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Editorial on the Research Topic

Plant Phytochromes: From Structure to Signaling and Beyond

Light is the major source of energy for plants and thus light sensing is vital for their survival.
Specialized photoreceptor molecules transform the energy of the photons to chemical and
biological signals that control growth and development and the adaptation to changes in the
environment. Phytochromes are synthesized in their inactive (Pr) conformer and red (λmax =

660 nm) light illumination can convert them to the Pfr form (Rockwell et al., 2006). Pfr is the
biologically active form of phytochromes, it initiates various signaling pathways that lead to a suite
of responses known as photomorphogenic development. Pfr conversion back to Pr can be triggered
by far-red (λmax = 730 nm) photons or by a spontaneous reversion to the lower-energy Pr state
by the so-called thermal relaxation (Klose et al., 2020). There are five phytochromes (phyA-phyE)
expressed in the widely usedmodel plantArabidopsis thaliana (Mathews, 2010). Since the discovery
of phytochrome-mediated responses in plants (Flint, 1936; Borthwick et al., 1952) our knowledge
has expanded toward multiple directions. This Frontiers Research Topic gives insights into the
current state of some of these aspects of phytochrome research.

Phytochrome signaling pathways control about 10% of the Arabidopsis transcriptome (Ma et al.,
2001) and these transcriptional responses are essential for environmental adaptation. Whereas,
initial research efforts focused purely on examining phytochrome-dependent signaling in the
context of light responses, it later became clear that phytochromes integrate light with other
environmental signals such as temperature (Jung et al., 2016; Legris et al., 2019), cold stress
(Franklin andWhitelam, 2007), drought stress (González et al., 2012), and pathogen attack (deWit
et al., 2013). In a review paper, Kim et al. point out that phyB, the most abundant phytochrome in
light-grown plants, plays the major role in these responses. The authors summarize how phyB takes
part in plant responses to diverse environmental signals and give an insight into the complexity of
these signaling pathways.

Pardi and Nusinow focused on a special aspect of phytochrome signaling. It is well-established
that active phytochromes translocate from the cytoplasm into the nucleus and compartmentalize
into distinct molecular complexes, so-called photobodies (Yamaguchi et al., 1999; Kircher et al.,
2002; Van Buskirk et al., 2012). Photobodies are essential for proper signaling but their function,
composition, and biogenesis have remained unclear. Pardi and Nusinow summarized our recent
knowledge about (i) possible biological roles of photobodies, (ii) protein components regulating
their formation and (iii) mechanisms of photobody biogenesis including a discussion about the
idea that phyB containing photobodies may be the result of liquid–liquid phase separation, similar
to photobodies formed by cryptochrome 2 (Wang et al., 2021).
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Although phytochromes were originally identified in seed
plants (Butler et al., 1959) we now know that not only plants
but also different bacteria and fungi possess phytochromes
(Karniol and Vierstra, 2003). Lamparter et al. focused in their
review article on Agrobacterium phytochromes. Agrobacterium
fabrum contains two phytochromes called Agp1 and Agp2. The
authors list the original publications leading to the discovery of
Agps and summarize our recent knowledge about Agp protein
structure and functions. These studies are a valuable addition
to plant phytochrome research, not only from an evolutionary
perspective. The advances made on Agrobacterium phytochrome
structure determination support our efforts made on plant
phytochromes, because crystallization of Agps is technically less
challenging than that of plant PHYs.

Wahlgren et al. developed a methodological approach
focusing on this problem. They examined the structure of
recombinant Arabidopsis phyA using cryo-electron microscopy.
The 17 Å resolution achieved is not exceptionally high, showing
clear limitations of this approach, but the data were obtained
using homodimers from near-homogenous and photochemically
active protein preparations. The authors parallel their results with
earlier studies performed on bacterial phytochromes and discuss
further possible applications of the method.

Posttranslational modifications (PTM) occur during or after
translation resulting in a covalent attachment of a moiety
modifying the activity of the target protein. Phytochromes are
targets of diverse PTMs; among them, phosphorylation was
identified decades ago (Quail et al., 1978; Hunt and Pratt,
1980). This PTM is reversible and fine-tunes light signaling
by changing the amount of available active phytochrome
molecules (Stockhaus et al., 1992; Medzihradszky et al., 2013;
Nito et al., 2013; Viczián et al., 2020). The two obvious
regulatory steps of the phosphorylation state of the available
phytochrome pools are phosphorylation and dephosphorylation.
It was demonstrated that phytochromes act as serine/threonine
kinases autophosphorylating themselves (Shin et al., 2016). The
work of Hoang et al. added further details to the picture. The
authors showed that specific missense mutations in the Avena
sativa phyA result in increased phytochrome kinase activity.
These mutant PHYAs trigger hypersensitive photoresponses
when expressed in transgenic Arabidopsis plants, indicating that
there is a direct positive correlation between the kinase activity of
the phytochromes and the observable light responses in planta.

Whereas, external kinases that phosphorylate phytochromes
have not been identified so far, phosphatases that
dephosphorylate PHYs have already been described (Kim
et al., 2002; Ryu et al., 2005; Phee et al., 2008). One of them,
Phytochrome-Associated Protein Phosphatase 5 (PAPP5)
dephosphorylates active Pfr phytochromes and enhances
phytochrome-mediated responses (Ryu et al., 2005). von
Horsten and Essen were able to crystallize recombinant PAPP5
and determine its structure at 3 Å resolution. The authors could
examine the effect of different compounds on PAPP5 activity,
analyze the interaction details and dynamics of PAPP5 with
phospho-site mimicking mutant PHYB molecules focusing
on the positional arrangement of PAPP5’s known domains.

Furthermore, this study indicates that the activation mode
of PAPP5 is similar to that of its mammalian counterparts.
The sterical consequences of PAPP5 activation by arachidonic
acid suggest an exciting novel regulatory pathway linking
plant defense mechanisms and phytochrome regulation by
dephosphorylation, but this finding needs to be further validated
in the future.

This Research Topic collected studies tackling interesting
issues of the phytochrome field and rising fundamental questions
that need to be addressed in the future. (i) Although the
consequences of phosphorylation at certain amino acids on the
function of phytochrome proteins were examined, the detailed
phytochrome “phospho-map” is still missing. Furthermore, at
the moment we do not know how the interplay of different
PTMs fine-tune phytochrome signaling. (ii) We also do not
know to what extent PHY autophosphorylation, and the
activity of different kinases and phosphatases are responsible
for the actual phospho-state of the available phytochrome
pool and the performance of phytochrome signaling. Further
targets of phytochrome kinase activity and its significance
on the signaling process also need to be identified in the
future. (iii) Two studies in this Research Topic focused on
the molecular structure of phytochromes and their partners
indicating the continued interest in the subject. Despite recent
advances, we still need to achieve high resolution structural
models of full length plant phytochromes in Pr and Pfr
to understand the overall structural rearrangements during
photoconversion. (iv) Hopefully, this structural information
will allow designing structure-function models for phytochrome
signaling that could be tested also experimentally. (v) Long-
lasting efforts from the scientific community resulted in
the identification of phytochrome interacting partners. We
expect that examining the phytochrome containing photobodies
will help us to understand the interaction dynamics of
phytochromes with their signaling partners and to map these
signaling networks in details. (vi) Furthermore, it is crucial to
examine the role of phytochromes not only in light signaling
but also in signal interactions of interconnecting pathways
in order to understand how plants respond to complex
environmental stimuli.

We, the Guest Editors of this article collection, believe that the
set of papers published here stimulates further discussions and
initiates studies answering the pending questions.
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