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Mung bean [Vigna radiata (L.) Wilczek] is a drought-tolerant, short-duration crop, and a
rich source of protein and other valuable minerals, vitamins, and antioxidants. The main
objectives of this research were (1) to study the root traits related with the phenotypic
and genetic diversity of 375 mung bean genotypes of the Iowa (IA) diversity panel and (2)
to conduct genome-wide association studies of root-related traits using the Automated
Root Image Analysis (ARIA) software. We collected over 9,000 digital images at three-
time points (days 12, 15, and 18 after germination). A broad sense heritability for days
15 (0.22–0.73) and 18 (0.23–0.87) was higher than that for day 12 (0.24–0.51). We
also reported root ideotype classification, i.e., PI425425 (India), PI425045 (Philippines),
PI425551 (Korea), PI264686 (Philippines), and PI425085 (Sri Lanka) that emerged as
the top five in the topsoil foraging category, while PI425594 (unknown origin), PI425599
(Thailand), PI425610 (Afghanistan), PI425485 (India), and AVMU0201 (Taiwan) were top
five in the drought-tolerant and nutrient uptake “steep, cheap, and deep” ideotype. We
identified promising genotypes that can help diversify the gene pool of mung bean
breeding stocks and will be useful for further field testing. Using association studies,
we identified markers showing significant associations with the lateral root angle (LRA)
on chromosomes 2, 6, 7, and 11, length distribution (LED) on chromosome 8, and
total root length-growth rate (TRL_GR), volume (VOL), and total dry weight (TDW)
on chromosomes 3 and 5. We discussed genes that are potential candidates from
these regions. We reported beta-galactosidase 3 associated with the LRA, which has
previously been implicated in the adventitious root development via transcriptomic
studies in mung bean. Results from this work on the phenotypic characterization, root-
based ideotype categories, and significant molecular markers associated with important
traits will be useful for the marker-assisted selection and mung bean improvement
through breeding.
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INTRODUCTION

There is an increasing demand, particularly in Western cultures,
for plant-based protein sources, including analogs of meat, egg,
and dairy (Wild et al., 2014; Joshi and Kumar, 2016; Niva
et al., 2017; Aschemann-Witzel et al., 2020). Numerous factors
influence this change, including social, political, environmental,
ethical, health-focused, technological, and economical (Vinnari,
2008; Markiewicz, 2010). Pulses such as lentils (Lens culinaris),
horse beans (Dolichos spp.), lupins (Lupinus albus L.), common
beans (Phaseolus vulgaris), chickpea (Cicer arietinum), field
peas (Pisum sativum), cowpeas (Vigna unguiculata), fava beans
(Vicia faba), mung bean [Vigna radiata (L.) Wilczek], urd
beans (Vigna mungo), and food-grade soybeans (Glycine max)
have consistently been used as protein sources in the global
south (Niva et al., 2017). The plant protein demand has
been fueled by the sustainable production of pulses coupled
with their health benefits and the production of meat analogs
(Wild et al., 2014; Niva et al., 2017). Residents of sub-Saharan
Africa, the Caribbeans, and South America consume more than
10 kg/capita/year of pulses, compared to 3 kg/capita/year among
Western cultures (Akibode and Maredia, 2012).

Mung bean (V. radiata L. Wilczek), initially domesticated in
India, is now cultivated in over 7 million hectares worldwide
(Nair et al., 2019; Aski et al., 2021). Mung bean is a short-
duration crop, usually between 60 and 90 days from planting to
harvest (Sandhu and Singh, 2021). Mung beans, being relatively
heat- and drought-tolerant, may be helpful in the agricultural
adaptation to climate change (Pataczek et al., 2018; Wang et al.,
2018). Mung bean is easily digestible, with seed composition
of 22–28% protein, 1–1.5% fat, and 60–65% carbohydrates, as
well as minerals, vitamins, and antioxidants (Jahan et al., 2020;
Aski et al., 2021; Sandhu and Singh, 2021). Mung beans are
consumed as whole grain, sprouted gram, split dhal, and mung
bean flour in Indian dishes (Nair et al., 2019; Aski et al., 2021).
The complementation of mung beans with cereals provides a
balanced intake of required nutrients. In Western cultures, mung
beans are consumed mostly as sprouts and, more recently, as
processed products such as meat substitutes, egg substitutes,
chips, no-nut butter, and pasta (Sandhu and Singh, 2021). The
demand for plant-based protein in the United States has led
to enhancing existing and establishment of breeding programs
at United States institutions, including at Iowa State University
(Sandhu and Singh, 2021). However, due to limited breeding
efforts in North America, there is a knowledge gap in agronomic
trait diversity including root traits that are emerging as important
area of research and breeding efforts (Lynch, 2007; White et al.,
2013; Burridge et al., 2017).

Root system architecture (RSA) can be defined as the
morphology of the root system at many scales, both global
(i.e., the entire root system) and local (i.e., primary and lateral
root levels), as well as the spatial variability of the morphology
(Hodge et al., 2009; Rogers and Benfey, 2015; Lobet et al.,
2019; Aski et al., 2021). The morphometric traits include the
number, length, volume, mass, shape, angle, depth, etc. The
spatio-temporal variation seen in RSA of different plants reflects
the phenotypic plasticity and the genotype × environment

interaction (Rogers and Benfey, 2015; Lobet et al., 2019). Roots
have a great impact on yield and plant fitness by providing
plants with the structural stability, nutrient foraging, plant-
microbe interactions, preventing soil erosion, aeration, and water
extraction (Hodge et al., 2009; Rogers and Benfey, 2015).

The desired root phenotypes by plant breeders will be ones
that enhances plant adaptation to the edaphic stress while
maintaining or increasing yields, for example, deeper and
proliferating roots are desired during water-deficient stresses in
the changing climate (Gaur et al., 2008; Aski et al., 2021). Lynch
and Brown (2001) coined the term “topsoil foraging ideotype,”
which is characterized by proliferation of lateral roots, long root
hairs, association with mycorrhizal fungi, and suited to uptake
of the immobile phosphorus mineral from the topsoil stratum
(White et al., 2013). The “steep, cheap, and deep” ideotype
(Lynch, 2013) optimizes on the uptake of water and the soluble
nitrogen in the soil minimizing leaching. The “steep, cheap,
deep” is characterized by thick and long primary roots, high
affinity for N by epidermal cells, and the high concentration
of cortical aerenchyma cells (White et al., 2013). Falk et al.
(2020b) used the term “informative root” (iRoot) category to
capture the biological significance of the captured root traits as
would simulate field conditions. They reported that the topsoil
foraging had a faster total root length-growth rate (TRL_GR),
wider (WID), and a large TRL upper root ratio (TRLUpper). The
steep, cheap, and deep ideotype contained a deeper primary root
length (PRL), faster TRL_GR, steep lateral root angles (LRA), and
lower solidity traits (SOL2). These works have been possible due
to the use of computer vision and machine learning in extraction
of complex traits.

Advances in computer vision, machine learning, and high-
throughput phenotyping (HTP) technologies, coupled with
efficient statistical methods and collaborative research, have
opened the way for more research to be carried out in plants
as reviewed in Singh et al. (2016, 2018), Atkinson et al. (2019),
Ghosal et al. (2019), Parmley et al. (2019), and Singh A. et al.
(2021). The use of these technologies has been implemented in
the collection of agronomic and yield estimation traits (Riera
et al., 2021), detection of abiotic and biotic stress (Naik et al.,
2017; Zhang et al., 2017; Nagasubramanian et al., 2018, 2019), and
monitoring plant health (Ghosal et al., 2018). However, as shown
in Falk et al. (2020a), computer vision and machine learning-
based methods are essential to advance the root phenotyping
and large-scale studies (Singh et al., 2016, 2018; Singh D.
P. et al., 2021). Root phenotyping is classified depending
on where it is carried out, i.e., in controlled environments
or in the field, destructive or nondestructive, and whether
the HTP uses 2-dimensional (2D) or 3-dimensional (3D) to
capture the traits of interest (see reviews, Atkinson et al., 2019;
Singh A. K. et al., 2021).

Previous methods developed for extracting roots in the field
include destructive methods such as “shovelomics” (Trachsel
et al., 2011), the use of soil cores (Wasson et al., 2016), and
nondestructive methods such as electrical resistance tomography
(Srayeddin and Doussan, 2009), electromagnetic inductance
(Shanahan et al., 2015), and ground penetrating radar (Liu
et al., 2018). Soil opacity is still a limiting factor to access roots
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in most field experiments. Controlled environmental methods
include the use of rhizotrons, which utilize soil (Rellán-Álvarez
et al., 2015), nonsoil methods such as hydroponics (Aski et al.,
2021), transparent artificial growth media (Ma et al., 2019),
and growth pouches (Tan and Nopamornbodi, 1979). The high-
throughput nature of acquiring 2D root images from controlled
environments necessitated the development of the image analysis
software to extract the traits (Atkinson et al., 2019). Commercially
available software includes WinRhizo (Regent Instruments,
Quebec, Canada). The open-source software available for use
includes SmartRoot (Lobet et al., 2011), RootNav (Pound et al.,
2013), GiaRoots (Galkovskyi et al., 2012), DART (Le Bot
et al., 2010), Ez-Rhizo (Armengaud, 2009), DIRT (Das et al.,
2015), ARIA (Pace et al., 2014; Falk et al., 2020a), RhizoVision
(Seethepalli et al., 2020), MyRoot (Betegón-Putze et al., 2019),
and IJ_Rhizo (Pierret et al., 2013). A combination of the methods
above has been used to study the roots of a variety of plants
under various conditions. Species of plant roots studied include
common bean (Bonser et al., 1996), maize (Hund et al., 2009;
Zheng et al., 2020), wheat (Atkinson et al., 2015), pearl millet
(Passot et al., 2016), soybean (Falk et al., 2020a), and canola (Gioia
et al., 2016). In a recent study, Aski et al. (2021) utilized modified
hydroponics to study the RSA phenotypic diversity of the
mung bean mini-core collection at the World Vegetable Center
(formerly known as Asian Vegetable Development and Research
Center [AVRDC]) (Schafleitner et al., 2015). As this software is
capable of generating the useful data on multiple phenotypic root
traits, these also lend themselves to genetic studies.

Genome-wide association studies (GWAS) is a statistical
tool that uses historical recombination events to uncover the
significant genotypic variation associated with the phenotypic
variation for the trait of interest (Huang and Han, 2014;
Tibbs Cortes et al., 2021). GWAS has been extensively used to
investigate important agronomic traits such as plant height, days
to flower, yield, nutrient content, flood and drought tolerance,
and insect and pest resistance in maize (Yang et al., 2014), soybean
(Zhang et al., 2015; Fang et al., 2017), common bean (Kamfwa
et al., 2015), mung bean (Sandhu and Singh, 2021), and rice
(Huang et al., 2010) among others.

The current study was conducted with the objectives to (1)
study the diversity of the RSA trait in the Iowa (IA) mung
bean panel, (2) contextualize these RSA traits with root-based
ideotypes, and (3) conduct GWAS on RSA traits and identify
candidate genes for these associations.

MATERIALS AND METHODS

Plant Materials
A total of 376 accessions were used in this study. A total of
372 Plant Introductions (PI) were filtered from the 482 IA
mung bean panel (Sandhu and Singh, 2021) using the identity-
by-state method in SNPRelate and genetic distance of Nei
(Zheng et al., 2012). PIs that were common among the two
methods were dropped. The 482 PIs were a part of the over
3,000 mung bean accessions obtained from the United States
Department of Agriculture-Germplasm Resources Information

Network (USDA-GRIN), in Griffin Georgia that were able to
flower and form pods in IA conditions. Three Asian Vegetable
mung bean (AVMU) lines, namely, AVMU001, AVMU0201, and
AVMU9701, were included as checks, since they are improved
cultivars from the WVC, formerly AVRDC (Fernandez and
Shanmugasundaram, 1988).

Experimental Design and Germination
Protocol
This study used a randomized incomplete block design, with
each growth chamber serving as a replicate, for a total of
eight replications for the experiment. Two growth chambers
were used for an increased throughput. Each chamber had four
blocks. Each block contained six complete and two incomplete
sub-blocks. Each complete sub-block held twelve genotypes,
while each incomplete sub-block held eleven genotypes. The
genotypes were randomized within each block and sub-blocks.
Randomization was generated using the R package blocksdesign
(Edmondson and Edmondson, 2021). The procedures described
in Falk et al. (2020a) were followed with little modification in
the experimental design (Figure 1). First, ten seeds of each
genotype were equally spaced near the top (∼1′′) of a 9′′ × 12′′
germination paper. The paper was rolled into germination rolls.
All the germination rolls for each sub-block were rubber banded
and labeled with a tag. Once all the 376 were planted, water was
filled halfway in the rectangular bucket, and the rolls transferred
to a Conviron growth chamber (Controlled Environments Ltd.,
Winnipeg, Canada) set at 25◦C for 16 h of light and 20◦C
for 8 h darkness. The lighting was set to 276–280 µmol/s/m2

and constantly monitored using the LI-250A photometer (Li-
Cor Biosci-sciences, Lincoln, NE, United States). On the 5th day
of germination, a representative sample for each genotype was
picked and carefully placed onto the 12′′ × 18′′ blue germination
paper (Anchor Paper, Minneapolis, MN, United States). Labeled
bar-coded tags are stapled onto the 1′′ folded top of the blue
paper. A 12′′ × 16′′ brown blotting paper (Anchor Paper,
Minneapolis, MN, United States) was carefully placed on top of
the blue paper. Two full blue papers are clipped together using
binder clips and placed in the rack on the plot number in the
chamber. Chamber conditions were monitored daily.

Imaging, Image Processing, and Trait
Extraction
A high-throughput imaging station was set up similar to the one
reported by Falk et al. (2020a). Images were captured using a
Canon T5i digital SLR camera (lens: EF-S 18–55 mm f/3.5–5.6
IS II) (Canon USA, Inc., Melville, NY, United States). The setup
allowed for the automated renaming of images captured using
the SmartShooter software (Hart, 2021; Figure 1E). The seedlings
were imaged on days 12, 15, and 18 without moving roots.
Exceptions to moving were on day 12 where some secondary
roots did not emerge from the fold and on day 18, when some
of the roots of the genotypes were overgrowing the length of the
blue paper. The days to image and the spacing were determined
by a preliminary study. On the 18th day, the seedlings were cut at
the junction between the shoot and camera-visible root section.
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FIGURE 1 | Workflow from seed to phenotyping roots, (A) germination roll, (B) germination rolls banded by sub-block, (C) seedlings in the four blocks inside the
growth chamber, (D) genotypes pooled out for imaging, (E) imaging platform, (F) captured root, and (G) preprocessed root ready for trait extraction.

The root and shoot of each genotype were placed in small brown
bags. The wet-cut seedlings were dried in growth chambers set at
34◦C/24 h for 2 days, with the light set to 276–280 µmol/s/m2 and
stored for weighing. Each root and shoot of the genotype were
measured using the Ohaus portable weighing balance (Ohaus
Corporation, NJ, United States).

More than 9,000 (376 genotypes × 8 reps × 3 time points)
images were collected from the whole experiment. The images
were first rotated manually to portrait orientation to enable
consistent preprocessing. Images with no germinated seed, herein
referred to as blank, were excluded from processing. JPEGCrops
(2021), an open-source software, was used to auto crop all the
images in a batch by cutting off the top part with the labeled
bar-coded tag. The images were then converted into black/white
images by thresholding (heuristically using red, green, and blue,
LAB, or Hue, Saturation, and Value color spaces). This was
carried out using the image processing step and followed by
the trait extraction step within the improved Automatic Root
Image Analysis (ARIA) 2.0 tool (Falk et al., 2020a). Different
color spaces were used due to the variations in the images caused
by unequal lightning and water spots. The ARIA 2.0 tool runs
on Matlab (2020a). Traits extracted in ARIA are shown in the
Supplementary Materials (Supplementary Table 1).

Statistical Analysis
All the analyses were carried out using the R statistical software (R
Core Team, 2021). A separate code was written for the extraction
of median LRA. Outliers were filtered out using the Tukey’s box
plot method (Hoaglin, 2003). A soybean genotype previously

included was dropped due to clear visual differences with mung
beans. The preprocessing steps above left 8,611 observations
represent 375 genotypes for the analysis. Most of the reported
analysis is from day 15 data with references and comparisons
to days 12 and 18. Day 15 was chosen as a good representation
of root growth between day 12 and day 18. A subset of ARIA
traits was used for the analysis (Table 1). They were informed
by traits used in a similar study by Aski et al. (2021) and traits
important for the iRoot categories: topsoil foraging, and steep,
cheap, and deep ideotypes described by Falk et al. (2020b).
A mixed linear model (Eq. 1) was used to extract the best linear
unbiased predictors (BLUPs) for each trait per genotype. All
model variables were considered a random effect except chamber,
which was a fixed effect. The model was run within the H2Cal
function from the inti package (Lozano-Isla, 2021), which utilized
the unbalanced data (Cullis et al., 2006; Piepho and Möhring,
2007; Schmidt et al., 2019). Broad sense heritability (H) was
calculated using Eq. 2 (Cullis et al., 2006). Pearson correlations
were used to draw correlations among the root traits.

Yijkl = µ + Chamberi + (1|Chamber :Block)ij + (1|Chamber :

Block : Sub− block)ijk + (1|Genotype)l + eijkl (1)

Where µ is the overall population mean, Yijkl is the phenotypic
trait, Chamberi is the fixed effect of the ith growth chamber (1|
Chamber:Block)ij is the random interaction effect between the ith
chamber and the jth block (1| Chamber:Block:Sub-block)ijk is the
three way random interaction effect between the ith chamber, jth
block and kth sub-block (1| Genotype)l is the random effect of
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TABLE 1 | Subset of traits of mung bean root architecture extracted from the Automated Root Image Analysis (ARIA) software and used for the analysis, clustering, and
iRoot category.

Trait name Symbol Unit Trait description

Total root length TRL cm Cumulative length of all the roots in centimeters

Primary root length PRL* cm Length of the primary root in centimeters

TRLUpper TRLUpper* cm Total root length of the upper one third

Depth DEP cm The maximum vertical distance reached by the root system

Width WID* cm The maximum horizontal width of the whole RSA

Diameter DIA cm Diameter of the primary root

Lateral root branches LRB Count Number of lateral root branches

Network area NWA Count The number of pixels that are connected in the skeletonized image

Convex area CVA cm2 The area of the convex hull that encloses the entire root image

RhizoArea RHZO cm2 Length of 2 mm surrounding the TRL

Primary root surface area PRA cm2 Surface area of the primary root

Volume VOL cm3 Volume of the primary root

Lateral root angles LRA* Angle Root angles along the extent of all lateral roots

Solidity SOL* Ratio The fraction equal to the network area divided by the convex area

Length distribution LED Ratio TRLUpper/TRLLower

Total root length-growth rate TRL_GR* cm/day (TRL_day 15 – TRL_day 12)/3

*Traits used for iRoot ideotypes. RSA, root system architecture.

the lth genotype, and eijkl is the random error term following the
N(0,q2e).

H2
Cullis = 1− V̄BLUP

1 /2δ2
g (2)

Where δ2
g is the genotypic variance and V̄BLUP

1 is the mean
variance of the difference of two genotypic BLUPs for the
genotypic effect (Schmidt et al., 2019).

Root Ideotypes, Phenotypic, and
Genotypic Diversity
The iRoots were formed by first ranking the genotypes under each
trait, getting the sum of the ranks and then ranking the sums for
each category. For topsoil foraging, the genotypes were ranked
individually under the TRL_GR, WID, and TRLUpper. The sum
of the ranks was ranked, and this yielded to the final ranking of
each genotype. A similar approach was used for the “steep, cheap,
and deep” ideotype using the TRL_GR, steep LRA, and SOL2.

The principal component analysis (PCA) and hierarchical
clustering were used in both the phenotypic and genotypic
clustering of the genotypes using the Euclidean distance matrix.
The base R function hclust with methods “complete” and
“prcomp” was used. The package factoextra (Kassambara and
Mundt, 2020) was used to determine the optimum number
of clusters to be used by comparing 30 different indices. The
clusters were related to the country of origin. Heat maps
were developed according to the trait performance and iRoot
category ranking using the Complex Heatmap package (Gu
et al., 2016). Phenotypic and genotypic dendrograms were made
using the dendextend (Galili, 2015) and circlize (Gu et al.,
2014) packages. The pairwise fixation index (Fst) was calculated
between the two genotypic clusters using the function genet.dist
(method = “WC84”) within the ade4 package (Dray Stéphane,
2007). Fst is an indication of the amount of differentiation within

subpopulations, with low Fst indicating high gene flow (low
genetic diversity) (Wright, 1965).

Genome-Wide Association Analysis
In total, 26,550 SNPs (marker data) were obtained using
genotype-by-sequencing and preprocessed earlier by Sandhu and
Singh (2021). Sites with >15% missing data and minor allele
frequency > 0.01 were filtered out. GWAS was carried out
using BLUPs on all the trait data. Associations were conducted
using the Trait Analysis by aSSociation, Evolution, and Linkage
(TASSEL, Bradbury et al., 2007) software using a linear mixed
model (Yu et al., 2006). Both the kinship matrix and PCA
were generated in TASSEL controlling for population structure.
Bonferroni correction with p-value = 0.05 was used to control for
false positives and declare significant associations (Kuo, 2017).
Manhattan plots for visualizing the associations were carried
out in R using the CMplot library in the rMVP package (Yin
et al., 2021). Authors also used a newly developed computational
framework, selection of variables with embedded screening
(SVEN), a Bayesian based model to run GWAS (Li et al., 2020).
The identification of candidate genes was carried out by locating
the significant SNP on the sequenced and annotated mung bean
genome using the “genome data viewer” tool at the National
Center for Biotechnology Information (NCBI; Kang et al., 2014).

RESULTS

Descriptive Statistics, Correlation, and
Heritabilities
We observed the significant phenotypic variability for root traits.
The coefficient of variation (CV) ranged from 2 to 19% and
standard deviation (SD) from 0.01 to 628.67 (different units of
measurements for traits). Most of the traits had low SD, i.e., <10
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except for TRL, VOL, TRLUpper, and CVA that had SD < 100,
while RHZO had an SD > 500. TRL, TRLUpper, CVA, WID,
NWA, RHZO, and TRL_GR had 10% < CV < 20%, while
the rest of the traits had CV < 10% (Table 2). Day 12 CV
ranged from 0 to 22% while for day 18 was 0–28%. Dry matter
weight measurements, including shoot dry weight (SDW), root
dry weight (RDW), and total dry weight (TDW) had CV 24, 28,
and 26%, respectively, at day 18 (Supplementary Table 2).

The correlation between the root traits varied. TRLUpper was
highly correlated with WID, CVA, and TRL_GR. NWA was
highly correlated with WID, CVA, TRL_GR, TRLUpper, RHIZO,
and TRL. LRA had the lowest correlation with the other traits.
There was no correlation between LRA and VOL, and DIA
(Figure 2). Correlation on day 12 was high. Negative correlations
were observed at day 18 with SOL2 being negatively correlated to
most traits and LRA negatively correlated with root shoot ratio
(RSR) (image not shown).

Broad sense H ranged from 0.22 to 0.73. LRA and WID had
the lowest and highest H at 0.22 and 0.73, respectively. DIA, VOL,
surface area, LRB, and LRA had H < 0.5, while TRL, PRL, LED,
TRLUpper, CVA, DEP, WID, NWA, RHZO, SOL2, and TRL_GR
had H > 0.5 (Table 2 and Figure 3). H was high at days 15 and
18 and low on days 12 for most of the traits. Day 12 H ranged
from 0.24 to 0.51, with TRLUpper having the highest H. Day 18
H ranged from 0.23 to 0.87, with dry weight traits (i.e., SDW,
RDW, and TDW) showing higher levels at 0.84, 0.87, and 087,
respectively (Supplementary Table 2).

Root Ideotypes
We described two root ideotypes, namely, topsoil foraging
and “steep, cheap, and deep.” PI425425 (India), PI425045
(Philippines), PI425551 (Korea), PI264686 (Philippines), and

TABLE 2 | Descriptive statistics and broad sense heritability of a subset of root
traits from day 15 of the Iowa (IA) mung bean genotypes estimated from eight
replications.

Trait Mean Median Min Max SD CV (%) H

TRL 230.22 225.56 159.22 325.48 35.1 15 0.66

PRL 42.72 42.65 36.48 48.06 1.7 4 0.54

LED 2.05 2.04 1.53 2.6 0.19 9 0.51

DIA 0.24 0.24 0.23 0.26 0.01 3 0.31

VOL 261.41 260.76 223.14 316.38 17.76 7 0.29

Surface area 31.42 31.45 28.9 34.76 1.06 3 0.24

TRLUpper 150.85 149.35 99.82 216.32 22.63 15 0.64

CVA 412.66 407.67 258.73 567.28 65.28 16 0.66

DEP 37.74 37.7 33.47 40.66 1.16 3 0.53

WID 18.68 18.4 11.69 25.47 2.88 15 0.73

NWA 2.82 2.77 1.98 3.95 0.41 15 0.64

LRB 137.67 137.82 124.39 152.1 4.28 3 0.32

RHZO 4651.19 4588.15 3272.6 6280.68 628.27 14 0.63

SOL2 140.92 140.94 107.82 164.14 9.6 7 0.57

LRA 50.23 50.18 46.64 53.36 1.11 2 0.22

TRL_GR 24.64 23.88 15.76 39.69 4.64 19 0.68

Full trait descriptions are in Table 1. SD, standard deviation; CV, coefficient of
variation; H, broad sense heritability.

FIGURE 2 | Correlations among the root traits at day 15 using the Iowa (IA)
mung bean panel. Experiments were conducted in controlled environment
chambers and included eight replications.

PI425085 (Sri Lanka) emerged as top five in the topsoil foraging
category. PI425594 (unknown origin), PI425599 (Thailand),
PI425610 (Afghanistan), PI425485 (India), and AVMU0201
(Taiwan) were top five in the “steep, cheap, and deep”
ideotype (Table 3 and Figure 4). For day 18, the PI425551
(Korea), PI264686 (Philippines), PI426026 (Thailand), PI425085
(Sri Lanka), and PI426042 (Australia) were the top five
in the topsoil foraging category. In the “steep, cheap, and
deep” ideotype, PI264686 (Philippines), PI425551 (Korea),
PI363514 (India), and PI425599 (Thailand) were the top four
(Supplementary Table 3). No iRoot categories were created on
day 12 since TRL_GR could not be calculated.

Phenotypic and Genotypic Clusters
Three distinct phenotypic clusters were observed using the root
trait data, while two clusters were observed from the SNP data
of the genotypes (Figure 5). Phenotypic clusters 1, 2, and 3 had
69, 163, and 135 genotypes, respectively. Genotypic clusters 1
and 2 had 48 and 319 genotypes, respectively. India had the
highest number of genotypes in both genotypic clusters 1 (37)
and 2 (197). The United Kingdom had 13 genotypes in genotypic
cluster 2, while the rest of the countries had less than 10 genotypes
in each cluster. The United Kingdom and United States had
no genotypes in genotypic cluster 1 (Supplementary Figure 1).
Similarly in the phenotypic clusters 1, 2, and 3, India led with
17, 94, and 123 genotypes. The rest of the countries had less than
ten genotypes (Supplementary Table 3). On day 18, there were
two phenotypic clusters and two genotypic clusters. Phenotypic
clusters 1 and 2 had 250 and 117 genotypes, respectively.
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FIGURE 3 | Broad sense heritability (H) of select root related traits at days 12, 15, and 18. Experiments were carried out with the IA mung bean panel with
genotypes grown in growth chambers.

Genotypic clusters had similar composition as from day 15. In the
phenotypic cluster, India had 132 and 102 genotypes in clusters
1 and 2. The rest had less than 10 genotypes (Supplementary
Figure 2 and Supplementary Table 4).

PC1 and PC2 explained 7.6 and 3.9% of the total genotypic
variation in the IA mung bean GWAS panel (Figure 6). The
PCs were not able to discern any distinct subpopulations.
Superimposition of iRoot ranking on the PCs showed that
genotypes from India dominated both in the “steep, cheap, and
deep” and topsoil foraging (Figures 6C,D). For day 18, the top
genotypes in the “steep, cheap, and deep” category are mostly
from India, while in the topsoil foraging, they are mostly from the
other countries, Australia, the United Kingdom, and others with
few from India (Supplementary Figure 3). The complex heat
map showed the patterns and correlations among the genotypic
clusters, iRoot type rank, and root trait performance used in

TABLE 3 | Top five genotypes by iRoot rank categories from day 15 image
analysis.

Topsoil foraging Country “Steep, cheap, and deep” Country

PI425425 India PI425594 Unknown origin

PI425045 Philippines PI425599 Thailand

PI425551 Korea PI425610 Afghanistan

PI264686 Philippines PI425485 India

PI425085 Sri Lanka AVMU0201 Taiwan

clustering (Figure 7). Most of the traits in genotypic cluster 2 had
a better ranking in the topsoil foraging, while cluster 1 contained
mostly the worst ranked in the same category. Genotypes were
evenly distributed in ranking among the genotypic clusters 1 and
2 in the “steep, cheap, and deep” iRoot category. Some of the
best genotypes for the traits, including TRLUpper, RHZO, NWA,
WID, and CVA, were in genotypic cluster 2, while cluster 1 was
dominated by low values in the above traits. LRA, SOL2, LED,
LRB, PRL, and DEP looked evenly distributed within genotypic
clusters 1 and 2 (Figure 7). The pairwise Fst was 0.05.

Genome-Wide Association Studies and
Candidate Genes
Association studies revealed significant SNPs for traits on
different days. Day 12 LRA had seven significant SNPs. Day
15 LED had one significant SNP. On day 18, TRL_GR, TDW,
and volume each had one significant SNP, while LED had two
significant SNPs (Figure 8). Out of the seven SNPs for day 12
LRA, the first three had no mapping on the mung bean genome
with no gene ID, genomic context, and gene description. On day
18, significant marker 8_10447903 for LED is an uncharacterized
gene. Significant SNPs were found for the same trait LED, for
days 15 and 18, marker 8_11481602 and marker 8_10447903,
respectively. A summary of the significant SNP associations from
the TASSEL software is presented in Table 4.

Day 12 SNP markers 2_2226549, 2_19972687, 7_19972687,
and 11_7608353 were associated with LRA. Marker 2_2226549
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FIGURE 4 | Mung bean iRoot ideotypes, (A) top two genotypes in the topsoil foraging and (B) top two genotypes in the steep, cheap, and deep after ranking the
genotypes in the IA mung bean panel.

FIGURE 5 | Day 15 phenotypic (A) and genotypic (B) clusters of the root traits and single-nucleotide polymorphism (SNP) data, respectively, generated using
hierarchical clustering of the core traits for all the genotypes. The labels represent the Plant Introductions (PI) and country of origin.

is located within an exon for a gene described as lignin forming
anionic peroxidase (LOC106755829). Marker 2_19972687 is
located within an exon encoding a gene (-)-germacrene D
synthase-like (LOC106753988). Marker 7_19972687 is located

within an exon of the beta-galactosidase 3 gene (LOC106768494).
Marker 11_7608353 associated with LRA also located within
an exon for a gene described as protein FAR1-RELATED
SEQUENCE 5 (LOC106776541). The same significant SNP

Frontiers in Plant Science | www.frontiersin.org 8 January 2022 | Volume 12 | Article 808001

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-808001 January 22, 2022 Time: 15:5 # 9

Chiteri et al. Iowa Mung Bean Root Variability

FIGURE 6 | Day 15 principal component analysis of the genotypes for the IA mung bean panel, (A) colored by country of origin, (B) colored by genotypic clusters,
(C) color gradient showing ranking in the steep, cheap, and deep iRoot category, and (D) color gradient showing ranking in the topsoil foraging iRoot category (the
lower the rank, the better the genotype).

marker 8_11481602 associated with LED from days 15 and 18
was found within the exon of a monodehydroascorbate reductase
gene (LOC106772343). Day 18 SNP marker 8_10447903 was
found within an intron for an uncharacterized gene but close
to the LOC106772343 gene. Day 18 SNP marker 3_10004492
associated with TRL_GR is located within the exon for a
gene coding for mannose-1-phosphate guanylyltransferase 1
(LOC106757974). Day 18 SNP maker 5_35265704 associated
with TDW is located in the exon for a gene described
as putative dehydration-responsive element-binding protein
2H (LOC106760865).

Selection of variables with embedded screening resulted
in several significant markers for most of the traits across
the 3 days (Figure 9, Supplementary Figures 4–6, and
Supplementary Table 5). Two markers for LED (8_44518003)
and TDW (5_35265704) from day 18 did overlap with TASSEL
results. Marker 8_44518003 is an exon within the gene
encoding monodehydroascorbate reductase (LOC106772343),
while marker 5_35265704 was found within the gene encoding
putative dehydration-responsive element-binding protein 2H
(LOC106760865). Day 18 marker for TRLUpper (2_22583526)
was found within an exon in the gene encoding coilin
(LOC106756657), while marker for DEP (5_23119832) was

found in an exon within the gene encoding expansin-
A11 (LOC106761944).

DISCUSSION

Controlled environments have been successfully used to study
organisms out of their in situ environments (Crop Science
Controlled Environment Research Guidelines, 2021). Plants in
controlled environments may be exposed to similar conditions
as would be in the field to help better achieve the objectives under
study (Tibbitts and Langhans, 1993). There have been successful
results for measuring various above-ground phenotypes in
controlled environments, but below-ground phenotypes pose
additional challenges (White et al., 2013). While studies in
controlled environments do not imitate what in situ root
environments look like, they are helpful in a priori screening
of genotypes to minimize the heavy below-ground phenotyping
work required in the field (Lynch and Brown, 2012; Li R. et al.,
2015; Ye et al., 2018).

Mung beans are mostly grown on residual moisture after
primary crops in most of Southeast Asia (Poehlman and Milton,
1991; Aski et al., 2021). In the Western world, mung beans
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FIGURE 7 | Heat map revealing patterns between the genotypic clusters, iRoot category, and root traits performance for the genotypes in the IA mung bean panel.
The dendrogram on the y-axis represents the genotypic clusters (green = 1 and pink = 2). The dendrograms on the top represent the iRoot category and root trait
performance.

planted in the summers depend highly on the moisture residue,
often following a wet, cold spring. In IA, mung beans are planted
around the first week of June, capitalizing on the intense solar
radiation for rapid growth (Sandhu and Singh, 2021). This would
explain why mung beans, like other legume species, would be
ideal with the “steep, cheap, and deep” root ideotypes, to chase
the water and the soluble nitrogen before the establishment
of root nodules for atmospheric nitrogen fixation. Schneider
et al. (2021) showed that steep root angles improved nitrogen
uptake in silico in maize. Using the OpenSimRoot model, an 11%
increase in nitrogen uptake and a 4% increase in plant biomass
were predicted at 40 days of growth (Schneider et al., 2021).

Lynch and Brown (2012) showed that common bean
genotypes with wide basal root angles were superior in
phosphorus (P) acquisition, while the ones with narrow basal
root angles were superior in water acquisition during drought
conditions. A recent study looked at the P efficiency of mung
bean root morphology traits in low and optimum conditions
(Reddy et al., 2020), a trait associated with topsoil foraging. They
found Indian improved cultivars would be better with regards to
P foraging. We identified the top genotypes, including PI425425
(India), PI425045 (Philippines), PI425551 (Korea), PI264686
(Philippines), and PI425085 (Sri Lanka), in the topsoil foraging
(Table 3). Our hypothesis is that this represents the improved
germplasm developed in India or after migration from India,
while some of the lower ranks are still landraces or wild relatives,

but this will need to be evaluated further in field conditions.
For example, AVMU0201 is from Taiwan, the World Vegetable
Center (Brassica, 2014) (formerly AVRDC), which has been
breeding mung beans since the 1970s. Accessions PI425045 and
PI264686 are from the Philippines, which also hosts a duplicate
mung bean collection at the University of the Philippines, Los
Banos (Poehlman and Milton, 1991).

We reported a wide variability of the root trait phenotype in
the IA mung bean panel during the early stages of development
(Table 2). Indian genotypes represented 24, 56, and 89% in the
phenotypic clusters 1, 2, and 3 with an overall presence of 67%
(Supplementary Figure 4). The high H for traits on days 15
and 18 could be due to better capture of the traits by ARIA
unlike day 12 as it might be too early for trait development
and differentiation. The high correlation could also be explained
by the fact that young plants are utilizing all nutrients for
the vegetative growth. These conclusions cannot be assumed
to represent the rest of the developmental stages of mung
bean plants, prompting the need for further studies. Similar
observations were made in soybean (Falk et al., 2020b).

Genetic variability is one of the most important factors in
a breeder’s toolbox (Cobb et al., 2019). Indian genotypes were
76 and 67% in the genotypic clusters 1 and 2 with an overall
presence of 63% (Supplementary Figure 4). The lack of clear
subpopulations as indicated by the PCs shows the homogeneity
within the mungbean accessions (Figure 6). Previous studies
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FIGURE 8 | Manhattan plots of –log10(p) vs chromosomes of SNP markers
associated with the mung bean traits lateral root angles (LRA) (day 12), length
distribution (LED) (day 15), and volume (VOL), LED, total dry weight (TDW),
total root length-growth rate (TRL_GR) for day 18. The threshold line is the
Bonferroni correction at p = 0.05 [at –log10(p) = 5]. Significant SNPs are
highlighted in red and annotated with the marker name. Trait—SNP
associations performed using the Trait Analysis by aSSociation, Evolution, and
Linkage (TASSEL) software.

have shown similar results using simple sequence repeat markers
in the Indonesian germplasm (Lestari et al., 2014) and the
USDA germplasm (Wang et al., 2018). In other studies, the
STRUCTURE (Pritchard et al., 2000) analysis showed between
3 and 6 subpopulations although no clear pattern was seen
according to their geographical origins (Lestari et al., 2014; Wang
et al., 2018; Sandhu and Singh, 2021). A similar observation,
attributed to population admixture, was shown in common bean
(Burle et al., 2010). The low Fst of 0.05 shows a high gene flow
or low differentiation between the two genotypic clusters. The
low Fst in this study confirms similar earlier reports within the
USDA collections (Wang et al., 2018) and within the Indonesian
germplasm (Lestari et al., 2014). Overall, results indicate a narrow
genetic diversity in mung bean (Poehlman and Milton, 1991;
Singh D. P. et al., 2021). Early breeders had to opt for mutation
breeding to increase the genetic diversity. The narrow genetic
base can be explained by the self-pollinated nature, very low
cross-pollination frequencies, and poor hybridization of mung
bean with otherVigna species (Poehlman and Milton, 1991; Singh
D. P. et al., 2021). The narrow genetic diversity within the IA
panel seems to reflect the fact that most of the accessions were
collected on the Indian subcontinent, where mung bean was
domesticated (Fuller, 2007). Our results support the idea that, in
pulses, the lack of genetic diversity is due in part to the continuous
use of a few genotypes as parents in the population development
(Kumar et al., 2011). This shows the urgency of breeding efforts
to diversify the genetic basis.

Adaptive roots to biotic and abiotic stresses will play a key
role in bridging the yield gap in crop plants in the changing
climate. A solid understanding of the genetic and environmental
factors impacting the RSA will be important to the breeding of
stable cultivars (see review, Lynch, 2007; Koevoets et al., 2016).
RSA traits associated with response to abiotic stresses, including
nutrient deficiency, drought tolerance, salinity, flooding, and
temperature, and the underlying candidate genes have previously
been studied (see review, Koevoets et al., 2016). Narrow LRA,
high LED, and increased LRB were highly correlated to high
P accumulation in Arabidopsis (Gruber et al., 2013), maize
(Zhu et al., 2005), and common bean (Bonser et al., 1996).
Auxins and strigolactones are key regulators in root and shoot
development. An auxin receptor TRANSPORT INHIBITOR
RESPONSE1 (TIR1) was shown to be responsible for the change
in LRB as a response to low P levels (Pérez-Torres et al., 2008).
Reduced LRB and increased PRL are characteristics of the “steep,
cheap, and deep” ideotype, where the plant increases resource
allocation to chase water and the mobile N in the deeper soil as
evidenced in Arabidopsis and maize (Lynch, 2013). The nitrate
transporters NRT1.1 and NRT2.1 were identified for the reduced
LRB and increased PRL (Linkohr et al., 2002). The extended root
system in Arabidopsis (Yu et al., 2008), rice, cotton, and poplar
(Yu et al., 2013) was attributed to HD-ZIP transcription factor
(HDG11) which promotes cell elongation by up-regulating cell
wall loosening proteins hence important for drought tolerance.

In the current study, several putative candidate genes
were identified for root traits associated with genes involved
in the plant growth and development and stress tolerance
response (Table 4). Lagrimini et al. (1997) proposed that
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TABLE 4 | Significant single-nucleotide polymorphisms (SNPs) for results of association studies for traits across days 12, 15, and 18 as run in the Trait Analysis by
aSSociation, Evolution, and Linkage (TASSEL) software.

Day Trait Marker Chr Pos p Add_effect MarkerR2 Gene ID Genomic context Gene description

12 LRA 6_19440349 6 19440349 5.65E-08 –1.53E+00 0.10564 None None None

LRA 2_9095694 2 9095694 4.26E-07 1.44515 0.08585 None None None

LRA 7_11284246 7 11284246 3.86E-06 NaN 0.06085 None None None

LRA 2_2226549 2 2226549 6.50E-06 –1.10E+00 0.06824 LOC106755829 Exon Lignin-forming anionic
peroxidase-like

LRA 7_1916612 7 1916612 6.55E-06 –1.12E+00 0.06827 LOC106768494 Exon Beta-galactosidase 3

LRA 2_19972687 2 19972687 8.13E-06 1.54662 0.07675 LOC106753988 Exon (–)-Germacrene D
synthase-like

LRA 11_7608353 11 7608353 8.66E-06 1.06558 0.06673 LOC106776541 Exon Protein FAR1-RELATED
SEQUENCE 5

15 LED 8_11481602 8 11481602 2.22E-06 0.09192 0.07531 LOC106772343 Exon Monodehydroascorbate
reductase

18 TRL_GR 3_10004492 3 10004492 4.26E-06 –2.48E+00 0.06752 LOC106757974 Exon Mannose-1-phosphate
guanylyltransferase 1

LED 8_11481602 8 11481602 4.86E-07 0.1291 0.08614 LOC106772343 Exon Monodehydroascorbate
reductase

LED 8_10447903 8 10447903 5.27E-06 –1.14E-01 0.07111 LOC106771882 Intron Uncharacterized
LOC106771882

TDW 5_35265704 5 35265704 4.92E-06 0.00902 0.06543 LOC106760865 Exon Putative
dehydration-responsive
element-binding protein

2H (DREB2)

FIGURE 9 | Selection of variables with embedded screening (SVEN) plots of marginal inclusion probability (MIP) vs chromosomes of SNP markers associated with
the mung bean traits LRA (day 12), LED (day 15), and LED, VOL, TDW, TRL_GR for day 18. Significant SNPs are boxed with the marker name.

anionic peroxidases, associated with LOC106755829 (day 12
LRA), play a role in plant host defense using a transformed
tobacco (Nicotiana tabacum L.) plant. They have also been
identified as major enzymes in cell wall lignification and found
in large quantities in the xylem tissue (Sasaki et al., 2007).
(-)- Germacrene D synthase, associated with LOC106753988 (day
12 LRA), is a member of sesquiterpene synthases family of
plant proteins that have the capability of converting a precursor
molecule farnesyl diphosphate into many sesquiterpene isoforms
(Picaud et al., 2006). (-)- Germacrene D synthase catalyzes
the formation (-)- Germacrene D, which is known to have
strong effects on insects. Beta-galactosidase 3 is associated
with Loci LOC106768494 (day 12 LRA), which has been

implicated in adventitious root development via transcriptomic
studies in mung bean (Li S.-W. et al., 2015). In rice, beta-
galactosidase 1 and 2 were found to be highly expressed in
the root and shoot seedlings, with less expression in flowers
and immature seeds. Beta-galactosidases are important in the
breakdown of molecular complexes (carbohydrates, glycolipids,
and glycoproteins) that contain galactose (Chantarangsee et al.,
2007). Beta-galactosidases would be important in the supply
of the required energy from storage reserves during the rapid
growth phase. The Far-related sequence (FRS) family, associated
with LOC106776541 (day 12 LRA), is conserved among plants.
Genes in this family are involved in multiple cellular processes
(Lin Ma-FAR1). For example, Arabidopsis (Arabidopsis thaliana)
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mutants of fhy3 were less sensitive to both osmotic and salinity
stress while also reducing the ABA-dependent inhibition of
seedling root elongation, seedling greening, and germination
(Tang et al., 2013; Ma and Li, 2018).

Transcripts of the gene encoding monodehydroascorbate
reductase associated with LOC106772343 (day 15 and 18
LED), an antioxidant enzyme, were significantly reduced in
the root elongation zone when roots for tall fescue (Festuca
arundinaceaSchreb.cv. “K-31”) when exposed to water stress (Xu
et al., 2015). Water stress is associated with high concentration of
reactive oxygen species. A mutation in theArabidopsis CYT1 gene
encoding mannose-1-phosphate guanylyltransferase 1 associated
with LOC106757974 (day 18 TRL_GR) showed deficiency in
the cell wall after depletion of GDP mannose. The mutants
exhibited radial swelling and accumulation of callose at the
root tip. The functional analysis revealed mannose-1-phosphate
guanylyltransferase 1 is involved in N-glycosylation during the
cellulose synthesis (Lukowitz et al., 2001). An orthologous gene
(DREB1A/CBF3 and DREB2A) associated with LOC106760865
(day 18 TDW), in Arabidopsis, encodes transcription factors
that are involved in activating downstream genes involved in
drought and cold stress (Sakuma et al., 2006). In another study,
DREB2A proteins were found to increase the stress tolerance by
modulating root architecture traits like the lateral root number
and root length (Shukla et al., 2006; Agarwal et al., 2010).

Selection of variables with embedded screening loci associated
with LOC106756657 (day 18 TRLUpper) and LOC106761944
(day 18 DEP) were associated with the adventitious root
development in mung bean like the TASSEL results (Li S.-W.
et al., 2015). Coilin is important in the formation of Cajal bodies,
which are mostly associated with RNA processes. Kanno et al.
(2016) suggest that coilin may be acting in multiple levels fine
tuning expression of some genes important for environmental
adaptation. Expansins are proteins involved with cell wall
loosening and modification, partly mediated by the pH expansion
of the cell wall during plant growth (Lee et al., 2001). In rice,
Zhiming et al. (2011) identified a gene encoding EXPA17 that was
important for the root hair growth, which requires intensive cell
wall modification.

The high H among the dry weight measurements can be used
in the selection of parents with the root to shoot ratio (RSR)
previously used as a measure of the photosynthetic materials
allocations (Figure 3). During a low supply of water, nitrogen,
and phosphorus in the soil, more resources are allocated to roots
relative to shoots (Xu et al., 2015; Lynch et al., 2021). Within
legumes QTLs for fibrous rooting/surface area (Abdel-Haleem
et al., 2011), root length (Prince et al., 2015), lateral root number,
and root thickness (Manavalan et al., 2015; Prince et al., 2019)
in soybean have been mapped. In cowpea, QTLs for basal root
angle, root diameter, median width, and width accumulation
were reported (Burridge et al., 2017). In pea, root length QTL
(Fondevilla et al., 2010) and in common bean basal root angle
QTL have been identified. Root length density, root surface
area, RDW ratio, and root depth in chickpea have been mapped
(Jaganathan et al., 2015). In cereals for, maize and sorghum
associations with area, convex hull area, median width, maximum
width, width-profile angle, and adjusted depth were identified
(Zheng et al., 2020), deep root mass, and the number of deep

roots in rice (Courtois et al., 2013) and PRL, RDW in wheat
(Sanguineti et al., 2007).

Our study has elucidated the phenotypic and genotypic
variability for the root traits in the 375 genotypes in the IA
mung bean panel. We identified candidate genotypes that can
now be advanced to the greenhouse or field for further testing,
especially for the root ideotypes. If their trait response and
expression can be confirmed, these can be utilized as parents in
the breeding program. Using GWAS, we identified significant
markers associated with several RSA traits. Taken together,
the ideotypes after field evaluation and significant markers
can be utilized as tools for marker-assisted selection and crop
improvement in mung bean breeding programs.
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