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The ability to quantify the colour of fruit is extremely important for a number of
applied fields including plant breeding, postharvest assessment, and consumer quality
assessment. Fruit and other plant organs display highly complex colour patterning. This
complexity makes it challenging to compare and contrast colours in an accurate and
time efficient manner. Multiple methodologies exist that attempt to digitally quantify
colour in complex images but these either require a priori knowledge to assign colours
to a particular bin, or fit the colours present within segment of the colour space
into a single colour value using a thresholding approach. A major drawback of these
methodologies is that, through the process of averaging, they tend to synthetically
generate values that may not exist within the context of the original image. As such,
to date there are no published methodologies that assess colour patterning using
a data driven approach. In this study we present a methodology to acquire and
process digital images of biological samples that contain complex colour gradients. The
CIE (Commission Internationale de l’Eclairage/International Commission on Illumination)
1E2000 formula was used to determine the perceptually unique colours (PUC) within
images of fruit containing complex colour gradients. This process, on average, resulted
in a 98% reduction in colour values from the number of unique colours (UC) in the
original image. This data driven procedure summarised the colour data values while
maintaining a linear relationship with the normalised colour complexity contained in the
total image. A weighted 1E2000 distance metric was used to generate a distance matrix
and facilitated clustering of summarised colour data. Clustering showed that our data
driven methodology has the ability to group these complex images into their respective
binomial families while maintaining the ability to detect subtle colour differences. This
methodology was also able to differentiate closely related images. We provide a high
quality set of complex biological images that span the visual spectrum that can be used
in future colorimetric research to benchmark colourimetric method development.

Keywords: computer vision, fruit, plant, colour analysis, quantification of colour, region-growing algorithm,
growing

Abbreviations: 1E2000, A mathematical formula used for measuring the similarity of tristimulus values. The purpose of
creating the 1E2000 metric was to measure colour differences more accurately and in a manner that is perceptually uniform
with human observation; CIE, Commission Internationale de l’Eclairage/International Commission on Illumination; PUC,
Perceptually unique colours; PUC-table, A table containing the hexadecimal codes of the perceptually unique colours
generated using the region-growing algorithm. Also included in this table is the corresponding percentage cover of the subject
that assigned in each PUC; RGB, Tristimulus colour components (Red, Green, Blue); UC, Unique colours.
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INTRODUCTION

Phenotyping is an important scientific field that involves
quantifying the observable physical properties of an organism.
In plant science there is a constant upward pressure to
produce increasingly accurate and precise phenotyping strategies
to empower a high-resolution understanding of the genetic,
metabolic, and transcriptomic drivers of plant phenotypes
(Furbank and Tester, 2011; Cobb et al., 2013; Dhondt et al.,
2013; Mutka and Bart, 2014; Rahaman et al., 2015; Yamamoto
et al., 2017; Ilahy et al., 2019; Pieruschka and Schurr, 2019).
Due to its economic, health, and cultural significance, colour
in plants has been studied for over 100 years (Kraemer, 1906;
Farago et al., 2018). Plant organs show a huge diversity of colours,
with some organs such as flowers and fruit often displaying
complex colour patterns. Different colours often extend across
the tissue, cellular, and subcellular levels of the plant organ
(Noda et al., 1994; Lister et al., 1996; Rat’kin, 2000; Tan et al.,
2013). Plants control the expression of colour through the
accumulation of pigments (biochromes) that are often located
within the organelles of the cells (Mol et al., 1998; Moreau et al.,
2012). They can also control colour by manipulating the pH
of the intracellular space containing the pigment and through
the organisation of pigment containing cell layers (Lancaster,
1992; Noda et al., 1994; Liu et al., 2015). Fruit often display a
wide range of colour patterning in their external tissues, with
differences observed between the exposed blush and shaded non-
blush sides of fruit (Lancaster, 1992; Delgado-Pelayo et al., 2014)
as well as between the external and internal tissues of an organ
(Espley et al., 2007). Colour patterning can also vary between
different species of the same genus and even between different
cultivars of the same species (Goodrich et al., 1992; De Jong et al.,
2004; Moreau et al., 2012; Zhao et al., 2012; Ilahy et al., 2015;
Iwashina and Mizuno, 2020).

In a biological context, colour can be used by plants as a
signalling mechanism to other organisms that might interact with
the plant (Chittka and Menzel, 1992; Koes et al., 1994; Clegg and
Durbin, 2000). These interactions can include the inhibition of
predation of leaves, the attraction of pollinators to flowers, or
in the case of fruit, as a cue to potential seed dispersers that
the fruit is ready to be consumed. In addition to displaying
colouration differences between organs, some plants are also
capable of changing the colour of an organ during development
and/or in response to an environmental cue (Lancaster, 1992;
Shen et al., 2011; Liu et al., 2015). The diverse range of colour
polymorphism observed in the plant kingdom is particularly
evident in flowers and fruit but is also present in the stems, leaves,
tubers, and roots.

It is still common for academic and industrial studies to
grade the colour of plant organs using subjective visual scales
involving human participants. This is a challenging task to
achieve in a precise or objective manner due to the complex
nature of colour patterns observed in plant organs like fruit
(Thierry et al., 2008). There are also significant analytical
challenges when comparing human observed colour data due to
variation between individual participants in both the type and

the number of photoreceptors used to detect colour (Nathans
et al., 1986). Other factors that can influence the perception of
colour by humans include recall memory, retinal fatigue, and
interactive effects of the background and shape of the object
(Perez-Carpinell et al., 1998; Bloj et al., 1999; Duffy and Chan,
2002). These factors make it difficult to objectively compare
human perceived colour data with simple patterning. The
complex and multifaceted nature of plant colour composition
makes accurate description of human perceived colour data
largely impossible.

Multiple research methodologies have been employed to
circumvent the human perception of colour (Delgado-Pelayo
et al., 2014). Some studies have aimed to directly measure the
chemical composition of plant biochromes within the cells of
sampled tissue. These studies attempted to use the quantified
chemical compound(s) as a proxy to estimate the colour. This
methodology assumes linearity between the quantity of the
chemical and physiological presentation of the colour and does
not account for the 2-dimensional or 3-dimensional distribution
of biochromes within the plant organ. Advances in digital
technologies have offered an alternative approach to quantify
and compare colour attributes. Some commonly used tools
include the Konica Minolta Chroma-meter that digitally captures
the reflectance of light within a known radial area. These
tools output a device-independent trinary CIE 1976 (L∗a∗b∗)
coordinate that describes the colour of the object by averaging
the reflectance values within the measured area (Richardson
et al., 2011; Khairi et al., 2015; Logvinenko, 2015). This type
of colour measuring system is suitable when assessing an
object with a high degree of uniformity in colour but is less
useful when trying to assess the complex colour patterning
observed in fruit.

Most commercially available image capture devices output
data in the device-dependent RGB colour space. The RGB
colour space contains more than 16 million colours making
any comparison on a colour-by-colour basis between
samples prohibitively long in terms of computational
time (Lazier, 1953; Zeileis et al., 2009; Logvinenko, 2015).
An additional challenge for these types of sensors is the
incident light source itself can affect the perception of colour
(reflected light). Fortunately this can be compensated for
by including an internal colour standard within the context
of the acquired image and by controlling the ambient
light source using a controlled environment (imaging-box)
(Kendal et al., 2013).

Currently, multiple methodologies exist that attempt to
digitally quantify colour in images but these either require
a priori knowledge to assign colours to a particular bin
(Huang et al., 2010; Ngo and Macabebe, 2016), or average
the colours present within a assayed region into a single
colour value (Fullerton and Keiding, 1997). In this study
we developed a standardised method to measure colour
and a data driven methodology to summarise and quantify
different colour patterning in cross sectional fruit/tuber images,
greatly simplifying the complexity of colours identified in
the images. The colour data simplification using this novel
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methodology were used to rebuild virtual images as a
validation process.

MATERIALS AND DATA COLLECTION

Biological Samples
A diverse selection of 28 species of fruit and tubers was
purchased from a local supermarket in Auckland, New Zealand.
These fruit and tubers represented different families including
Anacardiaceae (mango), Ebenaceae (persimmon), Actinidiaceae
(kiwifruit), Lauraceae (avocado), Musaceae (banana), Rosaceae
(apple, peach, pear, plum, and strawberry), Rutaceae (grapefruit,
lemon, mandarin, and orange), and Solanaceae (potato,
tamarillo, and tomato). Each fruit was cross sectioned along its
most symmetrical side. Up to three cross sections of the same
fruit type were placed face down on the scanner on a predefined
3 × 1 grid with defined positions to allow image capture of the
individual fruit.

In a more detailed experiment to evaluate the effect of light
exclusion on anthocyanin production in fruit flesh, 100 Actinidia
chinensis var. chinensis ‘Zes008’ (red-fleshed kiwifruit) were also
studied. These fruit were harvested from a commercial orchard
based in Kerikeri New Zealand (for details see Richardson et al.,
2021). During fruit growth these fruit were either bagged with
lightproof bags (Hirst et al., 1990) from 56 days after anthesis
(DAA) for 108 days or left unbagged (control).

Image Capture
A Canon LIDE 220 flatbed scanner (Scanning element sensor:
CIS, Light source: 3 colour RGB LED) was placed in a 2 mm
black perspex box with a retractable lid to completely block
ambient light. A transparent A4 sized sheet with a printed
3 × 1 grid (140 mm × 95 mm) was placed on the scanner
platen along with an internal colour standard in the form of
an X-Rite mini-colour checker card (Mccamy et al., 1976). An
image with dimensions of 4,960 pixels (W) and 7,015 pixels
(H) was acquired at a resolution of 600 dots-per-inch/pixels-per-
inch (DPI/PPI) and output in a TIFF format. Copies of each
TIFF format image were then resaved in PNG and JPEG formats
for comparison.

Colour Standardisation and
Segmentation
The flatbed scanner used in this study used the device dependent
RGB colour space to denote colour value. It is well-established
practice that images are standardised to a control even in
controlled lighting conditions for differences in sensor sensitivity.
Fiji/ImageJ (version 1.52p) (Alam et al., 2014) was used to
calibrate the colour images using the white tile standard on
the X-Rite mini-colour checker card that was included in
each scanned image. Each fruit was then segmented from its
parent image using a colour thresholding method that excluded
the background colour (black) and saved as an independent
sibling image in TIFF format. Publicly available copies of these
images can be found at https://www.kaggle.com/petermcatee/
colorimetry-standard-fruit-images.

METHOD AND ALGORITHM
DESCRIPTION

Colorimetric Analysis
Analysis of colour data values was done on sibling images
segmented from the background using the open source software
R (v3.6.1) (R-Core-Team, 2020). Two colour space transcoding
processes were used in this study. A transcode between the gamut
of RGB colour values in each image to the hexadecimal syntax
was done using the rgb function supplied by the grDevices (v3.6.2)
package (R-Core-Team, 2020). A transcode between the gamut of
RGB colour values into the CIE 1976 (L∗a∗b∗) space was achieved
using the convertColor function tools supplied as part of the
grDevices (v3.6.2) package. This transformation used the standard
illuminant at D65 with XYZ tristimulus values normalised for
relative luminance [0.9504, 1.0000, 1.0888]. K-means clustering
performed in this study used the kmeans function provided in the
stats (v3.6.2) package. The initialisation method used for k-means
clustering was “Hartigan-Wong.”

The 1E2000 distance measure was calculated using the
CIE 1976 (L∗a∗b∗) transcoded colour data and the deltaE2000
function supplied as part of the colorscience (v1.0.8) package
(Gama and Davis, 2019). This equation was used to group
colour values based on similarity using the region-growing
algorithm, quantify differences/similarities between pixel-for-
pixel comparisons of colour values between file formats, and to
cluster images using the weighted CIE 1E2000 distance metric.

Tools supplied as part of the EBImage package were used to
parse, modify, and save image files (Pau et al., 2010). The circlize
package was used to generate the circular dendrograms presented
in Figures 1, 2 (Gu et al., 2014).

Region Growing Algorithm
The region-growing algorithm was developed and implemented
in R version 3.6. This algorithm begins by prioritising the most
frequent unique colour (UC) values within an image. The most
frequent UC value is set as a seed and it is recursively tested
against all the other UC values (queries) using the CIE 1E2000
formula. If the result of this calculation is below a threshold
value (for example ≤ 2) then the frequency of the query value is
reassigned to the seed value and the query value is removed from
the pool. This process repeats until all the UC values have been
tested and/or reassigned. The final output is a list of perceptually
unique colours (PUC) and their frequencies (as a percentage of
the total image) known as a PUC-table. The pseudocode for the
region-growing algorithm is presented in Supplementary Data
Sheet 1.

Recolouring of Images for Validation
Purposes
Recolouring of images was also done using R version 3.6 and
the EBImage package. This process uses the region-growing
algorithm stated above. It tests the colour values of all the
pixels in an image and reassigns the colour value of a pixel
if the CIE 1E2000 distance (relative to a tested seed colour)
is below the defined threshold value. In this manner all the
colours in an image are reassigned the value of their perceptually
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FIGURE 1 | A circularised diagram displaying the clustering of fruit using the weighted 1E2000 distance metric. From the centre, track 1 shows a dendrogram of the
clustered region grown data using the weighted 1E2000 distance metric against all colour values per fruit. Track 2 displays a visualisation matrix consisting of the
top 20 colours summarised by the region-growing algorithm for each respective fruit. Track 3 shows the cumulative percentage of the top 20 colours for each
respective fruit. Track 4 displays the raw image for each fruit. Track 5 indicates the name of each fruit. R, biological replicate.

unique bin and a perceptually unique raster of the image is
made. The pseudocode for recolouring images is outlined in
Supplementary Data Sheet 1.

Weighted CIE 1E2000 Distance Metric
The weighted CIE 1E2000 distance metric was developed and
implemented in R version 3.6. This metric works by using the

“perceptually unique colour (PUC) tables” generated by the
region-growing algorithm. A “transport matrix” is constructed
by undertaking a full-rank comparison of all of the PUC values
contained between two PUC-tables (images). The CIE 1E2000
distance function is used to calculate a distance metric between
each respective colour comparison. A ‘weighed distance value’
is then generated by multiplying the 1E2000 distance value by
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FIGURE 2 | (A) Representative images of segmented inner and outer pericarp tissues from Actinidia chinensis var. chinensis ‘Zes008’ kiwifruit. Fruit in this study
were either treated with bagging or not (Control) to evaluate the effect of light exclusion on anthocyanin production (red colour accumulation) in fruit flesh.
Circularised diagrams display the clustering of data from outer (B) and inner (C) pericarp segments using the weighted 1E2000 distance metric. From the centre,
track 1 shows a dendrogram of the clustered region-grown data using the weighted 1E2000 distance metric against all colour values per fruit. Track 2 displays a
visualisation matrix consisting of the top 20 colours summarised by the region-growing algorithm for each respective fruit. Track 3 shows the cumulative percentage
of the top 20 colours for each respective fruit. Track 4 indicates the name of each fruit.
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the difference in frequency (as a percentage) of the respective
PUC comparison. The closest match to a PUC value is considered
as the minimum weighed distance value contained in each
row of the “transport matrix.” The overall similarity between
two PUC profiles (all the values in a PUC-table) can then be
considered as the sum of the minimum weighed distance values
(closest matches). This is similar to Wasserstein metric but
uses the CIE 1E2000 formula to define distance and factors in
the frequency/abundance difference between colour values. The
pseudocode that was used to generate the CIE 1E2000 weighted
distance matrix can be found in Supplementary Data Sheet 1.

RESULTS

Scanner Based Imaging
To standardise the colour measurements, a flatbed scanner was
used within a purpose built light-proof box. This setup was
developed as it provided a consistent light source that was
unaffected by changes in the ambient light. The box was of
sufficient depth to allow space for a thick layer of plant tissue to
be placed on the scanner without admitting any light through the
sample. Using this setup, the cross sections of 28 diverse fruit and
tubers were scanned and stored in TIFF file format for analysis.

Assessment of Image Formats
Two different image file formats were compared: lossless (TIFF)
and lossy (JPEG). A pixel-for-pixel comparison showed that
JPEG compression had a significant effect on the colour values.
This compression effect varied between different images. The
lowest and highest mean mismatch percentages were observed in
avocado and tamarillo images with mean mismatch percentages
of 2.17 and 29.40%, respectively (Table 1). The effect of the
JPEG compression algorithm on mismatch frequency increased
with increasing colour complexity of the fruit, however, this
relationship was not linear (Figure 3). To identify the location
at which colour differences occurred in these image formats,
three representative images where selected according to their
low mismatch (Pear Green R1), mid-range mismatch (Lemon
R1), and high mismatch (Kiwifruit Red R3) frequency. The
two dimensional distribution of mismatches in JPEG images
tended to occur in regions of the fruit where the colour
gradient changed (Figure 4). In all images, there was a higher
amount of mismatches at the intersection of the background and
foreground. No predictable pattern of mismatches was observed
within each subject image.

Colorimetric Analysis of Fruit/Tuber
Images
To assess colour variability in the images, the colour values of
each pixel from the TIFF format images were transcoded to
hexadecimal code. Frequency tables of the hexadecimal codes
were then constructed to determine the number of unique
colour (UC) values in each subject image (Supplementary
Table 1). The number of UC values within each subject imaged
was highly variable among the fruit analysed in this study.

The lowest number of UC values was observed in Potato
White R3, with 34,629 values and the highest number of UC
values was observed in Mandarin R2, with 202,377 values.
Ordered frequency distributions demonstrated that the majority
of hexadecimal codes had a frequency of <10 values across
all of the subject images used in this study (Figure 5). This
demonstrated that there are a large number of subtle colour
differences within the plant tissues.

To simplify the colour space data, a region-growing algorithm
was developed to condense the colour descriptors within
each subject image into perceptually unique colours (PUC) in
an unbiased manner. The algorithm reduced the density of
colorimetric data points on average by 98%. The highest number
of colour values after the region-growing algorithm was applied,
using a threshold 1E2000 value of 2, was 3,078 (Supplementary
Table 1). Applying an additional threshold to the summarised
region-grown colour values that contributed >0.1% of the total
percentage of each image reduced the data density on average
by 99.9% with a maximum of 219 colour values. The biggest
determinant of the processing time was the number of UC values
that each raw image contained (Supplementary Table 2).

To determine the impact on the overall processing time
and compression of the data, the 1E2000 threshold of the
region-growing algorithm was tested at 1, 1.5, 2, 2.5, and 3
(Supplementary Table 2). Relative to a 1E2000 threshold of 2,
increasing the threshold to 2.5 and 3 reduced processing time on
average by a ratio of 0.86 and 0.71, respectively. In terms of the
number of output colour bins, increasing the 1E2000 threshold
to 2.5 and 3 reduced the average number of colour bins by a ratio
0.59 and 0.38, respectively, relative to a threshold of 2. Relative
to a 1E2000 threshold of 2, decreasing the 1E2000 threshold to
1.5 and 1 increased processing time 1.5 and 2.9 fold, respectively.
This also increased the number of output colour bins by a ratio of
2 and 4.6, respectively.

Comparison With K-Means Clustering
The region-growing methodology was compared with the widely
used k-means clustering methodology in order to assess its
processing efficiency. The region-growing algorithm (at 1E2000
threshold= 2) was faster than k-means clustering using a K-value
of 20 or 100, with ratios in processing time of 0.95 and 0.79,
respectively (Supplementary Table 2).

To back validate the efficiency of the colour data clustering
generated from the region-growing and k-means cluster analysis,
the outputs of these algorithms were used to raster new images
as described in the Method and Algorithm Description section.
An example of this process can be seen in Figure 6, which shows
that there was a high degree of visual similarity between the
original image and the images generated using output colour
bins generated at 1E2000 thresholds of 2 and 3. Inspection
of the k-means-generated images showed considerable loss of
colour texture within each image (Figure 6D and Supplementary
Figure 1). This was particularly evident in the seeds of the
apple, around the skin of the lemon, and at the central core
of the kiwifruit.

Image compression value was used to determine how well
the original image complexity was represented by the region
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TABLE 1 | A comparison between the JPEG and PNG file formats.

Subject type Identical in JPEG Similar in JPEG Different in JPEG Identical in PNG

Apple ‘Braeburn’ 2.42 ± 0.05 89.17 ± 0.05 8.42 ± 0.61 100

Apple ‘Granny Smith’ 1.42 ± 0.08 93.44 ± 0.08 5.14 ± 0.43 100

Apple ‘Pacific Rose’ 2.11 ± 0.16 92.88 ± 0.16 5.01 ± 0.46 100

Apple ‘Royal Gala’ 2.36 ± 0.30 91.70 ± 0.3 5.94 ± 1.18 100

Avocado 3.50 ± 0.09 94.33 ± 0.09 2.17 ± 0.42 100

Banana 2.68 ± 0.19 90.43 ± 0.19 6.89 ± 0.70 100

Grapefruit 1.68 ± 0.14 90.11 ± 0.14 8.21 ± 0.59 100

Kiwifruit Gold 1.05 ± 0.02 79.61 ± 0.02 19.34 ± 0.79 100

Kiwifruit Green 1.18 ± 0.07 80.86 ± 0.07 17.97 ± 0.41 100

Kiwifruit Red 0.57 ± 0.02 70.98 ± 0.02 28.45 ± 0.39 100

Kumara Gold 2.15 ± 0.05 92.42 ± 0.05 5.43 ± 0.36 100

Kumara Red 5.98 ± 1.09 90.86 ± 1.09 3.17 ± 0.24 100

Lemon 2.31 ± 0.26 87.74 ± 0.26 9.95 ± 1.63 100

Mandarin 0.97 ± 0.05 86.77 ± 0.05 12.26 ± 0.66 100

Mango 1.71 ± NA 94.16 ± NA 4.13 ± NA 100

Orange 1.44 ± 0.11 88.79 ± 0.11 9.78 ± 0.71 100

Peach 1.92 ± 0.06 92.69 ± 0.06 5.40 ± 0.22 100

Pear ‘Corella’ Brown 2.72 ± 0.21 91.48 ± 0.21 5.81 ± 0.08 100

Pear Green 3.39 ± 0.03 89.89 ± 0.03 6.72 ± 0.46 100

Pear Nashi Brown 1.53 ± 0.04 84.9 ± 0.04 13.57 ± 0.49 100

Persimmon 1.03 ± 0.04 92.17 ± 0.04 6.8 ± 0.07 100

Plum 1.43 ± 0.18 81.81 ± 0.18 16.76 ± 2.21 100

Potato Purple 1.21 ± 0.12 86.6 ± 0.12 12.19 ± 1.12 100

Potato Red 2.25 ± 0.33 92.48 ± 0.33 5.27 ± 1.44 100

Potato White 1.88 ± 0.1 89.08 ± 0.1 9.04 ± 0.88 100

Strawberry 0.57 ± 0.05 80.32 ± 0.05 19.11 ± 1.55 100

Tamarillo 0.67 ± 0.04 69.94 ± 0.04 29.39 ± 1.36 100

Tomato 0.86 ± 0.03 80.42 ± 0.03 18.72 ± 0.41 100

This table summarises the number of pixels that were identical, similar, or different in each comparison. Data are presented as mean ± standard error and represent three
biological replicates for each class of fruit/tuber with the exception of mango for which only one fruit was sampled.

grown and k-means clustered algorithms. The region-growing
algorithm resulted in linear regression values of 0.90, 0.84, 0.80,
0.76, and 0.72 for 1E2000 thresholds of 1, 1.5, 2, 2.5, and 3,
respectively. The k-means clustering algorithm resulted in linear
regression values of 0.71 and 0.71 at K values of 20 and 100,
respectively (Supplementary Table 2).

Clustering of Region-Grown Data Across
a Broad Spectrum of Colours
The weighted 1E2000 distance metric was used to generate
a distance matrix using the region-grown colour output for
each image. Hierarchical clustering of the weighted distance
matrix was used to cluster the data into 10 groups (Figure 1).
A dendrogram, with the respective images aligned, shows that
each of the 10 clusters was associated with a different colour
attribute. For example, the “lighter” orange hue associated within
Cluster 5 grouped orange, mango, and grapefruit together and
this was different from the “darker” orange hue that separated
mandarin into Cluster 4. In general, all fruit types were co-
localised with the exception of Tamarillo R2 and Potato Red
R3. Visual inspection of the Tamarillo R2 image showed that is
contained a greater amount of “lighter” orange hues compared

to the other tamarillo replicate images. Visual inspection of the
Potato Red R3 showed that it contained a greater amount of the
yellow/orange colour hues compared with its replicate images.
In both these cases the outlier images were visually distinct
from their respective replicates, which demonstrates the need for
replicates when undertaking colour studies.

Fruit With Different Colour Patterns
To extend the utility of this methodology into fruit with
similar but complex patterns, a larger experiment using 100
red fleshed kiwifruit Actinidia chinensis var. chinesis (‘Zes008’)
was undertaken. Red fleshed kiwifruit often have an intense
inner pericarp red colour and a lighter outer pericarp colour
(Wang et al., 2003). In other species such as apple, exclusion
of environmental light is known to increase red pigment
(anthocyanin) accumulation in the skin, though less is known
about the effect of light exclusion on internal fruit tissues. To test
if exclusion of environmental light affects the internal fruit tissues
of kiwifruit, a total of 50 fruit were bagged to induce red colour
accumulation while 50 control fruit were left unbagged.

In order to differentiate the colour values located in the outer
and inner pericarp of kiwifruit images, a script was developed to
automatically identify the boundaries of these tissue zones and
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FIGURE 3 | Classification of different colour values due to JPEG format compression compared with the colour complexity score of the fruit. R, biological replicate.

segment the inner and outer pericarp tissue regions of fruit. This
allowed the lighter coloured outer pericarp to be separated from
the darker red of the inner pericarp (Figure 2A).

These segmented images were then summarised using the
region-growing algorithm and clustered using the weighted

FIGURE 4 | The 2-dimensional distribution of pixels classified as having
different colour values in JPEG format compared with TIFF format in three
representative images of fruit. Pixels containing a 1E2000 distance >2
between each format are coloured red in the second row. R, biological
replicate.

1E2000 metric. To assess variability within the condensed colour
space (PUC) profiles the inner and outer pericarp tissues were
K-means clustered. The outer pericarp showed greater variability
in colour profiles (maximum height of the dendrogram was
268.63) compared with the inner pericarp (maximum height of
141.46) (Figures 2A,B). Surprisingly, the outer pericarp clusters
2, 3, and 6 (associated with bagged fruit) contained greater
amounts of red in their colour profiles. The outer pericarp colour
profiles of unbagged fruit were largely localised in clusters 1, 5,
and 8 and were associated with more yellow/green colour profiles.

DISCUSSION

The analysis of colour patterning of complex images like fruit
can be a time consuming and subjective process. Our approach
aimed to develop a data driven and time efficient methodology
that could summarise the diverse colour patterning observed
in nature by clustering colour values that have no perceptible
difference from each other. In this study we selected fruit
types to encompass a wide variety of colours across the visible
spectrum. The amount of unique colours within the images
used in this study ranged from tens of thousands to hundreds
of thousands. The relatively high density of colour data points
within each image made it challenging to summarise the data
to an amount that was unbiased and still meaningful to human
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FIGURE 5 | Ordered frequency distributions of unique colour values for three representative fruit. R, biological replicate.

FIGURE 6 | Original images (A) and simulated images of three representative
fruit that were recoloured using the output colour bins generated by the
region-growing algorithm with 1E2000 at thresholds of 2 (B) and 3 (C) or by
k-means clustering (K = 20) (D) R, biological replicate.

interpretation. The CIE 1E2000 formula provided a reliable basis
to measure the perceptual distance between colours in the L∗a∗b∗

colour space (Sharma et al., 2005; Gijsenij et al., 2011). The
formula was used in this study to measure generalised colour
complexity and formed the basis for developing the region-
growing algorithm. 1E2000 values below 2 are regarded as
having minimal perceptual difference by the human eye while
values >2 but <3 are regarded as being distinguishable by the
human eye at a glance (Witzel et al., 1973; Mokrzycki and Tatol,
2011). These are, however, generalised rules and it should be
noted that there is a wide range of variation in the perceptive
ability of individuals (Nathans et al., 1986).

K-means clustering or segmentation of the colour gamut into
predefined bins are two of the most common approaches to
speed up the processing time of digital colorimetric analysis of
images (Witzel et al., 1973; Celebi, 2011; Bharathi and Subashini,
2013; Wang et al., 2019). These methodologies output arrays in
regular formats that are easy to compare, but have the drawback
of requiring a priori knowledge of a predefined number of
bins to which to assign each colour. Additionally, both of these
approaches describe the colour value for a given bin as an average
value that might not exist within the context of the original
dataset. The region-growing approach developed in this study
solves this issue by using a data driven approach to independently
interrogate and grow the optimal number of colour bins for
each image. This data driven approach is unbiased but has the
drawback of having an irregular output array. The weighted
1E2000 distance metric is a robust method that allowed us
to measure the distance between the irregular output arrays
(colour profiles) produced by the region-growing algorithm. The
concept of this metric was based on the Earth Mover’s Distance
(EMD) metric which is commonly used to measure differences
between colour profiles (Rubner et al., 2000; Yu and Herman,
2005; Takada and Yanai, 2008; Weller and Westneat, 2019). EMD
uses a Euclidean distance metric which poorly approximates
the colour space a human perceives. The EMD-like process
(weighted 1E2000 distance metric) developed in this publication
instead uses the 1E2000 formula to calculate distance. Our
analysis demonstrates the utility of this mathematical method
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to cluster images based on their region-grown outputs. We
were able to cluster images while maintaining the ability to
detect subtle colour differences that are commonly observed
in biological samples such as fruit. This can be most notably
observed in the dissimilar cluster localisation of Potato Red
R2 and Tamarillo R2 images outside of the clusters containing
their respective replicates and is further demonstrated by the
comparison of fruit with close visual similarity shown in Figure 2.
We observed a stronger regression score for images generated
using the region-grown methodology than for those generated via
k-means clustering, when compared with the compression rate
of the original image. This indicates that colour value outputs
of the region-growing methodology better approximated those
observed in the original image than did outputs generated by the
k-means analysis. Additionally, visual inspection of the region-
grown in silico simulated images showed more consistency in
their visual similarity to the original than those generated by
k-means clustering. This is perhaps unsurprising as the k-means
clustering approach is often subjected to under or over fitting on
data, particularly when the overall complexity of the data is not
known in advance, as is the case in biological images.

Interestingly, there is relatively little published research that
attempts to quantify the effect that image compression algorithms
have on the colour values within an image. The two types of
data compression algorithms that are used by image acquisition
tools are lossless (TIFF and PNG) and lossy (JPEG). Lossless
image compression has the ability to restore the data to its
original value after decompression but produces relatively large
image files with higher storage overheads (Murray and Vanryper,
1996). Lossy compression does not allow full restoration of the
original data values but produces much smaller image files,
thereby reducing storage overheads (Murray and Vanryper,
1996). Selecting the most suitable image format is the first
decision step in an image analysis pipeline and ultimately
can influence the downstream analysis of the image. Here
we compared three image formats (TIFF, PNG, and JPEG) to
quantify the effect of different data compression algorithms on
colour values from complex biological images, and showed that
uncompressed files are the only way to maintain the complexity
of data in fruit images. While the small file sizes produced by
JPEG compression are attractive from a perspective of file storage,
this compression affects the integrity of the data and is likely to
have implications for applications that require precision colour
estimation including machine learning applications.

CONCLUSION

This publication demonstrates the utility of a data driven
approach for the analysis of images with complex colour profiles.
We first developed a novel algorithm to reduce the density of
data within each image in a process called region growing. The
processing time of this algorithm was comparable with other
commonly used methodologies such as K-means clustering. One
major advantage of our approach is that it does not require
a priori knowledge of the amount of K-mean bins to generate.
This is important for the comparison of images based on their

colour features as it avoids subjective under/over fitting of data.
Central to our methodology was the use of the previously
published CIE 1E2000 formula. This formula was used to
quantify the difference between colours in a colour-space that
aligns with human perceptive ability. This is different from
other methodologies that use the Euclidean formula to measure
differences in colour data.

We also developed a novel process to compare the
region-grown colour profiles from a dataset with diverse
colour patterning and from a separate dataset with visually
similar colour patterning. The utility of this methodology
could have significant implications towards improving the
accuracy of computer vision phenotyping of plant tissues
particularly in regard to colourimetric analysis. Applications
of this methodology could extend across various plant related
academic and research disciplines including plant breeding, and
postharvest quality assessment.
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