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Root phenotypes as modulators
of microbial microhabitats

Henry W. G. Birt, Courtney L. Tharp, Gordon F. Custer
and Francisco Dini-Andreote*

Department of Plant Science and Huck Institutes of the Life Sciences, The Pennsylvania State
University, University Park, PA, United States
Plant roots are colonized by a multitude of microbial taxa that dynamically

influence plant health. Plant-microbe interactions at the root-soil interface

occur at the micro-scale and are affected by variation in root phenotypes.

Different root phenotypes can have distinct impacts on physical and chemical

gradients at the root-soil interface, leading to heterogeneous microhabitats for

microbial colonization. Microbes that influence plant physiology will establish

across these heterogeneous microhabitats, and, therefore, exploiting variation

in root phenotypes can allow for targeted manipulation of plant-associated

microbes. In this mini-review, we discuss how changes in root anatomy and

architecture can influence resource availability and the spatial configuration of

microbial microhabitats. We then propose research priorities that integrate

root phenotypes and microbial microhabitats for advancing the manipulation

of root-associated microbiomes. We foresee the yet-unexplored potential to

harness diverse root phenotypes as a new level of precision in microbiome

management in plant-root systems.
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Introduction

Plant health is strongly influenced by microorganisms that live within or near plant

tissues (Badri et al., 2013; Dini-Andreote, 2020; Fu et al., 2020). Many of these microbial

modulators of plant health inhabit the rhizosphere – the narrow zone of soil adjacent to

plant roots (Hiltner, 1904). The active manipulation of the rhizosphere microbiome can

promote beneficial plant-microbe interactions to enhance agricultural sustainability, crop

resilience, and yield (Trivedi et al., 2017). This could be achieved by altering abiotic

conditions in the rhizosphere to direct the assembly and functioning of beneficial

microbial groups. However, given the microscopic scale at which plant-microbe

interactions take place, augmenting microhabitats via field-scale approaches (e.g., soil

physical management and/or nutrient manipulation) can be a coarse approach for

processes that operate on a much finer scale. Nevertheless, manipulating the soil
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environment at a scale meaningful to microbes is possible by

focusing on root-soil interactions and the chemical gradients

they create in the rhizosphere. Such gradients are formed via

root exudates and sloughed-off cells, immobilization and

mobilization of nutrients, and physical disruption of

aggregates as roots grow through the soil matrix (for an in-

depth review on rhizosphere gradients, please see Benard et al.,

2019; Liu et al., 2022; and Stassen et al., 2021). These gradients

are arise from complex interactions between the plant’s

metabolism, root phenotypes, and soil characteristics –

including the microbiome (Yan et al., 2004).

Root phenotypes are constituted of distinct phenes – i.e.,

traits under the plant genetic control (e.g., number of root

cortical aerenchyma, or rooting angle) – that aggregate to

form an overall phenotype (e.g., a steep, deep, and cheap root

phenotype; York et al., 2013). As these vary across plant species

and genotypes, and result in different conditions in the

rhizosphere, root phenotypes can be targeted as subjects of

breeding efforts to modulate microhabitats; however, plant

breeding may have already ‘unintentionally’ selected diverse

root phenes that influence microbial microhabitats (Lynch,

2019). For instance, barley cultivars with more root hairs

resulted in reduced root-induced compaction in the

rhizosphere (Koebernick et al., 2018). Therefore, explicitly

considering the impact of specific phenes as modulators of

microbial microhabitats can broaden our perspective on

microbiome assembly and targeted management. This could

attain outcomes not yet achievable by either a microbe-centric

(e.g., microbial inoculation) or plant-centric (e.g., root nutrient

acquisition without microbes) standpoints. To advance research

efforts on this theme, here we discuss how root phenes and their

combinations resulting in various root phenotypes affect the

abiotic rhizosphere environment with consequences for

microbiome assembly and functioning. Particularly, we explore

variations in anatomical and architectural root traits that directly

influence microhabitats in the rhizosphere. For example, via

alterations in nutrient availability, or the extent and distribution

of microhabitats through the soil matrix. Lastly, we provide a

perspective on efforts that can facilitate the integration of root

phenomics and microbial ecology, with the potential to produce

a new level of precision in microbiome manipulation in the

plant rhizosphere.
Root architecture

Root architecture determines the spatial and temporal

organization of root tissues through the soil matrix. The

combination of phenes that give rise to a root architectural

phenotype includes traits affecting root length, branching, angle,

and the growth rate of both axial and lateral roots (York et al.,

2013). As nutrients and water availability are not evenly

distributed throughout the soil profile, root architecture
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influences the ability of plants to exploit these resources, with

implications for plant health, status, and performance (Lynch,

2019). Root architecture also indirectly influences water and

nutrient availability in microbial microhabitats (Jobbágy and

Jackson, 2001; Nunes et al., 2020), with implications for

microbiome assembly (Hartman and Tringe, 2019). In this

section, we discuss aspects of root architecture based on root

spatial distribution, as less is known about plant root temporal

dynamics and their influence on the rhizosphere microbiome

(Fierer et al., 2010); even though studies of rhizosphere

dynamics through plant developmental stages, can represent

indirect assessments of root temporal dynamics (Edwards et al.,

2018; Dibner et al., 2021; Xiong et al., 2021).
Rooting depth

Plant root depth is mostly determined by the angle and

length of roots (Ramalingam et al., 2017), both of which can be

affected by host genetics and plant-microbe interactions (e.g., via

auxin production; Myo et al., 2019). Rooting depth has the

potential to affect nutrient availability to microbes and thus their

fitness (Pekkonen et al., 2013; Turlure et al., 2019) as varying

root depths promote access to specific resource pools distributed

across distinct soil horizons (Figure 1). For instance, less mobile

soil resources such as phosphorous (P) and particulate organic

matter are generally at greater concentrations at the top soil

horizons, while nitrogen, sulfur, and sodium can easily move

through the soil profile and accumulate at deep soil horizons

(Jobbágy and Jackson, 2001; Nunes et al., 2020). This spatial

distribution of resources also leads to a vertical stratification of

microbiomes, with distinct taxonomic compositions and

functional capabilities (Jiao et al., 2018). For example, P-

solubilizing bacteria have been found to be significantly more

abundant at shallower soil depths, where P tends to accumulate

(Pastore et al., 2020). Therefore, by selecting phenes that create

shallow rooting phenotypes, roots are in proximity to higher

mineral P (Sun et al., 2018) and greater abundances of P-

solubilizing bacterial taxa (Paul et al., 2018). Conversely, given

the vertical distribution of soil taxa, deeper rooting plants can

also be in association with different bacterial taxa. For example,

members within the candidate phyla Dormibacteraeota have

been shown to hold adaptations for surviving in deep soil

horizons, including distinct metabolisms for carbohydrate

storage, spore formation, and carbon monoxide oxidation

(Brewer et al., 2019). As such, it is possible to speculate that

exposure of plants to different microbial taxa in soil can result in

variable effects on plant physiology and performance.

Deep rooting phenotypes can also indirectly influence water

availability in the rhizosphere in arid environments, where water

tends to become available in deeper soil layers (Broedel and

Tomasella, 2017). Thus, allowing certain microbes to establish in

the rhizosphere where water limitation may otherwise inhibit
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their persistence. This is particularly relevant because most soil

microbes respond strongly to soil moisture variations (Neilson

et al., 2017; De Vries et al., 2020). Water is necessary to microbes

as a solvent for intracellular biochemical reactions, and its

presence affects the mobility and access to nutrients (e.g.,

nitrogen, potassium, phosphorous), in addition to oxygen

needed for aerobic growth (Tan et al., 2021). Furthermore,

microbial cells are often in an osmotic balance with their

immediate surroundings via the accumulation of compatible

solutes/osmoprotectants (e.g., betaines) to maintain water

potential in their favor under drier conditions, which incurs

metabolic costs to the cell (Schimel, 2018).

Variation in rooting depth has the potential to affect the

balance of ecological interactions between groups of microbes in

the soil profile. For instance, decreases in fungal to bacterial

ratios have been observed in the rhizosphere of plants with

longer specific root lengths (Demenois et al., 2018; Wan et al.,

2021), a common phenotype selected in breeding programs

(Hund et al., 2009; Lopes and Reynolds, 2010; Henry et al.,

2011). This occurs because at deeper soil layers, fast-growing

copiotrophic bacteria can outcompete slower-growing fungi for

access to the labile carbon released through rhizodeposits

(Figure 1). Thus, causing a reduction in fungal biomass as

other forms of more recalcitrant carbon – more efficiently

processed by saprophytic fungi – are locally absent or present

in shorter supply (Jobbágy and Jackson, 2001; Rousk and Bååth,

2011). However, at shallower soil depths, fungi can often – or at

least partially – outcompete some bacterial taxa. This occurs due

to the capacity of most saprotrophic fungi to process recalcitrant

forms of carbon more efficiently (e.g., lignin, pectin, glycans)
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that, in general, bacteria lack the enzymatic capacity or take

longer to degrade and utilize (Janusz et al., 2017).
Root branching

Plant-root branching patterns are formed through the

development of lateral roots, which influence the total surface

area of the root that is in contact with the soil (Liu et al., 2014).

This alters the total size of the rhizosphere that is available for

microbial colonization (Figure 1). Through plant development,

root branching often causes narrower roots to be produced at

lower order roots, thus allowing the exploitation of smaller soil

pores and/or micro-aggregates (Jungk, 2001). Within the context

of the rhizosphere, the size, distribution, and connectivity of soil

pores are important determinants of the formation of microbial

microhabitats (Kim et al., 2022; Vogel et al., 2022). In this

scenario, it is possible that smaller pores act as isolated habitat

patches, which can influence competitive interactions and

strengthen patterns of coexistence among microbial taxa

(Lowery and Ursell, 2019). This is corroborated by the fact

that finer roots have been shown to contain more diverse

microbial communities when compared to higher-order roots

(Saleem et al., 2016; Pervaiz et al., 2020; King et al., 2021; Luo

et al., 2021). Moreover, some microbial taxa have also been

shown be more abundant in specific root orders (Wang et al.,

2017), possibly due to their ability to compete in distinct habitat

patch sizes with characteristic biotic and abiotic conditions. For

example, microbial taxa affiliated with Oxalobacteraceae,

Comamonadaceae, and Polyangiaceae were shown to mostly
BA

FIGURE 1

(A) Differences in root architecture based on the spatial distribution of roots through the soil profile and the differential distribution of microbial
taxa and resources in the rhizosphere with increasing soil depth. (B) Variation in root branching and its influence on mediating the establishment
and distribution of microhabitats in the rhizosphere.
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colonize either the nodal or seminal roots of Brachypodium

distachyon (Kawasaki et al., 2016). In line with that, members of

Oxalobacteraceae have also been shown to be able to restore

lateral root development in defective mutants once the soil had

been conditioned by plant flavones (Yu et al., 2021).

Interestingly, this finding also indicates that lateral root

development can – in some cases – in part be determined by

the feedback between plants and their associated microbes in

the rhizosphere.
Root anatomy

Root anatomy is determined by the cellular composition and

function of the structures that make up plant roots (e.g., cortical

tissue, vascular bundles, root hairs, and root cap). The

arrangement and chemical composition of tissues and cells

within the root directly affect the physical environment of the

soil (Kawa and Brady, 2022). This occurs via changes in the rates

of diffusion of nutrients and sloughed-off cells at the root-soil

interface, the indirect effects on gradients of water and exudates,

as well as the modulation of chemical properties (e.g., oxygen

diffusion, pH) of the rhizosphere at the micro-scale (Kirk et al.,

2019; Salas-González et al., 2021).
Root hairs

Root hairs are single-celled outgrowths from the root

epidermis which extend the plant’s root surface area, increase

nutrient and water uptake (Qiao and Libault, 2013). Root hairs

increase the enzymatic activity and the extent of the rhizosphere,

depending on their length and density (Ma et al., 2018). Such

traits help plants to tolerate drought and accumulate

phosphorous (Marin et al., 2021). In addition, the area of soil

in contact with root hairs can serve as a zone of carbon

accumulation, which has the potential to enrich microbial

activity and diversity (Kravchenko et al., 2019). For example,

hairless barley mutants were shown to result in differences in

rhizosphere microbiome composition and lower community

diversity (Robertson-Albertyn et al., 2017). In another study, a

collection of bacterial taxa isolated from the root hairs of Leersia

oryzoides, and inoculated in rice (Oryza sativa, a domesticated

relative), were shown to stimulate root hair formation (Verma

et al., 2018); these same bacterial taxa were also able to protect

the plant against fungal pathogens. Together, these studies

indicate the beneficial impacts of specific microbial taxa on

dynamically influencing both root phenotypes and plant health.

Altering root hair characteristics could actively augment soil

pore space and aeration. For example, in barley, genotypes with

more root hairs resulted in altered soil porosity and connectivity,

and higher pore volume which alleviated root-induced soil

compaction. (Koebernick et al., 2017). The physical and
Frontiers in Plant Science 04
chemical consequences of soil compaction can have a direct

effect on the soil microbiome, for example, by favoring

methanogenic and denitrifier taxa under oxygen-limiting

conditions (Weisskopf et al., 2010). Additionally, root hairs

can increase root exudation (Holz et al., 2018) due to passive

transport being easier through root hairs compared to other root

orders. This occurs due to a large surface area of contact with

soil, and a lack of lignification and suberization in root hairs

(Boyer and Kramer, 1995). Despite the direct effect of root

exudation on microbial diversity, activity, and biomass

(Eisenhauer et al., 2017), greater root hairs can – in some

cases – also result in lower microbial activity in the

rhizosphere. For example, genotypes with abundant root hairs

can more efficiently uptake water in the root-soil interface (Segal

et al., 2008), thus limiting its availability for microbial growth

and activity in the rhizosphere (Manzoni et al., 2016).
Root cortical aerenchyma

Variation in root cortical aerenchyma (RCA) across plant

species and genotypes can also directly influence the rhizosphere

microbiome (Figure 2). For example, greater occurrence of RCA

in the cortex results in a lower number of cortical cells available

for mycorrhizal root colonization (Dreyer et al., 2010; Galindo-

Castañeda et al., 2019). This can favor lower carbon allocation in

the root cortex, but disfavor mycorrhizal plants, which rely on

efficient symbiosis for survival/performance under phosphorous

and water-limited conditions (Begum et al., 2019). Moreover, the

presence, abundance, and distribution of RCA affect the rates of

nutrient and gas exchange in the rhizosphere (Smits et al., 1990;

Hu et al., 2014). For example, increases in the abundance of RCA

in maize roots was shown to reduce phosphate exudation (Hu

et al., 2014), which can – in turn – influence the composition of

bacterial and fungal communities (Finkel et al., 2019; Gumiere

et al., 2019). In another study, RCA was shown to affect carbon

dioxide (CO2) exchange in the root zone, directly affecting

gradients of pH at the root-soil interface via carbonic acid

production (Kirk et al., 2019). In fact, local pH might be one

of the most important factors influencing the rhizosphere

microbiome (Fierer and Jackson, 2006; Malik et al., 2017;

Bahram et al., 2018). In particular, pH is known to affect

microbial communities by causing variation in nutrient

availability and uptake (Peterson, 1982), and by influencing

the kinetics of biochemical reactions (e.g., nitration; Van Hulle

et al., 2007).
Root endodermal barriers

Suberin deposits and Casparian strips are the main

endodermal structures regulating the ionic flow from the root

(Beck, 2005). Modifications in suberin deposition and Casparian
frontiersin.org
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strip permeability alter the release of metabolites in the

rhizosphere (i.e., root exudates) (Calvo-Polanco et al., 2021).

This has been shown to influence the abundance of a range of

microbes, including Pseudomonadaceae (Durr et al., 2021; Salas-

González et al., 2021) – a bacterial family displaying functions

associated with plant health (e.g., disease suppression, plant-

growth promotion) (Preston, 2004). In addition, endodermal

suberin is degraded by the plant in response to ethylene

(Barberon et al., 2016) – a plant hormone that is modulated

and able to be produced by specific rhizosphere microbes

(Ravanbakhsh et al., 2018) – as well as by plant-microbe

feedback via abscisic acid (Salas-González et al., 2021).

Therefore, suberization can potentially be modulated via

plant-microbe feedback by diverse pathways. This has

implications for the plant’s ionic homeostasis as root

endodermal barriers also influence the flow of ions, such as

iron and salt, into root tissues (Durr et al., 2021; Salas-González

et al., 2021).

Suberization of endodermal cells also alters the radial oxygen

loss into the rhizosphere (Armstrong and Armstrong, 2005). This

effect could also modulate differential responses of microbial taxa, as

oxygen can rapidly be consumed by aerobic copiotroph taxa

(Hojberg and Sorensen, 1993), and a range of rhizosphere

microbes have shown varying abilities to adapt to shifting oxygen

conditions (Lecomte et al., 2018). Moreover, as suberization also
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affects the thickness and rigidity of the cortex, suberin deposition

has often been selected in breeding programs to promote resistance

against pathogens (Valenzuela-Estrada et al., 2012). In this case, by

conferring a physical barrier to pathogen penetration. However,

these breeding lines may find new uses in influencing the overall

microbiome given the newly discovered role of suberization in

rhizosphere microhabitat manipulation.
Research priorities for
integrating root phenomics
and microbial ecology

Identifying root phenes for targeted manipulation of

rhizosphere microbiomes will require coordinated research efforts

from microbial ecologists, plant scientists, and plant breeders. To

stimulate these efforts, we suggest research priorities to gain a better

understanding of how various root phenotypes modulate microbial

microhabitats in the rhizosphere:
• Gene mutants and recombinant inbred lines can be

utilized to isolate phene level differences in roots that

influence microbial microhabitat and – in turn –

microbial diversity and function (Prokhnevsky et al.,

2008; Song et al., 2016; Polania et al., 2017).
B

C

D

A

FIGURE 2

Variation in root anatomical traits and their influences on chemical gradients modulating microbial microhabitats in the rhizosphere: (A, B) variation in
root cortical aerenchyma; and (C, D) Suberin and Casparian strip modification.
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Fron
Nevertheless, these mechanisms must be contextualized

within edaphic conditions, disease, climatic factors, and

plant developmental stage, all of which have been

demonst ra ted to influence p lant -as soc ia ted

microbiomes (Chaparro et al., 2012; Jansson and

Hofmockel, 2020; Gao et al., 2021; Bell et al., 2022).

• Root phenotypes have been shown to differ between

domesticated crops and their wild relatives (Martıń-

Robles et al., 2018). As such, the integration of

microbial ecology and root phenomics needs to

consider ancestral and domesticated crops to gain a

broader understanding of phene diversity influencing

microbial selection in the rhizosphere (Pérez-Jaramillo

et al., 2018).

• Plant-microbe interactions take place at micro-scales.

Describing this system will require methods capable of

characterizing fine-scale changes in the rhizosphere. For

example, the use of matrix-assisted laser desorption/

ionization-mass spectrometry imaging (MALDI-MSI)

to monitor metabolite release (Korenblum et al., 2020),

lux biosensors to identify the sites of colonization of

microbes in response to specific root metabolites (Pini

et al., 2017; Geddes et al., 2019), and par-seqFISH

(parallel sequential fluorescence in situ hybridization)

to provide cell-level transcriptional responses of

microbes within microhabitats (Dar et al., 2021).
Conclusion

Here, we reviewed how differences in root phenotypes can

influence resource availability and the spatial configuration of

microbial microhabitats in the rhizosphere. We also outlined

research priorities for integrating root phenomics with microbial

ecology to manipulate microhabitats at the root-soil interface.

We argue that modifying microbial microhabitat via root
tiers in Plant Science 06
phenotypes could provide an unprecedented level of control

on plant-associated microbes. Advancing research that

effectively promotes the manipulation of microbiomes in plant

roots could increase agricultural sustainability, yield, and

resilience in the face of the rising food demand and an

increasingly less stable climate.
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Pérez-Jaramillo, J. E., Carrión, V. J., de Hollander, M., and Raaijmakers, J. M.
(2018). The wild side of plant microbiomes. Microbiome 6 (1), 4–9. doi: 10.1186/
s40168-018-0519-z

Pervaiz, Z. H., Contreras, J., Hupp, B. M., Lindenberger, J. H., Chen, D., Zhang,
Q., et al. (2020). Root microbiome changes with root branching order and root
chemistry in peach rhizosphere soil. Rhizosphere 16, 100249. doi: 10.1016/
j.rhisph.2020.100249

Peterson, J. C. (1982). Effects of pH upon nutrient availability in a commercial
soilless root medium utilized for floral crop production. Ohio State Univ. Ohio
Reseach Develoment Center. Cir 268, 16–19.
Frontiers in Plant Science 08
Pini, F., East, A. K., Appia-Ayme, C., Tomek, J., Karunakaran, R., Mendoza-
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