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Alkaloids are part of a structurally diverse group of over 21,000 cyclic nitrogen-
containing secondary metabolites that are found in over 20% of plant species. Lupinus
albus are naturally containing quinolizidine alkaloid (QA) legumes, with wild accessions
containing up to 11% of QA in seeds. Notwithstanding their clear advantages as
a natural protecting system, lupin-breeding programs have selected against QA
content without proper understanding of quinolizidine alkaloid biosynthetic pathway.
This review summarizes the current status in this field, with focus on the utilization
of natural mutations such as the one contained in pauper locus, and more recently
the development of molecular markers, which along with the advent of sequencing
technology, have facilitated the identification of candidate genes located in the pauper
region. New insights for future research are provided, including the utilization of
differentially expressed genes located on the pauper locus, as candidates for genome
editing. Identification of the main genes involved in the biosynthesis of QA will enable
precision breeding of low-alkaloid, high nutrition white lupin. This is important as
plant based high quality protein for food and feed is an essential for sustainable
agricultural productivity.

Keywords: alkaloids, quinolizidine alkaloids, white lupin, Lupinus albus, pauper

INTRODUCTION

Lupinus, part of the Fabaceae family, is a genus of plants widely distributed around the world
(Clements et al., 2008). Different cultivated species are present in the Old World (L. albus, L.
angustifolius, and L. luteus) as well as the New World (L. mutabilis) (Petterson and Mackintosh,
1994; Peterson, 2000). Despite the phenotypic differences due to environmental conditions, they
are all characterized by high level of proteins, being used as human food or animal feed (Petterson
and Mackintosh, 1994; Abraham et al., 2019; Sońta and Rekiel, 2019). The production of lupin
seeds as an agricultural product occurs mainly in Australia but also it has an important role in
agricultural productive system in parts of Europe, Africa, and South America (FAO, 2021). During
2019, the largest lupin producers were Australia (474,629 t), Russian Federation (103,792 t) and
Poland (261,500 t) (FAO, 2021).

White lupin (Lupinus albus L.) is a legume from the Mediterranean region; its center of origin
is believed to be southern Greece and Western Turkey, where its cultivation started 4,000 years
ago and wild landraces still persist (Gladstones et al., 1998). White lupin (WL) is recognized as an
exceptional source of protein (between 30 and 40% of the whole seed dry matter) (Bähr et al., 2014)
with an adequate balance of essential amino acids, as well as an adequate protein efficiency ratio
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(Sujak et al., 2006). During recent years, white lupin has
gained attention for human consumption because of its levels
of tocopherols, having the lowest glycemic index among
consumed grains, high dietary fiber content and the absence
of immunogenic epitopes causing celiac disease (Boschin et al.,
2008; Boschin and Arnoldi, 2011; Fontanari et al., 2012; Bähr
et al., 2014). It is also a crop with low need for phosphate
fertilizers due to the presence of specialized cluster root structures
and the capacity to releases phosphorus (P) from its insoluble
form because of the ability to mobilize carboxylates (Lucas
et al., 2015; Xu et al., 2020). Further, as a legume, application
of nitrogen fertilizers can be avoided if an adequate symbiosis
with Rhyzobium bacteria is achieved, decreasing therefore the
environmental impact due to its cultivation (Pueyo et al., 2021).

However, the presence of secondary metabolites, which act
as anti-nutritional compounds, in white lupin seeds limits its
use. Lupinus albus wild varieties and landraces can accumulate
up to 11% of their dry weight in the form of alkaloids, most
of them belonging to the family of quinolizidine alkaloids (QA)
(Rybiński et al., 2018). QA are notoriously bitter and toxic to
both humans and farm animals, displaying both teratogenic and
anti-cholinergic effects (Wink and Schimmer, 1999; Lourenço
et al., 2002). Accordingly, traditional consumption of lupin
grain involves a debittering process, which also removes a
large proportion of nutrients such as soluble proteins, minerals,
flavonoids, monosaccharides and sucrose from the seeds (Erbas,
2010). Despite WL importance and potential as a protein
source, scarce knowledge has been generated about quinolizidine
alkaloid synthesis. Cultivated WL relies on the incorporation
of a natural occurring mutation at pauper locus, which
decreases QA levels below the 0.02% threshold established as
safe for consumption as food and feed, however, fundamental
knowledge is required to maintain a reduction of QA within
breeding programs.

The central objective of this review is to summarize the
available resources to understand the biosynthesis of QA
in L. albus. Identification and characterization of the genes
responsible for QA biosynthesis are a challenge which breeders
must pursue in order to manipulate the total amount and
type present in any given genotype or commercial variety,
while controlling the amount and type of QA and maintaining
lupin high nutritional value. From an environmental point of
view, breeding efforts could lead to optimizing selection for
higher alkaloid content in the leaves (and thus resistance to
pathogens and insects), while at the same time selecting for
low QA in the seed (Gladstones et al., 1998). QA synthesis
knowledge will provide the opportunity to ensure safe levels
for human and animal consumption as well as optimal pest
control, increasing yield, and decreasing the use of agrochemicals
(Vishnyakova et al., 2020).

QUINOLIZIDINE ALKALOID
BIOSYNTHETIC PATHWAY

Alkaloids are part of a structurally diverse group of over 21,000
cyclic nitrogen-containing secondary metabolites (Wink, 2013)

that are found in over 20% of plant species (Croteau et al., 2000;
De Luca and St. Pierre, 2000; Bunsupa et al., 2012b). QA are
secondary metabolites that occur mostly within the Leguminosae
family, but are also present in other taxa (Ohmiya et al., 1995).
In lupin species, QA distinctive structure is a quinolizidine ring,
which can be grouped mainly into bicyclic alkaloids, such as
lupinine and its derivatives, and tetracyclic alkaloids, represented
by sparteine, lupanine and hydroxilupanine (Wink, 1987).
Examples exist of distinctive QA expression in different species.
Isolupanine and angustifoline accumulate to high levels in
L. angustifolius (narrow-leafed lupin). Albinine and multiflorine
accumulate to high levels in L. albus and lupinine in L. luteus
(Święcicki et al., 2019). QA vary in their toxicity and their
deterrence against insect pests and mammals. Sparteine and
lupanine appear to be the two most toxic QA to humans
and laboratory animals (Allen, 1998; Petterson, 1998), with
lupanine having the greatest impact on aphid survival, followed
by sparteine, lupinine, 13α-hydroxylupanine and angustifoline
having a moderate impact (Ridsdill-Smith et al., 2004; Philippi
et al., 2015). QA toxicity against larvae from different species as
well as acaricidal effect has also been reported (Hassan et al., 2019;
Elma et al., 2021).

The synthesis of QA occurs through the cyclization of
cadaverine, due to a L-lysine decarboxylation catalyzed by a
lysine decarboxylase L/ODC (La-L/ODC) (Saito and Murakoshi,
1995; Bunsupa et al., 2012a). Cadaverine is then oxidized by
a copper amine oxidase (CuAO) (Yang et al., 2017) to yield
5-aminopentanal and spontaneously cyclized to 1-piperideine
Schiff base, which is a universal intermediate for the production
of various Lys-derived alkaloids (Bunsupa et al., 2012b). It has
been suggested that in addition to these reactions, a series
of aldol-type reactions, hydrolysis, oxidative deamination and
coupling gives rise to the major structural QAs [e.g., lupanine
and others; (Dewick, 2002)]. The diiminium cation was proposed
as an intermediate product in to yield tetracyclic alkaloids
[lupanine, multiflorine, and sparteine (Fraser and Robins, 1984)].
These QA are final products, but also, can be further modified
by dehydrogenation, oxygenation, hydroxylation, glycosylation,
acetylation or esterification to form a wide variety of structurally
related QAs (Wink and Hartmann, 1982; Saito et al., 1992, 1993;
Ohmiya et al., 1995; Saito and Murakoshi, 1995; Bunsupa et al.,
2012b; Boschin and Resta, 2013). Continued research will likely
add more detail to the QA pathway. For example, the observation
that QA can be found in high enantiomeric excess has led to the
proposal that stereoselective enzyme catalysis may be involved in
the QA pathway (Lichman, 2021).

GENES INVOLVED IN QUINOLIZIDINE
ALKALOID BIOSYNTHESIS IN LUPINUS

Identification of genes involved in the QA biosynthesis has
been partially achieved by identifying homologous genes in
other species expressing QA, as in the case of Lupinus
angustifolius La-L/ODC gene, which was identified as a homolog
of L/ODC expressed in the distantly related species S. flavescens,
E. koreensis, T. chinensis, and B. australis (Bunsupa et al., 2012a).
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Genes encoding acyltransferase were described in L. albus and
L. angustifolius (LaHMT/HLT and LaAT, respectively), but proof
of the formation of acetylated products (13α-hydroxylupanine
and 13α-hydroxymultiflorine), was only achieved for L. albus
HMT/HLT (Saito and Murakoshi, 1995; Okada et al., 2005;
Bunsupa et al., 2011).

Transcriptome experiments in different tissues of
L. angustifolius lead to the identification of a copper amine
oxidase, LaCAO (Yang et al., 2017), with cadaverine as substrate,
catalyzing its transformation into 5-aminopentanal, which is
then spontaneously cyclized to 1-piperideine (Yang et al., 2017).
In a previous report, Okada et al. (2005) cloned and characterized
an O-tigloytransferase from WL, an enzyme involved in the final
steps of QA biosynthesis. Recently, it was proven for Lupinus
angustifolius, that RAP2-7 is a putative regulatory gene of QA
biosynthesis/accumulation in aerial tissues (Kroc et al., 2019),
with a S196R substitution being responsible for the bitter/sweet
phenotype (Czepiel et al., 2021), but, however, additional studies
are needed to determine the mechanism and effect on QA
expression, and its role in different lupin species. In an effort to
identify the missing enzymes of the QA pathway, the study of
the existence of common enzymes between nicotine synthesis
(monoterpene indole alkaloids, MIA; benzylisoquinole alkaloids,
BIA) and lupins QA has been proposed (Frick et al., 2017).
Many of these enzymes (methyltransferases, decarboxylases,
oxidases, acyltransferases, cytochromes-P450, oxidoreductases,
demethylases, reductases, hydroxylases, and coupling enzymes)
and their encoding genes have been identified in N. tabacum, C.
roseus, C. japonica, and P. somniferum (Bird et al., 2003; Dewey
and Xie, 2013; Hagel and Facchini, 2013; Kilgore and Kutchan,
2016; Pan et al., 2016; Thamm et al., 2016) and it is expected that
they play a role in lupins QA biosynthesis (Frick et al., 2017).
Sophora flavescens transcriptome analysis had also identified
several genes co-expressed, such as a putative S. flavescens
L/ODC and candidate genes clustered into the same clade as
L/ODC (major latex-like protein (MLP-like), a cP450, and a
ripening related protein), but their function remains unknown
(Han et al., 2015). Berberine bridge and berberine bridge-like
enzymes catalyze oxidative reactions for the biosynthesis of
BIAs (Facchini et al., 1996; Samanani et al., 2004; Kajikawa
et al., 2011), possibly having similar roles in QA biosynthesis.
Cytocromes-P450 have a role in hydroxylation reactions, as
well as other reactions in MIA and BIA biosynthesis (Pauli and
Kutchan, 1998; Thamm et al., 2016). Recently, the existence of a
high number of QA biosynthesis genes controlled by a regulatory
agent localized at iucundus locus in NLL was reported, which
supports the idea that ethylene responsive transcription factor
RAP2-7 gene may control low-alkaloid phenotype in NLL, acting
as a promoter of the expression of biosynthesis genes (Plewiński
et al., 2019; Czepiel et al., 2021).

In addition to QAs biosynthetic genes, major loci controlling
QA expression have been described in lupins. Cultivated
lupins display lower alkaloid content than landraces, due to
incorporation of “sweet” domestication genes, which were
generated by natural mutation (Lin et al., 2009). Most of
these mutations are recessive, such as iucundus, esculentus, and
depressus in NLL, amoenus, dulcis, and liber in L. luteus (Lin et al.,

2009). In L. albus, several loci have been reported to produce low
alkaloid genotypes, with the pauper locus being the most effective
and used worldwide in breeding programs (Gladstones, 1974;
Harrison and Willliams, 1982). In L. mutabilis, the low alkaloid
phenotype is controlled by several alleles (Clements et al., 2008).
It is worth highlighting that none of the mutations identified in
lupin completely eliminate QAs (Harrison and Willliams, 1982).

Pauper LOCUS

Construction of low-density linkage maps allowed identification
of genomic regions involved in alkaloid biosynthesis in white
lupin (Phan et al., 2007; Croxford et al., 2008; Vipin et al.,
2013). There has also been development of molecular markers
to identify QTLs responsible for low alkaloid content linked
to these recessive loci (Yang et al., 2010; Raman et al., 2014).
The development and mass use of GBS technology as a tool for
breeders (Elshire et al., 2011; Annicchiarico et al., 2017), enabled
progress to identify causative genes for low QA content in
L. albus. High-density consensus maps for comparisons between
L. angustifolious and L. albus, had led to the hypothesis that the
iucundus locus responsible for low alkaloid content in NLL differs
by function from pauper in WL (Książkiewicz et al., 2017).

Worldwide, L. albus breeding programs have relied mainly
on the effect of pauper locus to produce sweet varieties, for
both food and feed. Besides its importance, little is known about
the pauper locus gene(s) with respect to their effect on alkaloid
content. Earlier studies identified at least two different alleles for
pauper locus, controlling total alkaloid content (Harrison and
Willliams, 1982). The action of this recessive locus was suggested
as a reduction of a common alkaloid substrate, which seems to
be the ubiquitous for most lupin low alkaloid genotypes, without
affecting intermediate substrates at late biosynthetic stages, when
chemical differences among alkaloids are being finally specified
(Harrison and Willliams, 1982).

Genetic and comparative map of L. albus, based on a
RIL population developed from Kiev (Ukrainian cv, sweet,
early flowering, anthracnose susceptible) and P27174 (Ethiopian
landrace, bitter, late flowering, anthracnose resistant), allowed
the discovery of 220 amplified fragment length polymorphisms
and 105 gene-based markers, enabling for the first time mapping
of the alkaloid locus, with flanking markers located in a region
within 20 cM in both directions (Phan et al., 2007). Later, with
the development of Pauper M1, a molecular marker more closely
linked to the pauper locus (1.4 cM), allowed discrimination
of low alkaloid content genotypes with efficiencies restricted
to ∼95% for bitter and 91% for sweet non-pauper lines.
Implementing PauperM1 required the use of sequencing gels
and radioisotope primer labeling for the correct determination
of alleles, which made its application restricted to authorized
facilities (Lin et al., 2009). With the aid of GBS, a high-
density consensus linkage map of WL genome was constructed,
integrating 453 published markers with 3,597 newly developed
sequence-based markers, recovering a single linkage group per
every chromosome (Książkiewicz et al., 2017). This map yielded
several new markers co-segregating, or closely localized to the
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pauper locus than the Pauper M1 (Książkiewicz et al., 2017). In
an effort to improve Pauper M1 efficacy, CAPS markers were
developed (using two identified SNPs), which were substrates
for restriction enzymes, HhaI for the bitter allele, and HinfI for
the sweet allele (Rychel and Książkiewicz, 2019). One of these,
LAGI01_35805_F1_R1 homologous to LaAT (AB581532.1),
different than pauper locus gene, showed higher efficacy than
Pauper M1 (Rychel and Książkiewicz, 2019).

Recently a high quality reference L. albus genome allowed the
study of the pauper genomic region, identifying several candidate
genes on Chr18. This research demonstrate the existence of a
gene cluster in the pauper locus, which comprises a 958 kb
region and contains 66 genes, amongst which several are
strong candidates genes encoding enzymatic activities, such as
cinnamoyl-CoA reductase and acyltransferases (Hufnagel et al.,
2020a). In addition to the reference genome, transcriptomic
data from different organs, resequencing of 15 varieties and
a pangenome dataset provide tools for further exploration of
the genomics of alkaloid content1 (Hufnagel et al., 2020b) and
the complex role of the pauper locus. Analysis of the pauper
marker associated with low QA was carried out in a landrace,
breeding lines and cultivars of L. albus and QA was measured
by UHPLC-HRMS. Interestingly while the marker did associate
with low QA and was absent in many high QA samples,

1https://www.whitelupin.fr/

there were notable exceptions where the marker was found
in high QA sample (Zafeiriou et al., 2021). Thus additional
genes and regulatory elements may be important in reaching
breeding objectives.

PROSPECTIVE TECHNIQUES TO
UNRAVEL BIOSYNTHESIS ALKALOID
GENES IN WHITE LUPIN

The main drawback to study candidate genes and their function
in WL is the recalcitrant nature of this legume to tissue culture
(Nguyen et al., 2016; Aslam et al., 2020). Several attempts have
been undertaken to develop in vitro regeneration tissue culture
systems, but with limited success, which today represent a
challenge in WL breeding programs (Bayliss et al., 2002; Uhde-
Stone et al., 2005; Surma et al., 2013; Raza et al., 2017; Che et al.,
2019; Aslam et al., 2020). It is possible, as in monocot species,
that transformation is highly cultivar dependent, therefore a
genetic screen for transformation aptitude in WL collections
may produce a genotype amenable to transformation and thus
genome editing. But, in the meantime, to overcome this situation,
different reverse genetics methodologies (Till et al., 2007), such
as random mutagenesis and virus induced gene silencing (VIGS)
may be used to probe gene function (Gupta et al., 2013).

FIGURE 1 | A strategy to unravel quinolizidine alkaloid (QA) synthesis genes using virus induced gene silencing and genome editing, for functional genomics and
crop improvement in Lupinus albus.
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During the last years, the use of transient expression has
facilitated gene-discovery by utilization of VIGS (Gupta et al.,
2013). VIGS is an effective tool to characterize functions
of candidate genes using post-transcriptional gene silencing
(PTGS), which is extensively used for gene knockdowns in
plants (Liu et al., 2016; Wang et al., 2016; Zhang et al.,
2016). However, VIGS can also be applied as a forward
genetics technique to study gene function by using cDNA
libraries (Kilgore and Kutchan, 2016; Thamm et al., 2016).
In white lupin, VIGS using peanut stunt virus proved to be
effective tool to silence the Phytoene desaturase gene (LaPDS)
(Yamagishi et al., 2015), opening possibilities for utilization of
this technique to elucidate genes participating in secondary
metabolite synthesis such as QA.

Advances in CRISPR-Cas technology allow fine-tuning of
gene-activity and the generation larger chromosomal variation,
providing a broad toolkit for gene-function analysis (Jinek et al.,
2012; Cong et al., 2013; Jung and Till, 2021). Nevertheless,
optimization of CRISPR technology is needed to accommodate
the tissue and transformation delivery method (Char et al., 2017).
Recent developments of new transformation techniques based on
the utilization of functionalized nanoparticles to deliver DNA,
has been proven successful in species such as cotton, sunflower
and lily (Zhao et al., 2017), opening the possibilities to bypass
in vitro regeneration in legume species, such as lupin. With
the aid of magnetic fields, nanoparticles can efficiently deliver
CRISPR vectors through pores present in the pollen grains,
producing transformed pollen which is then used to pollinate
emasculated flowers, resulting in transformed seeds (Zhao et al.,
2017). The utilization of functionalized magnetic particles to
deliver DNA into pollen grains, and to accelerate selection of
desired individuals using speed-breeding (Watson et al., 2018;
Lew et al., 2020) increases transformation efficiency and bypasses
tissue culture procedures to generate plants from transformed

seeds within a short period of time, broadening the possibilities
for WL utilization as mayor knowledge on QA synthesis is
achieved. Continued advances in nanoparticle technologies may
make CRISPR-Cas approaches amenable in many recalcitrant
species (Ma et al., 2021).

SUMMARY

Quinolizidine alkaloid synthesis has an important number of
unresolved questions, which hinders breeding efforts worldwide
in a crop with high nutritional quality such as WL. Utilization of
techniques to study and manipulate genes involved in alkaloid
synthesis in L. albus will contribute to a better understanding
of the accumulation of secondary metabolites in lupin seed
(Figure 1), contributing to the development of environmentally
friendly and sustainable sources of plant protein, which are
expected to be a key component of conscientious population
growth. Continued efforts in white lupin breeding, leveraging
knowledge gained of the genetics of QA synthesis, can have an
important role in human nutrition and well being.
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