss utilizing hierarchical label

information.

Model F1 Acc Mca

Baseline 0.442 0.543 0.485

Baseline with marginalization loss 0.494 0.599 0.534

trivial to extend to any of the loss functions used by the
competitors other than cross–entropy loss (Table 2).

3.2. Performance on Difficult Examples
The top–five competitionmodels accurately predicted the correct
taxa for the examples presented in Section 2.1.1: Abarema
brahcystahya (Figure 3), used to illustrate different reproductive
stages, had an average top-1 accuracy of 0.914 (test images n =

10; training images n= 33); Arbutus xalapensis, used to illustrate
variation in specimen preparation (Figure 4) had an average top-
1 accuracy of 0.94 (test images n = 7; training images n = 297);
and the Alyssum species, used to illustrate similar morphology
among closely related taxa (Figure 5), had an average top-1
accuracy of 0.926 (test images n = 38; average training images
per species n= 40.22, range= 2–154).

3.3. Patristic Classification Error
The magnitude of classification error can be measured by the
patristic distance between the expected and predicted taxa.When
the predictions of the top–five models are incorrect, the wrongly
predicted taxon is usually one that is phylogenetically close to
the expected taxon (i.e., low patristic distance between predicted
and expected taxa). For instance, if all model predictions within
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FIGURE 8 | Model performance measured by different phylogenetic proximity thresholds. Top-1 error is calculated by counting all predictions that are within the

patristic distance threshold as successes. The vertical dashed lines represent top-1 error at 0.01, 0.05, and 0.10, respectively.

a maximum patristic distance of 10 million years (My) from the
expected taxon are considered correct, then all five top models
display similar accuracy (0.77–0.86; Figure 8). On the other
hand, when the threshold is 30 My, which is close to the median
patristic distance between sister genera (31.628 My), the error
rate is less than 10% for the top–two models (Figure 8). Thus,
the models are generally correct at the genus–level andmore than
half of the original error is due to incorrect classification of taxa
within genera.

When evaluated in the light of patristic classification error,
the third place model does not appear to behave like the other
top–five models (Figure 8): perhaps the features it extracts are
less correlated with phylogeny than the features extracted by the
other top models. Given that the fifth place model uses the same
SE-ResNeXt base architecture and cross–entropy loss function,
the deviant performance could, perhaps, be attributed to training
parameters.

Examination of the erroneous predictions made by the top
performing model do not indicate any phylogenetic clustering of
errors—demonstrating that the top model performs equally well
(or equally poorly) on all types of plants in the dataset (Figure 9).
If a botanist was to be provided with the low–resolution input
images used by the top model, they would be unlikely to perform
as uniformly as the model: taxa in some orders are almost
exclusively differentiated by features occupying only a fraction of
a pixel at that resolution (e.g., Poales) while taxa in other orders
are more easily differentiated at that resolution (e.g., Rosales).

Prediction errors less than the median patristic distance
between sister genera (31.628 My; solid horizontal gray line in
Figure 9), are the sorts of errors that botanists commonly make
(i.e., misidentifying taxa within genera). Some of these model
errorsmay be the result of uncaught labeling errors in our dataset.

Prediction errors above the 90th decile of the patristic distance
between sister genera (112.160 My; outer gray box in Figure 9)
are errors that botanists rarely make and, thus, are unlikely to be
attributable to incorrect dataset labeling.

3.4. Factors Contributing to Prediction
Error
For the top performing model, the number of expected taxon
training images appears to be associated with prediction failure,
but the relationship is not absolute: there are cases, particularly
common in the Polypodiales, in which the number of training
images is high (dark blue circles in Figure 9) and the patristic
classification error is high. The relationship between model
accuracy and number of training images is more straightforward
(Figure 10): the top performing model shows poor accuracy
for taxa with only two training images (accuracy = 56.0%, n
= 7,745), while the accuracy substantially increases with more
training images (e.g., accuracy = 79.8% for taxa with eight
training images, n = 2,147). The top-1 accuracy of the second
and fifth place models is less than 50% (42.7–46.7%, n = 7,745)
with two training images, while a similar boost in accuracy with
more training data is observed (66.3–77.1% with eight training
images, n= 2,147). Model accuracy increases with the number of
training images to different degrees across the top–five models.
The top–two model shows a consistent boost in its performance
as training images increases (n= 2–3309), whereas other models
display inconsistent performance boosts after n = 100 training
images—the top–four model shows a consistent decrease in
performance after n= 100 training images.

Another factor affecting model predication accuracy is
specimen quality: we examined the 144 specimen images in the
test dataset that produced egregiously incorrect (i.e., patristic
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FIGURE 9 | The relationship among dataset properties and incorrect model predictions for the top performing model. The phylogenetic relationship among the

expected taxa (x–axis) is represented by the right ladderized phylogenetic tree for all genera in the dataset (Jin and Qian, 2019). The y–axis indicates the identification

error—expressed as patristic distance between the expected and predicted classifications. The number of training images for each expected taxon is indicated by

marker color and visualized as a histogram in the right panel. The median patristic distance between sister genera is represented by a solid horizontal gray line with

gray boxes indicating the 10–90, 20–80, 30–70, and 40–60 decile ranges. The top ten angiosperm, top gymnosperm, top fern, and top lycophyte orders, as

measured by the number of training images, are labeled. Results for 628 of 243,020 (0.26%) test images are not displayed because those taxa could not be located in

the reference phylogenetic tree (Jin and Qian, 2019).

FIGURE 10 | Mean performance of the top–five models by number of training images. Taxa are aggregated based on their corresponding number of training images.

The test time performance is then visualized as the mean of the top-1-accuracy for all taxa in a specific bin, the error bars correspond to the average standard error for

each bin.
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classification error greater than 600 My) predictions from the
top performing model, and compared them to an equally sized
randomly–sampled set of images with correct predictions. About
9.1% of the egregiously misclassified images were not good plant
specimens: 0.7% were photographs of living plants, 0.7% were
botanical illustrations, 3.5% lack plant materials entirely, and
4.2% were closed packets that obscured all plant materials from
view. None of the correctly predicted specimen images had
the above issues. Among the egregiously misclassified specimen
images with visible plant materials (90.9%), nearly half (46.6%)
consist entirely of plant fragments (e.g., single organs like fruits,
buds, leaves, inflorescence, etc.) and a quarter (25.7%) are
diminutive plant taxa—that remain small at full maturity—and
therefor cover only a tiny fraction of specimen image. In contrast,
3.6% of correctly predicted specimen images consist entirely of
plant fragments and none were diminutive plants.

4. DISCUSSION

4.1. Competition Results
The Herbarium 2021 Half–Earth challenge is the richest plant
dataset in the world for fine–grained visual categorization, but it
pushes the limits of contemporary machine learning—automated
herbarium specimen image classification is a challenge that
involves differentiating among plant taxa with subtle differences
in color, texture, and shape. When compared to other fine–
grained image datasets such as ImageNet (distinct classes easily
classified by the general public; Deng et al., 2009) or iNaturalist
(distinct classes that are easier to classify due to their spread
across different kingdoms of life; Horn et al., 2021), the difficulty
of classifying herbarium specimen images is apparent. The high
number (64,500) and imbalanced distribution (imbalance factor
= 1,654.5) of classes in the Herbarium 2021 dataset, makes
this task especially challenging given the numerous classes with
few images—nearly half (49.1%) of the taxa have less than 10
training images. Despite these challenges, the deep learning
models submitted to the competition demonstrated performance
far beyond our expectations: macro F1-score = 0.76 and top-1-
error= 15.5%.

Most recently ViT-G/14 (Dosovitskiy et al., 2021) achieved
a top-1-error of 9.55% on ImageNet—the most widely used
image classification dataset. Considering that our dataset is much
more unevenly distributed and has 60 times more classes than
ImageNet,the top-1-error of 15.5% for the Herbarium 2021 Half–
Earth challenge is quite remarkable (Table 2). For taxa with
more than 50 training images (n = 10,355 taxa), the top-1-error
(10.4%) of the top performance model is comparable to the state-
of-the-art top-1-error of ImageNet (9.55%)—even with 10 times
more classes and 7.8 times fewer parameters than ViT-G/14 (230
M vs. 1,800 M). The iNaturalist 2021 (Horn et al., 2021) fine–
grained visual categorization dataset is similar to Herbarium
2021 in many ways, but it includes only ten thousand taxa with a
more balanced training data distribution (>100 training images
per taxon) and incorporates image geo–locations. In contrast,
Herbarium 2021 does not include collection locations. In the
Kaggle competition, the best model for iNaturalist 2021 had a
top-1-error rate of 4.4%. If the Herbarium 2021 dataset had a

more balanced distribution of training images, we see it having
the potential to become another rich source of fine–grained visual
categorization tests.

Finally we would like to point out that the competition
was particularly difficult for competitors who did not have the
computational resources to train large models on this amount
of data—training a large model on this dataset is quite time
consuming: for example training the baseline model took around
120h on an NVIDIA Titan X GPU. As can be seen in Table 2, the
top-5 competitors’ performance seems to be correlated with the
number of parameters of the feature extractor.

4.2. Future Directions
There a multiple future directions that can be explored within the
scope of fine–grained herbarium classification:

• Automated analysis of digitized natural history collections
may help reduce the bottlenecks in identifying new species
held in collections: herbaria are thought to already house
specimens of half of the plant species that have not yet
been formally described in the scientific literature (Bebber
et al., 2010). There is an incredible backlog in specimen
identification and curation in herbaria and many lack staff and
taxonomic expertise to readily identify all of their specimens.
With this urgent need in mind, we believe that there is an
opportunity to facilitate the work of botanical experts to
enable them to focus on the most critical tasks that cannot
be automated. One useful approach may be to build a dataset
that includes unlabeled data so that competitors could explore
approaches related to semi–supervised learning or active
learning rather than limiting competitions to straightforward
supervised learning tasks. Furthermore, systems to accurately
estimate well-calibrated uncertainties linked to the taxon
prediction task would be extremely useful to make sure that
we prioritize specimens most needing attention from expert
botanists.

• It may be possible to leverage the digitized data stored in
the herbaria to classify pictures of living plants. Overcoming
the distribution shift between training on herbarium sheet
images and testing on images of live plants is non-trivial,
nevertheless recent advancements in generative models and
domain adaptation can be effectively applied to such a
scenario.

• Future Kaggle challenges should encourage engagement
between different research communities, such as computer
vision scientists and botanists. Computer vision scientists
often adopt an approach aimed at maximizing algorithm
performance in terms of the evaluation metrics, but they
may be unaware of domain specific knowledge, such as the
patristic distance, that can be used to both improve model
interpretability and performance. On the other hand, botanists
may not be aware of the latest advances in computer science
that may boost model performance.

• Although large datasets increase the difficulty of the
competition and push the boundaries of automatic taxon
recognition, they exclude participants without access to a
large computational resources for training machine learning
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models. As a result, future Kaggle challenges could be designed
so that they can be split in multiple parts with at least some
of the parts computationally accessible to all (e.g., a dataset
of selected families or orders, or a dataset with a cap on the
maximum number of images per taxon).

5. CONCLUSION

We have created the Herbarium 2021 Half–Earth dataset to
enable the development of better automatic taxon recognition
models. The development of models to automatically identify
specimens will reduce the species identification bottleneck and
has the potential to improve both the quality and accelerate the
pace of biodiversity research.

In the future, we would like to expand the dataset to include
specimens collected world–wide. There are more than 35 million
digitized specimens in electronic databases representing more
than 80% of the known vascular plant diversity.
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