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Pine wilt disease (PWD), caused by pine wood nematode (PWN), poses a

tremendous threat to global pine forests because it can result in rapid and

widespread infestations within months, leading to large-scale tree mortality.

Therefore, the implementation of preventivemeasures relies on early detection

of PWD. Unmanned aerial vehicle (UAV)-based hyperspectral images (HSI) can

detect tree-level changes and are thus an effective tool for forest change

detection. However, previous studies mainly used single-date UAV-based HSI

data, which could not monitor the temporal changes of disease distribution

and determine the optimal detection period. To achieve these purposes, multi-

temporal data is required. In this study, Pinus koraiensis stands were surveyed in

the field fromMay to October during an outbreak of PWD. Concurrently, multi-

temporal UAV-based red, green, and blue bands (RGB) and HSI data were also

obtained. During the survey, 59 trees were confirmed to be infested with PWD,

and 59 non-infested trees were used as control. Spectral features of each tree

crown, such as spectral reflectance, first and second-order spectral derivatives,

and vegetation indices (VIs), were analyzed to identify those useful for early

monitoring of PWD. The Random Forest (RF) classification algorithm was used

to examine the separability between the two groups of trees (control and

infested trees). The results showed that: (1) the responses of the tree crown

spectral features to PWD infestation could be detected before symptoms were

noticeable in RGB data and field surveys; (2) the spectral derivatives were the

most discriminable variables, followed by spectral reflectance and VIs; (3) based

on the HSI data from July to October, the two groups of trees were successfully

separated using the RF classifier, with an overall classification accuracy of 0.75–
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0.95. Our results illustrate the potential of UAV-based HSI for PWD

early monitoring.
KEYWORDS

pine wilt disease, unmanned aerial vehicle, hyperspectral images, multi-temporal
data, remote sensing, early detection, machine learning
Introduction

The pine wood nematode (Bursaphelenchus xylophilus;

Figure 1B) is a dangerous invasive species that causes pine wilt

disease (PWD), which has already destroyed enormous areas of

pine forest in China (Figure 1A). In natural conditions, B.

xylophilus spreads through vector insects (Monochamus

saltuarius in Northeast China; Figure 1B). B. xylophilus

invades through the wounds caused by vector insects feeding

on pine trees and eats the xylem, resulting in the wilting and

death of a pine tree due to the obstruction of water transport

(Figure 1C) (Mamiya, 1983; Kobayashi et al., 2003). Pine trees

infested with PWD die rapidly within three months (Shin, 2008;

Yu et al., 2021c). Therefore, early-stage PWD detection is crucial

for a prompt management response. Early detection requires

advanced and effective methods like remote sensing (RS).

Unmanned aerial vehicle (UAV) RS is a powerful technology

for detecting forest pests and diseases (Syifa et al., 2020; Wu

et al., 2021; Xia et al., 2021). UAVs mounted with visible-light or

multispectral sensors can rapidly collect high-resolution images

of forest crowns with high flexibility. However, using only

visible-light or multispectral data at the early stages of a B.

xylophilus infestation leads to low infestation detection accuracy

(Wu et al., 2021; Yu et al., 2021b). There are two main reasons

for this low performance: (1) The spectral information is

insufficient, and (2) the width of multispectral bands is too

wide to be successfully applied for early detection (Yang et al.,

2017; Abdullah et al., 2019b).

Hyperspectral RS uses data from hundreds of bands and

continuous wavelengths, and these bands can capture

physiological changes in infested trees, which help detect

early-stage pest and diseases infestations (Cheng et al., 2010;

Abdullah et al., 2018; Liu et al., 2021; Yu et al., 2021d). As the

advanced technology used in forest pest and diseases detection,

UAV-based hyperspectral imagery (HSI) can provide highly

accurate detection with flexible and efficient data acquisition

(Iordache et al., 2020; Li et al., 2020; Zhang et al., 2018; Lin et al.,

2019; Lin et al., 2021; Yu et al., 2021a). Most studies were based

on single-date UAV-based hyperspectral data for early

monitoring of forest pest and diseases (Lausch et al., 2013; Li

et al., 2020; Zhang et al., 2018; Lin et al., 2019; Lin et al., 2021; Yu
02
et al., 2021a; Yu et al., 2021c; Yu et al., 2021d). Compared with

single-date data, the use of time-series data is relatively rare

(Iordache et al., 2020; Einzmann et al., 2021; Bárta et al., 2022),

even though it could be used to capture more complete

infestation processes and determine the optimal detection

periods, thus leading to more reliable results than those based

on a single date, with the limitation that any changes observed in

the color and texture of tree crowns could also be due to

phenology and other factors. In a PWD study, Iordache et al.

(2020) acquired UAV-based HSI data in June 2018, October

2018, June 2019, September 2019 and October 2019. Even

though data were obtained for two years, the collection

interval was too long to capture early subtle changes in tree

canopies. In addition, while the emergence of vector insects

(Monochamus galloprovincialis in his study) began in May, data

collection did not begin until June, which may have been

too late.

In our study area, the flight period of the vector insect M.

saltuarius is from May to October, producing one generation a

year. Therefore, six UAV-based HSI data acquisitions in the

study area were performed from May to October 2021. Using

these multi-temporal data, we explored the following questions:

(1) Which are the most discriminable spectral features? (2)

When are variations in the spectral features due to PWD

first detectable?
Material and methods

The study involved field survey, UAV-based RGB data and

HSI data (Figure 2). The study site and the methods employed

for data analysis are described in the next sub-sections.
Study sites and field survey

The study area is located in Dongzhou District, Fushun City,

Liaoning Province, northeast China (124°12′36″–124°13′48″ E,
41°56′53″–41°57′46″ N; Figure 3A). Plantation forests in the

study area are dominated by Pinus koraiensis , aged

approximately 40–50 years.
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Field surveys were carried out six times: on 9 May, 9 June, 11

July, 11 August, 13 September, and 21 October 2021. On 9 May,

178 trees with no discoloration were selected from the study

area, and whether each tree carried the B. xylophilus was verified

through morphological and molecular identification. The results

showed that 59 trees were confirmed to be infected with the B.

xylophilus. The same number of healthy trees were selected as

control. In the remaining five surveys, resin secretion (observed

by making wounds on trees), tree vigor, and needle color of pine

trees were recorded in each plot. A handheld differential global

positioning system (DGPS, Version S760) was applied to

measure the location of each sampled tree with sub-

meter accuracy.
UAV-based data acquisition and
preprocessing

A DJI Matrice 600 Pro UAV (DJI, Shenzhen, Guangdong,

China) equipped with a Pika L hyperspectral camera (Resonon,
Frontiers in Plant Science 03
Bozeman, MA, USA; Figure 3A) and a LR1601-IRIS LiDAR system

(IRIS Inc., Beijing, China; Figure 3A) were used to acquire HSI and

LiDAR (light detection and ranging) data from 11:50–12:30, on 11

May, 10 June, 12 July, 18 August, 15 September, 23 October 2021

under sunny and cloudless weather conditions. The main

parameters of Pika L hyperspectral system are shown in Table 1.

LR1601-IRIS LiDAR system is uncalibrated, and the pulse

repetition frequency, laser wavelength, and returns per pulse are

5–20 Hz, 905 nm, and 2, respectively. An inertial measurement unit

mounted on the UAV helped produce high-quality HSI data.

Additionally, Z-survey i50 RTK (Shanghai Huace Navigation

Technology Ltd., Shanghai, China) was used to improve the POS

(position and orientation system) accuracy. HSI images of 4 cm/

pixel ground sample distance (GSD, the distance between pixel

centers measured on the ground) was obtained with a flight height

of 120 m. The flight speed was 3 m/s, and the overlap was set to

60%. A standard board was set up in the flighting area, which was

placed on a flat ground 3meters near the boundary of our test forest

and measured during each flight campaign. The standard board

covered with PTFE material (poly tetra fluoroethylene), which is a
B

C

A

FIGURE 1

Distribution of pine wilt disease in China in 2021 (A), morphology of Monochamus saltuarius and Bursaphelenchus xylophilus (B), and pathogenic
mechanism of pine wilt disease (PWD) (C).
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Lambertian reflector, for correction and calibration of the HSI data.

The reflectance of standard board was known (0.24-0.28 in our

study). The DN value obtained by the hyperspectral camera was

converted into the radiance value through the radiance calibration

file, and then divided by the reflectances of the standard board in

each band to obtain the total radiance. The reflectances of a target

was obtained by dividing its radiance by the total radiance. The

spectral range of the HSI was from 400 nm to 1000 nm with 150

spectral channels (spectral resolution of 3.3 nm). The whole UAV-

based system is displayed in Figure 3. UAV RGB images were

collected synchronously using a DJI Phantom 4 Pro (DJI, Shenzhen,

Guangdong, China) under the same conditions. The RGB sensor

was a 1-inch CMOS with a focal length of 24 mm. The flight

altitude and speed were 120 meters and 3 m/s, respectively, and the

GSD was 2.2 cm/pixel.

After each data collection, the data was preprocessed using

well-established processing routines (Holzwarth et al., 2011;

Einzmann et al., 2021; Yu et al., 2021a), leading to top-of-
Frontiers in Plant Science 04
canopy spectral bi-directional reflectances. The irradiance

calibration, reflectance correction, and image mosaicking

were conducted using the 3 m2 standard board and

Spectronon software (Resonon, Bozeman, MA, USA),

Megacube (LICA United Technology Limited, Beijing,

China), ArcGIS (ESRI, Redlands, CA, USA), IDL 8.5 and

ENVI 5.3 (Harris Corporation, Melbourne, FL, USA). The

image geometric correction was conducted by using six

ground control points, the location of which was measured

using a DGPS device with an accuracy of sub-meter. The

collected LiDAR data provided accurate DEM (digital

elevation model) data for the HSI data preprocessing. The

WGS1984 datum was applied as the coordinate system, and the

LiDAR data were georeferenced in the Universal Transverse

Mercator 51N. The ground, above-ground, and understory

points were classified from the raw LiDAR data for HSI data

preprocessing using the LiDAR360 software (version 4.1,

GreenValley Inc., Beijing, China).
FIGURE 2

Flowchart of data acquisition and processing.
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Extraction of tree crowns

Tree crowns were extracted from the HSI of each date in

ENVI 5.3 by manually drawing the ROIs (regions of interest)

based on field survey, GPS measurements and RGB images. To

minimize shadow influences, we only depicted the sunlit parts of

the tree crown of all selected trees in all HSI datasets (Figure 3C).

Mean sunlit crown reflectance spectra of 59 infested and 59
B C

D

A

FIGURE 3

The UAV-based hyperspectral and LiDAR system (A) and location of the study area and the hyperspectral image of the test site acquired on 23
October (B). An example pine tree shows the process of discoloration in the field, UAV RGB and hyperspectral images (C) and examples of
hyperspectral curves of sample trees at different dates (D).
Frontiers in Plant Science 05
TABLE 1 Main parameters of the Pika L hyperspectral sensor.

Parameters Values Parameters Values

Field of view 17.6° Wavelength range 400-1000 nm

Focal length 17 mm Spectral resolution 3.30 nm
fro
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control tree crowns were extracted for further analysis. The same

works of tree crowns extraction were conducted for the

RGB data.
Feature extraction

The raw spectral curves were smoothed with a Savitzky-

Golay filter with 9 points wide sliding window and a second-

order polynomial to reduce noises, which was performed in

Origin 2021b software (OriginLab, Northampton, MA, USA).

After smoothing the curves, first and second-order derivatives

were calculated from the HSI data.

To further characterize different vegetation characteristics

(e.g., chlorophyll content, cell structure, and water content), 13

vegetation indices (VIs, including leaf pigment indices, water

stress indices, and red edge parameters) were computed for the

smoothed spectral data (Table 2). For RGB data, the digital

number values (DN) of the red, green, and blue bands of tree

crowns were extracted for further analysis.
Frontiers in Plant Science 06
Separability evaluation and classification

A Mann-Whitney test was used to compare the spectral

differences between infested and control trees in the images

acquired at different times and identify when the infested trees

showed different spectra reflectances than the control ones

during the infestation process, which was conducted in IBM

SPSS Statistics 23 software (IBM, New York, NY, USA).

A Random Forest (RF) classifier (Breiman, 2001) was

applied to assess the discrimination ability of infested and

control trees in different seasons. Four RF models were

established using hyperspectral data, respectively using (1)

derivatives, (2) spectra reflectances, (3) VIs and (4) all the

above features. One RF model was built using the pixel values

of the RGB image as a comparison to the hyperspectral data.

All sample trees were employed for model training, and a 10-

fold cross-validation was conducted. The 10-fold cross

validation is to divide the training set into 10 sub samples,

one single sub sample is retained as the data to validate the

model, and the other 9 samples are used for training. The cross
TABLE 2 Vegetation indices employed in the study.

Index Description Formula Reference

Leaf pigment indices

GI Greenness Index R554

R677

Smith et al. (1995)

NDVI Normalized difference vegetation index
 

R800  − R680

R800  − R680

Rouse et al. (1974)

PRI Photochemical Reflectance Index
 

R570  − R531

R570  + R531

Carter and Miller
(1994)

PSRI Plant Senescence Reflectance Index
 

R677  − R500

R750

Merzlyak et al. (1999)

PSSR Pigment Specific Simple Ratio R800

R635

Penuelas et al. (1997)

PSI Plant Stress Index R695

R760

Hunt and Rock (1989)

RVSI Ratio Vegetation Stress Index R600

R760

Hunt and Rock (1989)

RES Red Edge Symmetry
 

R718  − R675

R755  − R675

Ju et al. (2010)

RENDVI Red Edge Normalized Difference Vegetation Index
 

R750  − R705

R750  + R705

Gitelson and Merzlyak
(1994)

Water stress indices

WI1 Water Index R970

R900

Penuelas et al. (1993)

WI2 Water Index R950

R900

Hardisky et al. (1983)

Red edge parameters

REIP Red Edge Inflection Point
700  + 40 � 

(R670  + R780) = 2  − R700

R740  − R700

Danson and Plummer
(1995)

REP Wavelength position of the maximum first derivative of reflectance
between 680 and 760 nm

– Dawson and Curran
(1998)
Ri, Reflectance at wavelength i.
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validation is repeated 10 times, and each sub sample is

validated once, with an average of 10 times, and finally a

single estimation is obtained (Waske et al., 2009). This

method has been widely used in previous similar studies.

(Lin et al., 2019; Yu et al., 2021c). The overall classification

accuracy was calculated to assess the separability between

infested and control trees. To show the features’ importance

in the RF models, we also calculated the mean decrease

accuracy (MDA) index of each feature. The higher the MDA

value of a feature, the greater its importance (Abdel-Rahman

et al., 2014; Huo et al., 2021). The RF classification was

performed in the R software (Version 3.6.1) using the

“randomForest” package. The models were trained with the

default mtry (number of predictors randomly sampled for each

node, set here as the square root of available input variables)

and 1500 ntrees (the number of trees).
Frontiers in Plant Science 07
Results

Changes in PWD-infested trees assessed
by field observations

Within the first three months (May to July), no evident changes

in the infested pine trees were observed in the field investigations. In

August, the color of the needles turned yellow and the resin

secretion decreased in the infested trees (Figure 4). Resin

secretion decreased with the increase of the degree of PWD

infestation (Yu et al., 2021d). PWD-infested trees go from early-

stage to late-stage infestation within five weeks (Umebayashi et al.,

2017). During the field surveys, a few control trees also showed

slight discoloration due to other factors. During September and

October, the needles gradually turned reddish brown, and resin

secretion further decreased in infested trees.
FIGURE 4

Overview of UAV-based RGB and hyperspectral data acquisitions and field surveys. The dots indicate data collection dates: field survey (pink),
RGB images (blue-green), and hyperspectral data (blue).
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Spectral-temporal changes of PWD
infested trees

Hyperspectral reflectance and pixel values in
the RGB images

The mean spectra of infested and control trees over time are

shown in Figure 5. In May, the mean spectra of infested and

control trees did not show significant difference (p<0.01)

(Figure 5A). A change first appeared in June (p<0.01), and

differences between the two groups were most obvious in

October (Figure 5F). The reflectances declined in both groups

in the green peak (490–580 nm) and near infrared (NIR; 780–

1000 nm) and increased in the red edge (660–780 nm). This is

caused by a decrease in chlorophyll content and a change in cell

structure (Cheng et al., 2010; Meiforth et al., 2020). The mean

pixel values in the RGB image (Figure 6) show that in the first

two months, there was no significant difference between the two
Frontiers in Plant Science 08
groups of trees, while a significant difference first appeared in the

red and blue bands in July (p<0.01).

Derivatives, green peak and red edge
parameters

The 1st and 2nd derivatives and REPs (REP and REIP) are

shown in Figure 7. A significant difference between the two

groups was detected on the last date of HSI data acquisition. In

the spectra of infested trees, the green peak shifted from 558.5 to

563.9 nm, while the REP moved from 723.8 to 715.2 nm. REIP

shows similar trends to REP but with a smaller decrease (moved

from 723.1 to 720.6 nm).

Figure 8 shows the temporal development of REIP derived

from tree canopy spectra of control and infested trees. In the first

two sampling dates, the REIP values of the two groups were

comparable, with only slight differences (p<0.05). The REIP

values of the infested trees declined from June onwards (p<0.01
B

C D

E F

A

FIGURE 5

Mean spectra of infested and control trees of May (A), June (B), July (C), August (D), September (E), and October (F). The gray dots indicate a
significant difference (p<0.01).
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and p<0.001), while the control trees remained unchanged or

fluctuated slightly (p<0.05).
Vegetation indices
The three most sensitive VIs (PSRI, RENDVI, and PSI) are

shown as boxplots for two groups (Figure 9). From June onward,

infested and control trees show significant differences in PSRI,

RENDVI and PSI (p<0.01 and p<0.001). The PSRI and PSI

values of infested trees increase from June to October, while

RENDVI values gradually decrease. On the contrary, VIs values

of control trees remain unchanged or change slightly (p<0.05).
Random Forest classification and feature
separability assessment

All the features (spectral reflectance, derivatives, VIs and

REPs) were employed in the RF classification model to separate

infested and control trees. In the first two months, the two

groups of trees could not be successfully discriminated

(Figure 10). The two groups of trees were first separated in

July with an overall accuracy of 0.75. The ability of distinguish

the two groups was further improved over the remaining

months, and the overall accuracy reached the highest (0.95) in

the last sampling date.

Among all the features, the derivatives performed best in

separating the two groups of trees, followed by spectral bands
Frontiers in Plant Science 09
and VIs. The classification accuracy was much lower using only

DN values from the RGB image than when using hyperspectral

images from May to August, while it was only slightly lower in

September and October (Figure 10). In the RF model using all

features, the red edge bands showed higher importance than the

other bands for identifying the two groups of trees in June (early

stage of PWD infestation), while the NIR bands contributed

more than other bands in October (late stage of PWD

infestation) (Figures 11A, B). For VIs, the red edge-based

indices (e.g., PSRI, PSI and RENDVI) played a more

important role in the RF model than others (e.g., NDVI, PSSR,

PRI) (Figure 11C). This indicated a higher potential of the red

edge bands for the early detection of PWD infestation.
Discussion

Optimal monitoring period of PWD

In our study, variations in the UAV-based hyperspectral

features due to PWD infestation were first noticeable in June,

before changes in the RGB data and field investigation were visible.

Multiple factors can explain this difference. On the one hand,

changes always begin at the tree crown, and our ability to observe

them from the ground is limited. On the other hand, the RGB data

may not have enough information to succeed in early detection

(Figure 12). Significant differences in spectral features first appeared

in June, but the classification accuracy was not promising at this
B C

D E F

A

FIGURE 6

Mean RGB DN values (± standard deviation) for May (A), June (B), July (C), August (D), September (E), and October (F). The symbol * indicates a
significant difference (p < 0.01).
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time. With higher separability, July seems to be the optimal

monitoring period. Understandably, it is important to ensure that

all infested trees are found before the end of the flight period of

vector insects so that they can be removed later to prevent spread

next year. However, the definition of the “optimal monitoring
Frontiers in Plant Science 10
period” should be more comprehensive and take into

consideration, at the same time, factors such as monitoring time,

monitoring accuracy, the generation of pest, and the cost of taking

control measures. Our results showed that the PWD monitoring

accuracy of July was lower than that of October, even though the
B

C D

A

FIGURE 7

Mean tree crown spectra with 1st and 2nd derivative of infested trees (right) and control trees (left) on 11.05.2021 (A, B) and 23.10.2021 (C, D).
The green peak (green dots), red edge infestation point (black lines), and red edge position (red dots) are also displayed.
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FIGURE 8

Temporal changes of the REIP derived from spectra of control (green) and infested trees (pink) over time. The symbol * indicates significant
differences, with *, **, and *** indicating differences at p < 0.05, p < 0.01, and p < 0.001, respectively.
FIGURE 9

Rights: Boxplots showing temporal changes in Plant Senescence Reflectance Index (PSRI), Red Edge Normalized Difference Vegetation Index
(RENDVI), and Plant Stress Index (PSI) derived from tree canopy spectra (infested trees are in pink, control trees are in green). The symbol *
indicates significant differences, with * and *** indicating differences at p < 0.05, p < 0.01, and p < 0.001 levels, respectively. Left: associated
maps of PSRI, RENDVI and PSI, showing the within-crown variation of features on 11 May, 12 July and 23 October.
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monitoring time was earlier. If we monitor pine trees and take

control measures (e.g., felling) in June, many non-infested trees

would also be impacted due to relatively low detection accuracy

(e.g., non-infested trees were incorrectly identified as infested trees).

Conversely, if pine trees are detected in October, more pine trees

would be infested from June to October and the cost of treatment

would be higher, even though the detection accuracy is higher at

this time. In addition, the vector insects in our study are one

generation per year, so the trees infested with PWN spread by

vectors in flight periods will not cause new infestation later in a year.

This indicates that it is enough to take control measures only once a

year in the late stage of infestation (e.g., in October), instead of

felling twice in the early stage and late stage of infestation (e.g., in

June and October), because the vector insects only fly once a year

and will not cause new spread within a year. However, if vector

insects are two generations per year (e.g., Ips typograhus), then

summer sanitation (e.g., in June) is necessary. Therefore, to describe

the “optimal monitoring period” more accurately, multiple factors

such as monitoring accuracy, time, the generation of pest and

treatment cost needs to be considered in future research.
Potential spectral bands for PWD early
detection

In this study, a significant difference in the red edge region

was first detected in June when this portion of the spectrum has

stronger separability (Figures 5B, 11), demonstrating great

potential for PWD early detection. This was also confirmed by

the fact that the most important features in the RF model and the

most reactive VIs at the early stages of a PWD infestation were
Frontiers in Plant Science 12
mainly red edge-based variables (Figure 11). These results are

consistent with other studies of forest pests and diseases

(Dennison et al., 2010; Fassnacht et al., 2014; Bárta et al., 2021;

Einzmann et al., 2021; Huo et al., 2021; Zhou et al., 2021; Yu

et al., 2021c; Bárta et al., 2022). In a PWD study, red edge indices

from needles and UAV-based hyperspectral data produced the

highest accuracy for B. xylophilus early detection (Yu et al.,

2021d). Similar results have also been found with the red edge

band derived from ground and satellite spectral data to monitor

early-stage bark beetle damage at the needle, crown, and stand

levels (Abdullah et al., 2019a; Abdullah et al., 2019b). In another

study, red-edge based indices were proved to be more sensitive

during the early infestation of Ips typographus (Bárta et al.,

2022). Specifically, the red edge position shifted to the shorter

wavelength with an increasing degree of infestation (also called

“blue shift”). This “blue shift” is an indicator of chlorophyll and

leaf area loss (Rock et al., 1988).

In addition to red edge region, other bands also shown their

potential in forest health monitoring. The short-wave infrared

(SWIR) region of the spectrum is also key for distinguishing

healthy trees from those damaged by Ips typographus and

Dendroctonus rufipennis (Foster et al., 2017; Abdullah et al.,

2019b; Bárta et al., 2021; Huo et al., 2021). Other studies also

found that healthy trees normally have higher reflectances than

damaged trees in the near infrared (NIR) bands (Liu et al., 2021;

Ortiz et al., 2013; Yu et al., 2021d). The spectral features of NIR

and SWIR are related to the leaf cell structure and water content

(Carter and Knapp, 2001; Entcheva Campbell et al., 2004;

Einzmann et al., 2021). Therefore, in addition to the red edge

bands, other regions, such as NIR and SWIR, also have potential

in the early monitoring of PWD.
FIGURE 10

Classification accuracy for distinguishing infested and control trees by using different types of features during the course of pine wilt disease
infestation.
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Comparison of HSI and RGB data in early
monitoring of PWD

Most studies used RGB data to detect PWD-infested trees

with obvious discoloration (at the middle or late stage of a PWD

infestation) instead of early-stage detection (Hu et al., 2020; Qin

et al., 2021; Xia et al., 2021; Zhang et al., 2021). However,

detection accuracy is not promising when using RGB data at

early in a PWD infestation. Early detection of PWD using RGB

data had an accuracy of only 0.465–0.508 (Wu et al., 2021) and

the low performance was likely caused by insufficient spectral

information in these data.
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In this study, HSI data performed better than RGB images in

separating infested and control trees at the early stage of the

PWD infestation. From May to August, the classification

accuracy of HSI was 0.07–0.16 higher than that of RGB, while

that of HSI data was only 0.02–0.03 higher in September and

October. The classification accuracy using RGB data can achieve

0.74–0.92 from August to October, but only 0.47–0.66 fromMay

to July. The results indicate that only using RGB data can also

successfully separate the two groups of trees at the late stage of a

PWD infestation but cannot provide early detection of PWD.

To sum up, there is a trade-off between HSI and RGB data

selection. HSI data perform better in PWD early detection but
A B

C

FIGURE 11

Mean Decrease Accuracy (MDA) of the top 10 variables ranking for all spectral features (A), spectral wavelength (B), and VIs (C) for separating
the two groups of trees using the RF classification model. Numbers “1” and “2” in (A) indicate 1st and 2nd derivative, respectively. The different
backgrounds in (A, B) indicate the band region: blue (blue), green (green), red edge (red), as well as NIR (yellow). The numbers in (C) represent
the MDA rank of each variable.
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have a higher cost, more complex data processing and tighter

requirements for suitable weather conditions. UAVs equipped

with RGB cameras can rapidly collect high-resolution images

of tree crowns with low cost, high flexibility, and low

requirements for clear sky conditions. However, using only

RGB data cannot be used for early PWD detection. According

to previous studies (Abdullah et al., 2019b; Bárta et al., 2021;

Liu et al., 2021; Ortiz et al., 2013; Yu et al., 2021d), the red edge,

NIR, and SWIR regions were considered as sensitive bands for

early monitoring. For example, some studies found that

healthy trees normally have higher reflectances than

damaged trees in the NIR regions (Ortiz et al., 2013; Liu

et al., 2021; Yu et al., 2021d). Based on this spectral

information, replacing the RGB camera with an equally

simple NIR instrument would likely considerably improve

infestation detection without hyperspectral data. Another

effective method is to design a multispectral camera with

bands selected from HSI data dedicated to early monitoring

of PWD, which will be the goal of our next studies.
Conclusion

The UAV-based RS data used in our study successfully

detected changes in the spectral behavior of PWD-infested

trees. Sample trees were monitored from May to October. In

June, before changes were noticeable in the RGB data and field
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investigation, changes in spectral features were first detected in

the hyperspectral data.

Several spectral features were employed to detect variations

in the spectrum reaction of infested trees compared to non-

infested trees. The spectral reflectance of infested trees was

altered in the visible, red edge and NIR bands. The most

discriminative features for separating the two groups’ trees

were the derivatives and the spectral reflectance, over the REPs

or VIs. By using the RF algorithm, the two groups were

successfully separated from July to October.
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Waske, B., Benediktsson, J. A., Árnason, K., and Sveinsson, J. R. (2009). Mapping
of hyperspectral AVIRIS data using machine-learning algorithms. Can. J. Remote
Sens. 35 (Sup1), S106–S116. doi: 10.5589/m09-018

Wu, B., Liang, A., Zhang, H., Zhu, T., Zou, Z., Yang, D., et al. (2021). Application
of conventional UAV-based high-throughput object detection to the early
diagnosis of pine wilt disease by deep learning. For. Ecol. Manage. 486, 118986.
doi: 10.1016/j.foreco.2021.118986

Xia, L., Zhang, R., Chen, L., Li, L., Yi, T., Yao, W., et al. (2021). Evaluation of
deep learning segmentation models for detection of pine wilt disease in unmanned
aerial vehicle images. Remote Sens. 13 (18), 3594. doi: 10.3390/rs13183594

Yang, G., Liu, J., Zhao, C., Li, Z., Huang, Y., Yu, H., et al. (2017). Unmanned
aerial vehicle remote sensing for field-based crop phenotyping: current status and
perspectives. Front. Plant Sci. 8. doi: 10.3389/fpls.2017.01111

Yu, R., Luo, Y., Li, H., Yang, L., and Huang, H. (2021a). Three-dimensional
convolutional neural network model for early detection of pine wilt disease using
UAV-based hyperspectral images. Remote Sens. 13 (20), 4065. doi: 10.3390/
rs13204065

Yu, R., Luo, Y., Zhou, Q., Zhang, X., and Ren, L. (2021b). Early detection of pine
wilt disease using deep learning algorithms and UAV-based multispectral imagery.
For. Ecol. Manage. 497 (4), 119493. doi: 10.1016/j.foreco.2021.119493

Yu, R., Luo, Y., Zhou, Q., Zhang, X., Wu, D., and Ren, L. (2021c). A machine
learning algorithm to detect pine wilt disease using UAV-based hyperspectral
imagery and LiDAR data at the tree level. Int. J. Appl. Earth Obs. Geoinf. 101,
102363. doi: 10.1016/j.jag.2021.102363

Yu, R., Ren, L., and Luo, Y. (2021d). Early detection of pine wilt disease in Pinus
tabuliformis in north China using a field portable spectrometer and UAV-based
hyperspectral imagery. For. Ecosyst. 8 (3), 583–601. doi: 10.1186/s40663-021-
00328-6

Zhang, B., Ye, H. C., Lu, W., Huang, W. J., Wu, B., Hao, Z. Q., et al. (2021). A
spatiotemporal change detection method for monitoring pine wilt disease in a
complex landscape using high-resolution remote sensing imagery. Remote Sens. 13
(11), 2083. doi: 10.3390/rs13112083

Zhang, N., Zhang, X., Yang, G., Zhu, C., Huo, L., and Feng, H. (2018).
Assessment of defoliation during the Dendrolimus tabulaeformis tsai et liu
disaster outbreak using UAV-based hyperspectral images. Remote Sens. Environ.
217, 323–339. doi: 10.1016/j.rse.2018.08.024

Zhou, Q., Zhang, X. D., Yu, L. F., Ren, L. L., and Luo, Y. Q. (2021). Combining
WV-2 images and tree physiological factors to detect damage stages of Populus
gansuensis by Asian longhorned beetle (Anoplophora glabripennis) at the tree level.
For. Ecosyst. 8, 35. doi: 10.1186/s40663-021-00314-y
frontiersin.org

https://doi.org/0.1016/j.rse.2020.112040
https://doi.org/10.1016/j.rse.2021.112475
https://doi.org/10.3390/rs11212540
https://doi.org/10.1016/j.foreco.2021.119505
https://doi.org/10.1146/annurev.py.21.090183.001221
https://doi.org/10.1146/annurev.py.21.090183.001221
https://doi.org/10.3390/rs12060926
https://doi.org/10.1034/j.1399-3054.1999.106119.x
https://doi.org/10.3390/rs5041912
https://doi.org/10.1080/01431169308954010
https://doi.org/10.1080/014311697217396
https://doi.org/10.3390/rs13020162
https://doi.org/10.1016/0034-4257(88)90008-9
https://doi.org/10.1071/AR9950113
https://doi.org/10.1016/j.eng.2020.07.001
https://doi.org/10.1007/s10658-016-1013-8
https://doi.org/10.5589/m09-018
https://doi.org/10.1016/j.foreco.2021.118986
https://doi.org/10.3390/rs13183594
https://doi.org/10.3389/fpls.2017.01111
https://doi.org/10.3390/rs13204065
https://doi.org/10.3390/rs13204065
https://doi.org/10.1016/j.foreco.2021.119493
https://doi.org/10.1016/j.jag.2021.102363
https://doi.org/10.1186/s40663-021-00328-6
https://doi.org/10.1186/s40663-021-00328-6
https://doi.org/10.3390/rs13112083
https://doi.org/10.1016/j.rse.2018.08.024
https://doi.org/10.1186/s40663-021-00314-y
https://doi.org/10.3389/fpls.2022.1000093
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org

	Early detection of pine wilt disease tree candidates using time-series of spectral signatures
	Introduction
	Material and methods
	Study sites and field survey
	UAV-based data acquisition and preprocessing
	Extraction of tree crowns
	Feature extraction
	Separability evaluation and classification

	Results
	Changes in PWD-infested trees assessed by field observations
	Spectral-temporal changes of PWD infested trees
	Hyperspectral reflectance and pixel values in the RGB images
	Derivatives, green peak and red edge parameters
	Vegetation indices

	Random Forest classification and feature separability assessment

	Discussion
	Optimal monitoring period of PWD
	Potential spectral bands for PWD early detection
	Comparison of HSI and RGB data in early monitoring of PWD

	Conclusion
	Data availability statement
	Author contributions
	Funding
	Acknowledgments
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /PageByPage
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Tags
  /CompressPages false
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 1
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness false
  /PreserveHalftoneInfo false
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages false
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages false
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages false
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile ()
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /ENU (T&F settings for black and white printer PDFs 20081208)
  >>
  /ExportLayers /ExportVisibleLayers
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /BleedOffset [
        0
        0
        0
        0
      ]
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /ClipComplexRegions true
        /ConvertStrokesToOutlines false
        /ConvertTextToOutlines false
        /GradientResolution 300
        /LineArtTextResolution 1200
        /PresetName ([High Resolution])
        /PresetSelector /HighResolution
        /RasterVectorBalance 1
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks true
      /IncludeHyperlinks true
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MarksOffset 6
      /MarksWeight 0.250000
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PageMarksFile /RomanDefault
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
    <<
      /AllowImageBreaks true
      /AllowTableBreaks true
      /ExpandPage false
      /HonorBaseURL true
      /HonorRolloverEffect false
      /IgnoreHTMLPageBreaks false
      /IncludeHeaderFooter false
      /MarginOffset [
        0
        0
        0
        0
      ]
      /MetadataAuthor ()
      /MetadataKeywords ()
      /MetadataSubject ()
      /MetadataTitle ()
      /MetricPageSize [
        0
        0
      ]
      /MetricUnit /inch
      /MobileCompatible 0
      /Namespace [
        (Adobe)
        (GoLive)
        (8.0)
      ]
      /OpenZoomToHTMLFontSize false
      /PageOrientation /Portrait
      /RemoveBackground false
      /ShrinkContent true
      /TreatColorsAs /MainMonitorColors
      /UseEmbeddedProfiles false
      /UseHTMLTitleAsMetadata true
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


