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Branched-chain volatiles (BCVs) constitute an important family of fruit volatile
metabolites essential to the characteristic flavor and aroma profiles of many edible fruits.
Yet in contrast to other groups of volatile organic compounds important to fruit flavor
such as terpenoids, phenylpropanoids, and oxylipins, the molecular biology underlying
BCV biosynthesis remains poorly understood. This lack of knowledge is a barrier to
efforts aimed at obtaining a more comprehensive understanding of fruit flavor and
aroma and the biology underlying these complex phenomena. In this review, we discuss
the current state of knowledge regarding fruit BCV biosynthesis from the perspective
of molecular biology. We survey the diversity of BCV compounds identified in edible
fruits as well as explore various hypotheses concerning their biosynthesis. Insights from
branched-chain precursor compound metabolism obtained from non-plant organisms
and how they may apply to fruit BCV production are also considered, along with
potential avenues for future research that might clarify unresolved questions regarding
BCV metabolism in fruits.
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INTRODUCTION

Volatile organic compounds (VOCs) are essential components of fruit flavor, being necessary for
human perception of the distinct flavors produced by the many different types of fruit found in
nature (Noble, 1996; Goff and Klee, 2006; El Hadi et al., 2013; Plotto et al., 2017). The importance
of VOCs to fruit flavor has prompted researchers to investigate the underlying biosynthetic
pathways responsible for their formation. Great progress has been made in understanding the
molecular basis of terpenoid (Cheng et al., 2007; Nagegowda, 2010; Tholl, 2015; Abbas et al., 2017),
phenylpropanoid (Boatright et al., 2004; Qualley et al., 2012; Lackus et al., 2021), and oxylipin
(Mosblech et al., 2009; Scala et al., 2013; Griffiths, 2015; Ameye et al., 2018) volatile biosynthesis
in plants. However, much less is known about the molecular correlates underlying the production
of branched-chain volatiles (BCVs), a family of compounds encompassing some VOCs that are
notable contributors to the flavor of several important fruit crops.

Branched chain volatiles are defined as those volatile organic compounds that contain a
branched-chain functional group structurally similar to those of the branched-chain amino acids-
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valine, leucine, and isoleucine (Figure 1). Due to this structural
similarity BCVs were theorized to derive from the metabolism
of branched-chain amino acids (BCAAs), a hypothesis supported
by numerous feeding experiments (Tressl and Drawert, 1973;
Hansen and Poll, 1993; Rowan et al., 1996; Wyllie and Fellman,
2000; Pérez et al., 2002; Matich and Rowan, 2007; Gonda et al.,
2010). Yet while thorough work has been done elucidating
the biosynthesis and metabolism of branched-chain amino
acids in plants (Singh and Shaner, 1995; Taylor et al., 2004;
Binder et al., 2007; Binder, 2010; Xing and Last, 2017), the
precise enzymatic mechanisms by which BCAA metabolism
diverges into BCV biosynthesis remain relatively understudied.
Furthermore, recent experimental evidence indicates that under
certain circumstances BCV production may occur independently
of normal BCAA metabolism (Sugimoto, 2011; Kochevenko
et al., 2012; Sugimoto et al., 2021). A more complete
understanding of BCV biosynthesis in plants would be of great
importance to researchers working to better understand the
molecular basis of fruit flavor, and in particular to those who
desire to apply such knowledge to the development of novel fruit
varieties with improved flavor traits.

This review seeks to collate and evaluate published research
regarding the biosynthesis of branched chain volatiles in plants,
with an emphasis on these processes as they might occur in fruit
crops. While BCV biosynthesis has been touched upon in other
reviews on the subject of plant volatiles (Dudareva et al., 2006,
2013; El Hadi et al., 2013), a comprehensive exploration of the
state of current knowledge concerning the molecular basis of
BCV biosynthesis in plants has yet to be published.

BRANCHED-CHAIN VOLATILES IN
FRUITS

Branched-chain volatiles are ubiquitous components of fruit
aroma volatile profiles. An examination of research literature
concerning fruit volatile profiles found that 127 unique branched-
chain volatile compounds were identified in 106 distinct types
of edible fruit across 175 published studies (Table 1). A list of
all BCVs reported for a particular fruit by these studies is given
in Supplementary Table 1. These fruits include representatives
from 22 individual taxonomic orders spanning monocots,
eudicots, and magnoliids, suggesting that the production of
branched-chain volatiles in fruit tissue is a characteristic
with widespread evolutionary utility. It has been proposed
that since many fruit volatiles are derived from nutritionally
significant compounds, their production in fruit tissue might
be a means of signaling nutritional value to seed-dispersing
frugivores (Goff and Klee, 2006). Because animals are incapable
of biosynthesizing branched-chain amino acids (Hou and Wu,
2018), volatile cues enabling the identification of food sources
rich in these compounds could serve as powerful attractants
to animal seed-dispersers. This may be one explanation for
the ubiquity of branched-chain volatiles in fruits from plants
across many divergent evolutionary lineages, though much
more research is needed to firmly establish this hypothesis.
Conversely BCVs may also find use as defense agents against

herbivorous predators, an application associated with certain
nitrogen-containing branched-chain VOCs (Irmisch et al., 2013,
2014).

An overwhelming majority of the branched-chain volatiles
identified in fruits are classified as volatile esters. Out of
the 127 distinct BCVs identified in Table 1, 108 are esters.
Many of these are conjugate esters derived from a branched-
chain structure attached to a compound from a completely
different biosynthetic origin. In this way, branched-chain
volatiles incorporating structures derived from terpenoid,
phenylpropanoid, and oxylipin metabolism are formed- allowing
for massive diversity in the number of possible volatiles
containing a branched-chain structure. The remaining non-
ester BCVs observed in Table 1 include branched-chain
alcohols, aldehydes, alkanes, and carboxylic acids. Several BCVs
containing more unusual functional groups are also listed,
including compounds with nitrile, nitrite, nitro, and thioester
functional groups.

Branched-chain volatiles have been recognized as being
crucially responsible for the distinctive flavor and aroma
properties of many commercially important fruits such as apple,
banana, melon, and pineapple, among others (Wyllie et al., 1995;
Plotto, 1998; Dixon and Hewett, 2000; Boudhrioua et al., 2003;
Tokitomo et al., 2005; Wendakoon et al., 2006). In terms of
effect on human sensory perception it has been widely reported
that branched-chain volatile esters tend to impart characteristic
“fruity” aroma notes, while non-ester branched-chain volatiles
induce a broader range of olfactory sensations (Schwab et al.,
2008; Sugimoto, 2011; El Hadi et al., 2013; Lytra et al., 2014).
Fruity aroma is a characteristic shared with several other non-
branched-chain volatile compounds, particularly short- and
medium- length straight-chain esters (Schwab et al., 2008;
El Hadi et al., 2013). However, it has been observed that
ester compounds containing the branched-chain moiety have
significantly lower odor thresholds than the corresponding
straight-chain counterparts (Takeoka et al., 1995), indicating that
BCVs may be more potent stimulators of the “fruity” olfactory
sensation. It is important to communicate that the “fruity” aroma
notes imparted by BCVs are not always associated with positive
consumer responses, and in some fruits are associated with
decreased consumer ratings (Goulet et al., 2012).

CURRENT KNOWLEDGE REGARDING
BRANCHED-CHAIN VOLATILE
BIOSYNTHESIS

Because of the importance of branched-chain volatiles to the
characteristic flavors of several important fruit crops much
research has been done in trying to understand the general
biosynthesis pathways that lead to BCV production, though
this area remains relatively understudied when compared to the
biosynthetic processes that produce other classes of important
fruit volatiles such as terpenoids and oxylipins. The body of
published experimental evidence regarding this topic points to
four possible hypotheses regarding BCV biosynthesis (Figure 2),

Frontiers in Plant Science | www.frontiersin.org 2 January 2022 | Volume 12 | Article 814138

https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org/
https://www.frontiersin.org/journals/plant-science#articles


fpls-12-814138 January 24, 2022 Time: 14:0 # 3

Bizzio et al. Branched-Chain Volatiles in Fruit

FIGURE 1 | Categories of branched-chain volatile compounds detected in edible fruits. At least one volatile from each family was reported in at least one of the 175
fruit volatile studies examined in this review (see Supplementary Table 1).

none of which are mutually exclusive with any of the others.
These hypotheses are summarized below.

Mitochondrial Catabolism of
Branched-Chain Amino Acids
The oldest and most studied of the four possibilities, this
hypothesis posits that BCVs are generated through the catabolic
degradation of BCAAs in mitochondria. It has long been known
that plants possess the capability to break down excess BCAAs
into the energy-rich metabolites acetyl-CoA and propionyl-CoA
and that several of the key enzymes involved in this process
are localized to mitochondria (Binder, 2010; Hildebrandt et al.,
2015). An excellent overview of this pathway as hypothesized
to occur in plants is provided in Binder (2010). Briefly, this
process begins with the deamination of BCAAs by branched-
chain aminotransferases (BCATs) followed by decarboxylation of
the resulting branched-chain α-ketoacids (BCKAs) through the
branched-chain α-ketoacid dehydrogenase complex (BCKDH).
This results in the formation of various branched-chain

acyl-CoAs (BCA-CoAs), which in turn are reduced at the
α-carbon through the action of isovaleryl-CoA dehydrogenases
or functionally similar enzymes. These reduced BCA-CoAs
then undergo β-oxidation into acetyl-CoA and propionyl-CoA,
though whether these later stages occur in mitochondria or in
peroxisomes remains unresolved (Graham and Eastmond, 2002;
Kaur et al., 2009).

Since numerous volatile esters are known to be biosynthesized
in fruit tissue by alcohol acyltransferase (AAT) enzymes
(Beekwilder et al., 2004; El-Sharkawy et al., 2005; Souleyre et al.,
2005; Günther et al., 2011; Goulet et al., 2015) and because
AATs require an alcohol and an acyl-CoA as substrates, the
branched-chain acyl-CoAs produced by mitochondrial BCAA
catabolism would naturally be considered likely candidates for
conversion to volatile branched-chain acyl esters. Feeding and
isotope labeling experiments conducted in apple, banana, and
strawberry provide strong evidence that BCAAs can be directly
converted to volatile branched-chain acyl esters in fruit tissue
(Tressl and Drawert, 1973; Rowan et al., 1996; Wyllie and
Fellman, 2000; Pérez et al., 2002). Furthermore, the detection
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TABLE 1 | List of all branched-chain volatile compounds detected in 106 edible
fruits across 175 published studies of fruit volatile content.

Compound name CAS # Molecular
weight

Number of
fruits

identified in

Alcohols

2-methyl-1-propanol 78-83-1 74.12 34

2-methyl-1-butanol 137-32-6 88.15 32

3-methyl-1-butanol 123-51-3 88.15 64

Aldehydes

2-methylpropanal 78-84-2 72.11 12

2-methylbutanal 96-17-3 86.13 20

3-methylbutanal 590-86-3 86.13 31

Alkanes

2-methylbutane 78-78-4 72.15 1

Carboxylic acids

2-methylpropanoic acid 79-31-2 88.11 13

2-methylbut-2-enoic acid 13201-46-2 100.12 1

2-methylbutanoic acid 116-53-0 102.13 26

3-methylbutanoic acid 503-74-2 102.13 26

2-methyl-3-hydroxypropanoic acid 2068-83-9 104.1 1

Esters

Methyl 2-methylprop-2-enoate 80-62-6 100.12 1

Methyl 2-methylpropanoate 547-63-7 102.13 4

Methyl 2-methylbut-2-enoate 6622-76-0 114.14 1

Methyl 3-methylbut-2-enoate 924-50-5 114.14 2

Ethyl 2-methylprop-2-enoate 97-63-2 114.14 1

2-methylpropyl acetate 110-19-0 116.16 29

Methyl 2-methylbutanoate 868-57-5 116.16 24

Methyl 3-methylbutanoate 556-24-1 116.16 13

Ethyl 2-methylpropanoate 97-62-1 116.16 29

Ethyl 2-methylbut-2-enoate 5837-78-5 128.17 12

Ethyl 3-methylbut-2-enoate 638-10-8 128.17 1

Propyl 2-methylprop-2-enoate 2210-28-8 128.17 1

2-methylpropyl propanoate 540-42-1 130.18 1

2-methylbutyl acetate 624-41-9 130.18 18

3-methylbutyl acetate 123-92-2 130.18 52

Ethyl 2-methylbutanoate 7452-79-1 130.18 49

Ethyl 3-methylbutanoate 108-64-5 130.18 27

Propyl 2-methylpropanoate 644-49-5 130.18 1

1-methylethyl 2-methylpropanoate 617-50-5 130.18 2

Methyl
2-hydroxy-2-methylbutanoate

32793-34-3 132.16 2

Methyl
2-hydroxy-3-methylbutanoate

17417-00-4 132.16 7

Methyl
3-hydroxy-3-methylbutanoate

6149-45-7 132.16 4

Propyl 2-methylbut-2-enoate 61692-83-9 142.2 1

2-methylpropyl butanoate 539-90-2 144.12 13

2-methylpropyl 2-methylpropanoate 97-85-8 144.21 4

2-methylbutyl propanoate 2438-20-2 144.21 2

3-methylbutyl propanoate 105-68-0 144.21 1

Propyl 2-methylbutanoate 37064-20-3 144.21 6

Propyl 3-methylbutanoate 557-00-6 144.21 5

Butyl 2-methylpropanoate 97-87-0 144.21 6

2-methylpropyl
2-hydroxypropanoate

585-24-0 146.18 1

(Continued)

TABLE 1 | (Continued)

Compound name CAS # Molecular
weight

Number of
fruits

identified in

Ethyl 2-hydroxy-2-methylbutanoate 77-70-3 146.18 2

Ethyl 2-hydroxy-3-methylbutanoate 2441-06-7 146.18 2

Ethyl 3-hydroxy-3-methylbutanoate 18267-36-2 146.18 4

2-methylpropyl
2-methylbut-2-enoate

7779-81-9 156.22 4

3-methylbut-3-enyl
2-methylpropanoate

76649-23-5 156.22 1

Butyl 2-methylbut-2-enoate 7785-66-2 156.23 2

2-methylpropyl 2-methylbutanoate 2445-67-2 158.24 3

2-methylpropyl 3-methylbutanoate 589-59-3 158.24 5

2-methylbutyl butanoate 51115-64-1 158.24 5

2-methylbutyl 2-methylpropanoate 2445-69-4 158.24 1

3-methylbutyl butanoate 106-27-4 158.24 14

3-methylbutyl 2-methylpropanoate 2050-01-3 158.24 6

Butyl 2-methylbutanoate 15706-73-7 158.24 8

Butyl 3-methylbutanoate 109-19-3 158.24 9

Pentyl 2-methylpropanoate 2445-72-9 158.24 4

3-methylbut-3-enyl
2-methylbut-2-enoate

83783-87-3 168.23 1

3-methylbut-3-enyl
3-methylbutanoate

54410-94-5 170.25 2

Hexyl 2-methylprop-2-enoate 142-09-6 170.25 1

Pentan-2-yl 3-methylbut-2-enoate 150462-84-3 170.25 1

(Z)-3-hexenyl 2-methylpropanoate 41519-23-7 170.25 6

2-methylpropyl hexanoate 105-79-3 172.26 10

2-methylbutyl 2-methylbutanoate 2445-78-5 172.26 2

2-methylbutyl 3-methylbutanoate 2445-77-4 172.26 3

3-methylbutyl pentanoate 2050-09-1 172.26 1

3-methylbutyl 2-methylbutanoate 27625-35-0 172.26 2

3-methylbutyl 3-methylbutanoate 659-70-1 172.26 6

Pentyl 2-methylbutanoate 68039-26-9 172.26 1

Pentyl 3-methylbutanoate 25415-62-7 172.26 2

Hexyl 2-methylpropanoate 2349-07-7 172.26 10

Pentan-2-yl 3-methylbutanoate 117421-34-8 172.27 1

2-methylpropyl benzoate 120-50-3 178.23 2

3-methylbutyl (E)-2-hexenoate 72928-34-8 184.28 1

Hexan-2-yl 3-methylbut-2-enoate N/A 184.28 1

(E)-2-hexenyl 2-methylbutanoate 94089-01-7 184.28 1

(Z)-3-hexenyl 2-methylbutanoate 53398-85-9 184.28 4

(Z)-3-hexenyl 3-methylbutanoate 35154-45-1 184.28 4

2-methylbutyl hexanoate 2601-13-0 186.29 3

3-methylbutyl hexanoate 2198-61-0 186.29 16

Hexyl 2-methylbutanoate 10032-15-2 186.29 13

Hexyl 3-methylbutanoate 10032-13-0 186.29 11

Heptyl 2-methylpropanoate 2349-13-5 186.29 1

Benzyl 2-methylbut-2-enoate 37526-88-8 190.24 1

2-methylpropyl phenylacetate 102-13-6 192.25 1

2-methylbutyl benzoate 52513-03-8 192.25 1

3-methylbutyl benzoate 94-46-2 192.25 1

Benzyl 3-methylbutanoate 103-38-8 192.25 4

2-phenylethyl 2-methylpropanoate 103-48-0 192.25 2

(E)-4-hepten-2-yl
3-methylbutanoate

N/A 198.3 1

(Continued)
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TABLE 1 | (Continued)

Compound name CAS # Molecular
weight

Number of
fruits

identified in

(Z)-4-hepten-2-yl
3-methylbutanoate

N/A 198.3 1

2-methylpropyl octanoate 5461-06-3 200.32 4

Octyl 2-methylpropanoate 109-15-9 200.32 4

2-phenylethyl
2-methylbut-2-enoate

55719-85-2 204.26 1

2-phenylethyl 2-methylbutanoate 24817-51-4 206.28 1

2-phenylethyl 3-methylbutanoate 140-26-1 206.28 3

3-phenylpropyl 2-methylpropanoate 103-58-2 206.28 1

3-methylbutyl 2-aminobenzoate 28457-05-8 207.27 1

2-phenoxyethyl
2-methylpropanoate

103-60-6 208.26 2

(E)-4-octenyl 3-methylbutanoate N/A 212.33 1

(Z)-4-octenyl 3-methylbutanoate N/A 212.33 1

(Z)-5-octenyl 3-methylbutanoate N/A 212.33 1

2-methylbutyl octanoate 67121-39-5 214.34 2

3-methylbutyl octanoate 2035-99-6 214.34 8

Octyl 2-methylbutanoate 29811-50-5 214.34 1

Octyl 3-methylbutanoate 7786-58-5 214.34 2

Cinnamyl 3-methylbutanoate 140-27-2 218.29 1

3-phenylpropyl 3-methylbutanoate 5452-07-3 220.31 1

Neryl 2-methylpropanoate 2345-24-6 224.34 2

2-methylpropyl decanoate 30673-38-2 228.37 1

Decyl 2-methylpropanoate 5454-22-8 228.37 1

Geranyl 3-methylbutanoate 109-20-6 238.37 2

(Z)-4-decenyl 3-methylbutanoate N/A 240.38 1

3-methylbutyl decanoate 2306-91-4 242.4 2

2-methylpropyl dodecanoate 37811-72-6 256.42 1

3-methylbutyl dodecanoate 6309-51-9 270.45 1

2-methylpropyl hexadecanoate 110-34-9 312.54 1

3-methylbutyl hexadecanoate 81974-61-0 326.56 1

2-methylpropyl octadecanoate 646-13-9 340.58 1

Nitriles

2-methylpropylnitrile 78-82-0 69.11 1

3-methylbutylnitrile 625-28-5 83.13 1

Nitrites

3-methylbutylnitrite 110-46-3 117.15 1

Nitroalkanes

3-methyl-1-nitrobutane 627-67-8 117.15 1

Pyrazines

2-(2-methylpropyl)-3-
methoxypyrazine

24683-00-9 166.22 6

Thiazoles

2-(2-methylpropyl)-thiazole 18640-74-9 141.23 1

Thioesters

S-methyl 3-methylbutanethioate 23747-45-7 132.22 1

Compounds are identified by both name and CAS registry number and are grouped
according to the structural categories given in Figure 1. An absence of a CAS
registry number for a compound is indicated by “N/A.” Within structural categories,
compounds are listed in descending order according to molecular weight. Also
provided is the number of distinct edible fruits each compound has been reported
in by the sources cited throughout this. For a complete list of which branched-chain
volatile compounds were detected in a given fruit along with the corresponding
reporting studies, please refer to Supplementary Table 1.

FIGURE 2 | Visual diagrams of the four hypotheses concerning
branched-chain volatile biosynthesis in plant cells. (A) Mitochondrial

(Continued)
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FIGURE 2 | catabolism of branched-chain amino acids. (B) De novo
branched-chain α-ketoacid biosynthesis followed by mitochondrial
catabolism. (C) Production of 2-methylbutyl volatiles by citramalate synthase.
(D) Direct transformation of branched-chain amino acids. BCAA,
branched-chain amino acid; BCKA, branched-chain α-ketoacid; BCAT,
branched-chain amino acid aminotransferase; BCKDH, branched-chain
α-ketoacid dehydrogenase complex; IVD, isovaleryl-CoA dehydrogenase; TE,
thioesterase; ECH, enoyl-CoA hydratase; AAT, alcohol acyltransferase;
CMS, citramalate synthase; IPMI, isopropylmalate isomerase; IPMDH,
isopropylmalate dehydrogenase; P450, cytochrome P450 enzyme; SDC-L,
serine-decarboxylase like enzyme; ADH, alcohol dehydrogenase. Green
compartment represents the chloroplast, maroon compartment the
mitochondrion, light blue compartment the peroxisome, and white
background the cytosol. Arrows with faded ends indicate cross-membrane
transport.

in several fruits of volatile branched-chain acyl esters with
double bonds and hydroxyl groups in positions necessary for
β-oxidation to proceed indicate that intermediaries of late-stage
BCAA catabolism are actively incorporated into volatile fruit
compounds. And it has also been demonstrated in hops that
a mitochondrial thioesterase is capable of cleaving BCA-CoAs
into branched-chain carboxylic acids (Xu et al., 2013), important
aroma volatiles detected in many kinds of fruit (Supplementary
Table 1). Notably, it was found that when apple and banana
fruit tissue was fed with deuterium-labeled BCAAs, deuterated
branched-chain carboxylic acid production was observed (Tressl
and Drawert, 1973; Rowan et al., 1996). Taken together, these
lines of evidence strongly support the hypothesis that fruit BCVs
are formed through catabolic breakdown of BCAAs.

However, several difficulties remaining with this hypothesis
indicate that it may not be generally applicable across all fruits.
Evidence from tomato seems to show that BCAA catabolism may
not be primarily responsible for the formation of BCVs in that
fruit; when disks of tomato fruit tissue were fed elevated levels
of BCAAs, no significant measurable increase in BCV quantity
was detected as compared to control (Kochevenko et al., 2012).
Furthermore, overexpression of tomato BCAT genes did not
result in plants yielding fruits that produced increased levels of
BCVs (Kochevenko et al., 2012). Since, BCAT enzymes catalyze
the first step in BCAA catabolic breakdown, overexpression of
the genes encoding these proteins should theoretically result in
higher levels of BCAAs entering the degradation pathway which
in turn should yield more substrates for conversion into greater
amounts of BCVs- results not observed in the tomato BCAT
overexpression experiments. Other difficulties with the BCAA
catabolism hypothesis deal with the issue of cellular regulation
of BCAA metabolism: since it is known that under ordinary
conditions the biosynthesis of BCAAs is tightly regulated through
feedback inhibition (Binder, 2010; Galili et al., 2016; Xing and
Last, 2017), it must be explained how some fruits can overcome
these regulatory barriers to produce the great amounts of BCAAs
and corresponding breakdown products needed to support the
biosynthesis of massive quantities of BCVs observed in these
fruits. By itself, the BCAA catabolism hypothesis is incapable of
accounting for this. These difficulties have led to the proposal
and investigation of other hypotheses regarding possible alternate
routes for BCV biosynthesis.

De novo Branched-Chain α-Ketoacid
Biosynthesis Followed by Mitochondrial
Catabolism
Based primarily off of research done in tomato, this hypothesis
posits that BCAAs are not the main source of carbon used
for biosynthesis of fruit BCVs but that instead it is branched-
chain α-ketoacids that fill this role. In this hypothesis, the
biosynthesis of BCAAs proceeds as normal up until the last
step, where instead of conversion to BCAAs by BCAT enzymes
branched-chain α-ketoacids produced so far are directly exported
to the mitochondria for BCKDH-mediated catabolism into
BCVs and associated precursors. This hypothesis has several
explanatory advantages. For one, it explains the findings in
tomato that feeding excess BCAAs to tomato fruit tissue does
not result in elevated BCV volatile production, while feeding
excess BCKAs does (Kochevenko et al., 2012). Another advantage
is that this hypothesis manages to bypass BCAA-mediated
feedback inhibition of upstream biosynthesis enzymes, though
inhibition by non-BCAA precursors generated by this pathway
may still occur depending on the sensitivities of these enzymes to
those compounds.

Much more experimental evidence is needed to conclude
whether or not this hypothesized pathway is involved in BCV
biosynthesis in certain fruits. In particular, labeling experiments
where deuterated BCKAs are fed to fruit tissue and deuterated
BCVs are observed but not deuterated BCAAs would provide
robust evidence for the validity of this hypothesis. Supporting
evidence could include an observation that BCAT transcripts
become drastically reduced in fruit tissue as compared to the
other upstream BCAA biosynthesis enzymes. These in vitro
assays would show that BCKAs do not cause feedback inhibition
of the upstream biosynthesis enzyme isoforms present in fruit,
or the discovery and characterization of a chloroplast transporter
expressed in fruit tissue that preferentially exports BCKAs before
they can be converted to BCAAs by chloroplastic BCATs.

It is important to note that this hypothesis may not be
mutually exclusive with the BCAA catabolism hypothesis: it
may be possible that fruit cells produce elevated levels of
BCKAs while also simultaneously catabolizing BCAAs into
volatiles. In fact, doing both might actually increase the
quantity of carbon shunted into mitochondrial BCKDH-
mediated volatile precursor production: catabolizing BCAAs
would reduce inhibitory pressure on key BCAA biosynthesis
enzymes which would then be free to produce greater quantities
of BCKAs that would be directly used to support BCV
production. Further investigation is needed to determine if such
a scenario indeed occurs in fruit tissue in nature and if so, what
quantifiable impact each pathway has on overall BCV production.

Production of 2-Methylbutyl Volatiles by
Citramalate Synthase
Work in apple has revealed a third possible route for the
biosynthesis of BCVs. Unlike the first two hypothesized
pathways, this route does not involve the early steps of classical
plant BCAA biosynthesis but instead relies on the enzyme
citramalate synthase (CMS), an enzyme previously known to
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be involved in BCAA biosynthesis only in bacteria (Sugimoto,
2011; Sugimoto et al., 2021). Briefly, in this pathway citramalate
synthase condenses one molecule of pyruvate with one molecule
of acetyl-CoA to form the dicarboxylic acid citramalate, a
molecule of which is then converted to 3-methylmalate by
the action of isopropylmalate isomerase (IPMI) enzymes. This
compound is then acted upon by isopropylmalate dehydrogenase
(IPMDH) enzymes to yield α-ketobutanoate, a known precursor
of isoleucine biosynthesis via the established plant pathway.
Biosynthesis to α-keto-β-methylpentanoate and isoleucine then
proceeds along the conventional plant BCAA biosynthesis
pathway. Direct experimental evidence for the activity of this
pathway in apple has been obtained through the use of 13C-
labeled acetate feeding and in vitro biochemical characterization
of CMS and IPMI enzymes expressed in apple fruit tissue
(Sugimoto, 2011; Sugimoto et al., 2021). Supporting evidence
in the form of measured increases in levels of citramalate and
CMS transcripts as apple ripening progressed was also obtained
in the same studies.

The primary explanatory advantage of this hypothesis is
that it enables the production of massive quantities of 2-
methylbutyl volatile compounds in fruit without being subject
to the feedback inhibition that large concentrations of isoleucine
exert on threonine deaminase (TD), an enzyme that catalyzes the
first committed step in isoleucine biosynthesis (Sidorov et al.,
1981; Singh and Shaner, 1995; Binder, 2010; Sugimoto et al.,
2021). Furthermore, additional evidence in apple indicates that
fruit CMS enzymes may also play a role in biosynthesizing
straight-chain esters, a class of compound commonly found at
high levels in several fruits including apple (Plotto, 1998; El Hadi
et al., 2013; Liu et al., 2021; Sugimoto et al., 2021). Nevertheless,
this hypothesis alone suffers from a serious limitation: it is unable
to account for the high levels of 3-methylbutyl volatiles observed
in several fruits as well as elevated levels of 2-methylpropyl
volatiles observed in others. Therefore, other hypotheses must
be deferred to when considering the biosynthetic mechanisms
underlying the formation of 3-methylbutyl and 2-methylpropyl
fruit volatiles. The fact that 3-methylbutyl and 2-methylpropyl
compounds have been detected in apple alongside high levels of
2-methylbutyl volatiles (Qin et al., 2017; Liu et al., 2021) seems to
indicate that at least two separate and distinct BCV biosynthesis
pathways can be active at the same time in this fruit.

Direct Transformation of
Branched-Chain Amino Acids
The last possible mechanism of BCV biosynthesis is direct
conversion of BCAAs into volatile compounds or immediate
precursors. Rather than undergoing several steps of degradation
through the established BCAA catabolism process before being
incorporated into BCVs, this hypothesis proposes that some
volatiles are directly transformed through enzymatic action
into BCVs or the immediate precursors of such. Evidence
from alfalfa and chickpea indicates that plants form branched-
chain aldehydes and alcohols through this pathway: in both
species, cDNAs for serine decarboxylase-like (SDC-L) enzymes
were found that when heterologously expressed in bacteria

produced enzymes capable of directly forming branched-chain
aldehydes from branched-chain amino acids (Torrens-Spence
et al., 2014). Branched-chain alcohols could then be formed
through the action of alcohol dehydrogenase (ADH) enzymes
acting on these branched-chain aldehydes. Similarly, work done
in poplar demonstrated that branched-chain nitrile volatiles
can be biosynthesized from BCAAs through the action of
two cytochrome P450 enzymes, one that converts BCAAs
into branched-chain aldoximes and another that subsequently
converts the branched-chain aldoximes into branched-chain
nitriles (Irmisch et al., 2013, 2014). Presumably, this pathway
may also be involved in the biosynthesis of other nitrogen-
containing BCVs reported from various fruits as it does not
involve the loss of the original amino acid’s nitrogen atom but
permits its refunctionalization into another chemical moiety.
Indeed, evidence from grape indicates that branched-chain 2-
methoxypyrazine volatiles are formed in just such a manner
(Lei et al., 2019). Experiments involving feeding of 15N-labeled
BCAAs to tissue from fruits known to produce nitrogenous BCVs
would be one way to empirically demonstrate such a role for
this pathway. The biosynthesis of both types of branched-chain
volatile compound have been shown to be accomplished without
the involvement of the mitochondrial BCKDH enzyme complex,
a key feature of the previous three hypotheses.

It is interesting to note that this pathway can theoretically
provide a possible route for the biosynthesis of branched-
chain acyl esters that also does not rely on the activity
of the mitochondrial BCKDH complex (Figure 3). In this
proposed route, branched-chain aldehydes are generated by a
serine decarboxylase-like enzyme as per that characterized by
Torrens-Spence et al. (2014). These branched-chain aldehydes
would then be converted to branched-chain carboxylic acids
by the action of aldehyde dehydrogenases (ALDHs), enzymes
known to be found in the genomes of many plants (Brocker
et al., 2013; Tola et al., 2021). The resulting branched-chain
carboxylic acids could then be turns into the corresponding
branched-chain acyl-CoAs by carboxyl-CoA ligases (CCLs), as
was demonstrated to occur in hops (Xu et al., 2013). This route
is fully compatible with existing data from feeding and labeling
experiments that demonstrate the conversion of BCAAs into
branched-chain acyl esters. In addition, given that neither of
the known BCV-forming SDC-like enzymes are predicted to
localize to mitochondria (Torrens-Spence et al., 2014) and that
several plant ALDHs are known to be localized to the cytosol
(Končitíková et al., 2015; Tola et al., 2021) along with CCLs
shown to activate branched-chain substrates (Xu et al., 2013), this
proposed pathway solves the difficulty of explaining how BCA-
CoAs produced in the mitochondria can cross the mitochondrial
membrane into the cytosol where plant AAT enzymes have
been shown to be localized (Noichinda et al., 1999a; Zhang
et al., 2019b). Furthermore, since prior research indicates that
mitochondrial BCKDH-mediated BCAA catabolism is tightly
regulated by a variety of factors in plants (Fujiki et al., 2001;
Peng et al., 2015) a BCA-CoA production pathway not involving
the BCKDH complex would not need to overcome in-built
regulatory hurdles to generate large quantities of BCA-CoAs.
Several difficulties are still apparent with this hypothetical route
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FIGURE 3 | Possible biosynthesis routes to volatile branched-chain acyl esters. (A) Mitochondrial BCAT- and BCKDH-mediated catabolism of free branched-chain
amino acids to branched-chain acyl-CoAs followed by esterification with alcohols by AAT enzymes. (B) De novo chloroplast synthesis of branched-chain α-ketoacids
followed by BCKDH-mediated catabolism to branched-chain acyl-CoAs and subsequent AAT-mediated esterification with alcohols. (C) CMS-initiated synthesis of
α-keto-β-methylpentanoate followed by BCKDH-mediated catabolism to 2-methylbutyl acyl-CoA and subsequent AAT-mediated esterification with alcohols to form
2-methylbutanoate esters. (D) Branched-chain aldehyde synthesis from free branched-chain amino acids via SDC-L, followed by conversion of branched-chain
aldehydes to branched-chain carboxylic acids through ALDH enzymes, followed by activation to branched-chain acyl-CoAs by CCL enzymes and subsequent
condensation with alcohols via AAT to generate branched-chain acyl esters. The first, second, and fourth routes are capable of generating acyl esters with all three
branched-chain structures, while the third route can only generate 2-methylbutanoate esters. The four pathways are illustrated yielding 2-methylbutanoate esters
from appropriate precursors for ease of comparison. BCAT, branched-chain amino acid aminotransferase; BCKDH, branched-chain α-ketoacid dehydrogenase
complex; AAT, alcohol acyltransferase; BCKA, branched-chain α-ketoacids; SDC-L, serine-decarboxylase like enzyme; ALDH, aldehyde dehydrogenase; CCL,
carboxyl-CoA ligase.

to branched-chain acyl esters: the accumulation of high levels of
aldehyde compounds is known to be toxic to cells, competition
for aldehyde substrates with the ADH enzymes known to
produce branched-chain alcohols, and the simple fact that no
direct evidence of this alternate route has yet been empirically
demonstrated. Experimental evidence such as deuterium-labeled
branched-chain aldehydes yielding branched-chain acyl esters
with deuterated acyl moieties or the characterization of fruit
ALDH enzymes capable of forming branched-chain carboxylic
acids from branched-chain aldehydes would go a long way to
establish the viability of this proposed pathway to branched-chain
acyl ester biosynthesis.

UNRESOLVED QUESTIONS
CONCERNING BRANCHED-CHAIN
VOLATILE BIOSYNTHESIS

Despite significant progress in understanding the molecular
correlates of BCV biosynthesis in plants, much remains to
be uncovered. In comparison, the metabolic bases of the
biosynthesis of other important classes of fruit volatile such
as the terpenoid, oxylipin, and phenylpropanoid families have
been quite thoroughly characterized. For a similar level of
understanding to be achieved for branched-chain volatiles,
several important questions need to be resolved. A few of these

unresolved questions regarding BCV biosynthesis most relevant
to fruit volatile metabolism are explored below:

How Branched-Chain α-Ketoacid
Dehydrogenase Complex-Mediated
Branched-Chain Amino Acid Catabolism
Is Regulated in Fruit Tissue
As has been discussed in previous sections of this review,
branched-chain acyl esters have been shown to be among the
most abundant BCVs detected in several important fruits and
have also been demonstrated to be key components of many
characteristic fruit flavors. The characterization of numerous
fruit alcohol acyltransferase enzymes indicates that these volatiles
are most likely formed through the condensation of alcohols
with branched-chain acyl-CoAs (Beekwilder et al., 2004; El-
Sharkawy et al., 2005; Souleyre et al., 2005; Günther et al., 2011).
In three of the four hypotheses regarding BCV biosynthesis
previously explored in this review, the mitochondrial BCKDH
enzyme complex plays the critical role in generating the BCA-
CoAs necessary for branched-chain acyl ester biosynthesis.
Evidence in plants indicates that the activity of this complex
is regulated by several factors (Fujiki et al., 2001; Peng et al.,
2015), while work done on the far more studied mammalian
BCKDH complex has identified several molecules that directly
modulate BCKDH activity. These include a kinase which directly
suppresses BCKDH activity and can itself be inhibited by
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branched-chain α-ketoacids (Paxton and Harris, 1984; Harris
et al., 1986, 1997), phosphatase enzymes that reverse the effects
of the kinase and promote activity of the BCKDH complex (Lu
et al., 2009; Zhou et al., 2012) and even BCA-CoAs themselves,
which have been shown to suppress BCKDH activity in vitro
(Parker and Randle, 1978).

The overall question relevant to researchers working in the
field of fruit aroma volatile metabolism is what role if any do
these BCKDH regulatory mechanisms play in the generation
of branched-chain acyl esters? If regulatory mechanisms that
directly or indirectly suppress BCKDH activity in plants are
identified, how are they overcome in fruit tissues to produce
the great quantities of BCA-CoAs needed to support large-scale
branched-chain acyl ester biosynthesis as observed in fruits such
as apple? If plant homologs of the mammalian BCKDH kinase
and phosphatase enzymes are found, are their expression levels
in fruit negatively or positively correlated with branched-chain
acyl ester content? Are subunits of the plant BCKDH complex
inhibited by high levels of BCA-CoAs as was demonstrated to
occur in the mammalian complex (Parker and Randle, 1978)?
The answers to these questions and related ones would shed great
insight into an important aspect of fruit BCV production and
may even offer potential avenues for altering the BCV content
of fruits by manipulating or even bypassing the underlying
regulatory mechanisms governing branched-chain acyl ester
precursor biosynthesis.

What Biosynthetic Processes Form
Sulfur-Containing Branched-Chain
Volatiles
In this review’s survey of 175 published studies of the volatile
profiles of various fruits only two sulfur-containing BCVs, 2-
(2-methylpropyl)-thiazole and S-methyl 3-methylbutanethioate,
were found (Table 1). Compared with the 125 other branched-
chain compounds reported, this would seem to indicate that
sulfur-containing BCVs are of little importance to the study
of fruit volatile metabolism. Nevertheless, the detection of
one of these compounds [2-(2-methylpropyl)-thiazole] in the
economically significant tomato fruit at concentrations far above

the minimum odor threshold (Baldwin et al., 2000; Tieman et al.,
2012) as well as the importance of sulfur-containing volatile
compounds in general to the flavor of numerous tropical fruits
(Engel, 1999; Cannon and Ho, 2018) justifies a closer look at the
biosynthesis of sulfur-containing BCVs.

The compound 2-(2-methylpropyl)-thiazole, hereafter
referred to as 2-isobutylthiazole, is a known enhancer of tomato
flavor that finds frequent use in the preparation of artificial
condiments (Kazeniac and Hall, 1972; Christiansen et al., 2011).
It has been detected in ripe tomato fruits by several studies
(Baldwin et al., 2000; Tikunov et al., 2005; Tieman et al., 2012).
Very little is known about the biosynthesis of this compound
(Paolo et al., 2018). Hierarchically clustered metabolite data
from several tomato introgressed lines characterized for volatile
content seems to indicate a branched-chain amino acid origin
for this compound (Mathieu et al., 2009). It is the precise nature
of how this biosynthetic process occurs that remains totally
unknown. That plants possess the capacity to biosynthesize the
thiazole moiety is well known from studies examining plant
biosynthesis of thiamine (Belanger et al., 1995; Goyer, 2010).
However, from a biochemistry perspective it is difficult to see
how this established pathway could incorporate a branched-
chain amino acid. It is far more likely that the biosynthesis of
this volatile occurs via a novel mechanism that uses a leucine
molecule as a starting point and source for the thiazole’s nitrogen.
Feeding 15N-labeled leucine to portions of tomato fruit tissue
and examining any generated 2-isobutylthiazole molecules for
that radioisotope could confirm or refute that assertion. Far
more difficult would be accounting for the sulfur component
of the thiazole ring and the two carbons at the four- and five-
positions. While experiments using radiolabeled cysteine or
methionine could yield some insight into the thiazole ring’s
origin, ultimately it may be more feasible to use the abundant
genetic resources available for tomato to track down potential
biosynthesis enzymes using fine mapping of quantitative trait
loci robustly associated with variable levels of this compound.

The other sulfur-containing BCV identified is the compound
S-methyl 3-methylbutanethioate, isolated from cantaloupe
(Beaulieu and Grimm, 2001). Several sulfur volatiles have been
detected in the aroma profiles of ripe melons and are thought to

FIGURE 4 | Proposed biosynthesis pathway for S-methyl branched-chain thioester volatiles. (A) Breakdown of L-methionine to α-ketobutanoate, methanethiol, and
ammonia by the action of L-methionine-γ–lyase (MGL). (B) Formation of S-methyl branched-chain thioesters via alcohol acyltransferase (AAT) mediated condensation
of methanethiol with branched-chain acyl-CoAs. This panel illustrates this process occurring with 3-methylbutyl-CoA and yielding S-methyl 3-methylbutanethioate
since that was the only S-methyl branched-chain thioester volatile identified across the 175 fruit volatile studies examined in this review; however, this process could
theoretically yield S-methyl 2-methylpropanethioate and S-methyl 2-methylbutanethioate from 2-methylpropyl-CoA and 2-methylbutyl-CoA, respectively.
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contribute to that fruit’s characteristic aroma (Wyllie and Leach,
1992). Due to this, some investigation into the biosynthesis of
sulfur volatiles in general in melon fruits has been conducted.
Isotope feeding experiments conducted with 13C5-L-methionine
gave evidence that volatile S-methyl thioesters are formed
through methionine catabolism (Gonda et al., 2013). This study
found that the enzyme L-methionine-γ–lyase (MGL) was capable
of cleaving radiolabeled methanethiol from L-methionine and
that S-methyl thioesters incorporated a radiolabeled carbon
at the methyl group. As it has been shown in strawberry that
alcohol acyltransferase can catalyze the formation of straight-
chain thioesters by condensing thioalcohols with acyl-CoAs
(Noichinda et al., 1999b), it may be likely that branched-
chain S-methyl thioesters in fruit arise from AAT-mediated
condensation of branched-chain acyl-CoAs with methanethiol
derived from the MGL-catalyzed cleavage of methionine
(Figure 4). Empirically demonstrating if this process occurs
in plants by incubating branched-chain volatile ester forming
AAT enzymes with branched-chain acyl-CoAs and thioalcohols
would answer an important question regarding the metabolism
of volatile branched-chain sulfur compounds.

What Biosynthetic Processes Are
Capable of Forming Branched-Chain
Alkanes in Fruit
Only one branched-chain alkane volatile was reported from
all of the literature examined, the compound being 2-
methylbutane and its presence being reported in raspberry
(Aprea et al., 2015). Because the presence of this compound
was reported below the level required for reliable quantification
and because other studies of raspberry aroma failed to detect
its presence, it is unlikely that that this compound plays a
role in raspberry aroma. Nevertheless, as small to medium
size branched alkanes in general are important components
of commercial gasoline the biosynthesis of 2-methylbutane
in fruit may be of interest to workers researching ways to
bioengineer plants capable of producing fuel hydrocarbons.
It has been shown that some plants can produce alkanes
through the decarbonylation of aldehydes (Cheesbrough and
Kolattukudy, 1984; Dennis and Kolattukudy, 1991; Aarts et al.,
1995; Schneider-Belhaddad and Kolattukudy, 2000). While this
route has been demonstrated to operate primarily on long- and
very-long chain fatty acid derivatives in plants (Bernard et al.,
2012; Ni et al., 2018), it may be a viable biochemical route to
short branched-chain alkanes especially since branched-chain
aldehydes are commonly found in several different kinds of plant
(Supplementary Table 1). Further research with an emphasis on
short branched-chain substrates is needed to confirm if such a
pathway is indeed responsible for branched-chain alkane volatile
biosynthesis in plants.

CONCLUSION

While knowledge regarding the biochemical basis of branched-
chain volatile metabolism in fruits has advanced significantly
in recent years, it is still rather inadequate especially when

compared to our detailed understanding of oxylipin, terpenoid,
and phenylpropanoid volatile biosynthesis. Much more is
known regarding the impact BCVs have on the flavor and
aroma qualities of several edible fruits, yet this underlies the
importance of obtaining a more thorough understanding of
the molecular correlates underlying fruit BCV production.
What has been published regarding this topic points to
four general hypotheses concerning the mechanisms of BCV
volatile biosynthesis in fruits, any or all of which might
be operational in vivo. It is clear that properly elucidating
which metabolic processes are responsible for fruit BCV
biosynthesis will require a great deal of further experimental
work, and it may very well be that the precise mechanisms vary
from fruit to fruit.

Several questions regarding BCV metabolism remain
unresolved, particularly those concerning the biosynthesis of
more unusual compounds such as branched-chain alkanes and
S-methyl thioesters. Furthermore, the regulation of important
parts of several proposed BCV biosynthesis routes remains little
known in plants. Whether well-studied regulatory mechanisms
known to control similar pathways in mammals are also active in
plants is a particularly relevant question, especially if bypassing
these mechanisms presents a potential way to modulate BCV
content in fruit tissue. Information gained on this aspect of BCV
metabolism could prove quite useful to groups researching ways
to improve the flavor of certain fruits by manipulating levels of
important volatile compounds.

Ultimately, advancing our understanding of BCV metabolism
represents a way to further our knowledge of the molecular
basis of fruit flavor and aroma. The fact that important progress
has been made should not detract from the fact that significant
gaps remain regarding our understanding of how specifically
these compounds are generated in fruits. Filling these gaps
through rigorous experimental work will go a long way to making
branched-chain volatiles as well understood as their oxylipin,
terpenoid, and phenylpropanoid counterparts.
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