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Harnessing cold-resilient and calcium-enriched peanut production technology

are crucial for high-yielding peanut cultivation in high-latitude areas. However,

there is limited field data about how exogenous calcium (Ca2+) application would

improve peanut growth resilience during exposure to chilling stress at early sowing

(ES). To help address this problem, a two-year field study was conducted to assess

the effects of exogenous foliar Ca2+ application on photosynthetic carbon fixation

and pod yield in peanuts under different sowing scenarios. We measured plant

growth indexes, leaf photosynthetic gas exchange, photosystems activities, and

yield in peanuts. It was indicated that ES chilling stress at the peanut seedling stage

led to the reduction of Pn, gs, Tr, Ls, WUE, respectively, and the excessive

accumulation of non-structural carbohydrates in leaves, which eventually

induced a chilling-dependent feedback inhibition of photosynthesis due mainly

to weaken growth/sink demand. While exogenous Ca2+ foliar application

improved the export of nonstructural carbohydrates, and photosynthetic

capacity, meanwhile activated cyclic electron flow, thereby enhancing growth

and biomass accumulation in peanut seedlings undergoing ES chilling stress.

Furthermore, ES combined with exogenous Ca2+ application can significantly

enhance plant chilling resistance and peanut yield ultimately in the field. In

summary, the above results demonstrated that exogenous foliar Ca2+

application restored the ES-linked feedback inhibition of photosynthesis,

enhancing the growth/sink demand and the yield of peanuts.
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1 Introduction
Peanut (Arachis hypogaea L.) is an important oil and

industrial crop that originated in tropical South America

(Bolivia and adjacent countries), which is sensitive to chilling

stress due to a lack of naturally-endowed cold acclimation

(Prasad et al., 2006; Song et al., 2020; Liu et al., 2022).

Considering the achievable net economic return, early sowing

is a useful agricultural cultivation strategy to avoid drought stress

during spring sowing and especially during the vulnerable

seedling stages (Chen et al., 2012). Thus, it is paramount for

peanut growers and researchers to uncover suitable sowing

windows and cultivation durations in high-latitude areas to

deliver successful peanut production (Dai et al., 2017; Li et al.,

2018; Virk et al., 2020; Zhang et al., 2020). For the cropping

boundary in the high-latitude crop, especially in response to

low-temperature stress, the peanut’s light interception and

strong sink demand are the major determinants of high yield

and quality (Bagnall et al., 1988; Itoh, 2003; Salessesmith et al.,

2020; Ensminger et al., 2006). However, the ES (early sowing)

window in the most high-latitude area would naturally subject

the crop to a greater probability of chilling exposure. Past studies

have documented that chilling stress leads to a decrease in sink

demand and lowers the capacity to utilize energy metabolically

(Wan, 2003; Liu et al., 2013; Wu et al., 2020). The resultant is an

imbalance source-to-sink relationship situation within the whole

plant which affects many biochemical and physiological

processes thereby curtailing growth. With more unpredictable

and extreme weather events especially in high-latitude areas,

establishing a simple exogenous chemical priming strategy to

improve the cold adaptability of peanuts, is a major contribution

toward improving peanut production (Song et al., 2020; Wu

et al., 2020; Aryal and Sollenberger, 2021; Liu et al., 2022).

For optimizing the cropping season, adjusting the sown date

and the harvest date are the fundamental prerequisites to

guarantee a consistent and acceptable yield of peanuts (Chen

et al., 2012; Dai et al., 2017; Zhang et al., 2020). In Northern

China, early sowing, i.e. sowing around half a month earlier than

current local agronomic practices, is widely used to avoid

drought stress and maximize the yield of the new high-

yielding big-seed type peanut cultivars in recent years (Wan,

2003; Zhang et al., 2017; Zhang et al., 2022; Liu et al., 2022). Past

research has shown that 12°C and below are unfavorable

cultivation temperatures for peanut physiology and growth.

These low temperatures are common during the early spring/

early sowing peanut cultivation scenario, especially low

nocturnal temperature stress during the early spring night

(Melkonian et al., 2004; Wu et al., 2020; Zhang et al., 2020).

Previous studies have shown that chilling stress induced the

peroxidation of membrane lipids (Zhang et al., 2000) and the

accumulation of soluble sugars (Song et al., 2020; Wu et al.,

2020), reduced stomatal conductance (Melkonian et al., 2004),
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reduced photosynthetic carbon fixation and the reaction centers’

activities (Long et al., 1983; Stirling et al., 2006; Friese and Sage,

2016; Yamori and Shikanai, 2016), and decreased activities of

carbon assimilation enzymes (Riva-Roveda et al., 2016).

Positively, several studies reported that appropriate early

planting and late-season harvest produced adequate

photosynthates and higher yields (Kasai, 2008; Srivastava et al.,

2016). However, the apparent benefits of late-season harvest

have to be evaluated with the higher risk of diseases; mold

production (Aspergillus flavus) and pod loss, leaf spot disease, or

even threatened by deadly extreme autumn chilling injury due to

climate change (Fountain et al., 2015; Zhao et al., 2019).

Chemical priming is a promising measure in plant stress

physiology and crop stress management (Nayyar, 2003;

Fernández and Eichert, 2009). Exogenous foliar calcium (Ca2+)

is absorbed by leaves through the hydrophilic pores in leaf

stomata or epidermis which are affected by leaf temperature,

relative humidity, light, and other factors (Li et al., 2020). In

response to different chilling stresses, exogenous Ca2+ priming

significantly improved the physiological response including

growth and photosynthesis in low-temperature sensitive plant

species such as peanuts (Liu et al., 2013; Zhang et al., 2017;

Zhang et al., 2022; Liu et al., 2022), wheat (Nayyar, 2003), loquat

fruit (Li et al., 2020), and tomato (Zhang et al., 2014). It is

generally believed that plant cell walls, mitochondria, and

chloroplasts have an enormous capacity to store Ca2+ (Tian

et al., 2019). And optimal levels of Ca2+ can sustain cell wall

growth and membrane integrity as well as osmotic functioning

(Kreimer et al., 1988; Rocha and Vothknecht, 2012). The

concentration of free Ca2+ in cytosol further improved the

resilience to cold injury of plants (Kreimer et al., 1988; Brauer

et al., 1990; Gan et al., 2019). Ca2+ is a cofactor of the oxygen-

evolving complex (OEC), which is involved in light-induced

water photodissociation (Thor, 2019), regulated the formation of

assimilatory power (Wang et al., 2019) and the activity of carbon

assimilation-related enzymes (Rocha and Vothknecht, 2012).

Ca2+ is involved in regulating carbohydrate metabolism,

including sucrose synthesis, which is implicated in phloem

function (Rufty and Huber, 1983; Brauer et al., 1990; Tian et al.,

2019; Kinose et al., 2020). Furthermore, the Ca2+/calmodulin

interaction is involved in regulating NAD kinase,

photosynthesis, and photoprotection (Klughammer and

Schreiber, 1994; Liu, 2020). In particular, exogenous foliar Ca2+

application maintained peanut photosynthesis and growth during

nocturnal chilling stress (Liu et al., 2013; Song et al., 2020; Wu

et al., 2020; Liu et al., 2022). However, the underlying mechanisms

of how exogenous foliar Ca2+ application enhanced peanut

chilling resilience, growth, and yield is unclear under early

sowing-induced moderate/natural fluctuating chilling stress

(field conditions). Therefore, this study examined the effects of

exogenous foliar Ca2+ application on seedling growth, leaf

photosynthetic reactions, nonstructural carbohydrates

accumulations, and yield under early sowing scenarios in the
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field. Those mentioned above are vital to improving and

stabilizing peanut production in Northern China facing more

unpredictable and extreme weather events.
2 Materials and methods

2.1 Plant material and
experimental design

A two-year field experiment was conducted at a farm

station of Liaoning Academy of Agricultural Sciences, China

(41°82’ N, 123°56’ E) in 2015 and 2016. The study area has a

temperate monsoon climate with an average annual air

temperature of 12.1°C. The photoperiod (daylight + twilight)

varied within the range of 11-15 hr in the natural field of

Liaoning province. The average annual rainfall is 604.8 mm,

with the main precipitation season from Jun. to Sep. The

Fenghua No.1 (abbreviated as FH1), the common high-

yielding big-seed peanut cultivar (Shi et al., 2020), was used

in this study. The farm soil was a simply cultivated wet-leached

soil developed from Quaternary loess parent material with pH

6.56 (1:2.5, w/v), 12.86 g kg-1 organic matter, 1.36 g kg-1 total

N, 48.52 mg kg-1 Olsen-P, 64.29 mg kg-1 available K, 351.92 mg

kg-1 exchangeable Ca, 12.7 cmol kg-1 cation exchange capacity,

and 1.49 g cm-3 bulk density. Daily meteorological data,

including the average day and night air temperature and

daily precipitation, were recorded by an automatic

meteorological station located ~60 m from the experimental

site. The average day and night air temperature (°C) and daily

precipitation (mm) from early sowing on Apr. 25, 2015, and

Apr. 23, 2016, to late harvest on Oct. 9, 2015, and Oct. 7, 2016,

were recorded, respectively (Figure 1).

The field experiments were conducted from Apr.25 to Oct.9

of 2015 and from Apr.23 to Oct.7 of 2016. The experimental
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design involved a randomized 12 plots with four treatments and

three replicates of each treatment (3 plots/replicates per

treatment). The plot size was 4 m long and 3 m wide with

three beds per plot, and each bed contained two rows of peanuts

which were planted at 0.2 m intervals, with two plants per hill.

The number of peanut seedlings planted in each plot was

calculated as follows: No. = (4 m/0.2 m) × 3 (beds/plot) × 2

(rows/bed) × 2 (peanuts/row) = 240 seedlings/plot. Peanut special

biochar-based fertilizer (N-P2O5-K2O=13-15-17, Liaoning Jinhefu

Agricultural Science and Technology Co. Ltd, China) was applied

and mixed evenly in the plough layer (depth of approximately

20 cm) to each plot at the time of planting with 750 kg ha-1. The

pre-sowing herbicide, trifluralin (a,a,a-trifluoro-2,6-dinitro-N,
N-dipropyl-p-toluidine), was applied to the soil, and the plots

were kept weed-free thereafter by hand weeding. Other planting

inputs were consistent with current local agronomic practices.

The treatments were (1) CK (Normal sowing according to the

local farmer’s preference and current agronomic practices + foliar

spraying of ddH2O); (2) CK+Ca (Normal sowing + foliar spraying

of 15 mM CaCl2); (3) ES (Early sowing + foliar spraying of

ddH2O); (4) ES+Ca (Early sowing + foliar spraying of 15 mM

CaCl2). The optimal levels of exogenous foliar Ca2+ (15 mM

CaCl2) and the application techniques (the leaves were sprayed

evenly until just dripping) were established in the previous relative

peanut studies (Liu et al., 2013; Song et al., 2020; Wu et al., 2020;

Liu et al., 2022). As for early sowing treatments (ES, ES+Ca),

peanuts sowing dates were on April. 25, 2015, and April. 23, 2016,

respectively. While as for normal sowing treatments (CK, CK

+Ca), peanuts’ sowing dates were on May. 9, 2015, and May. 7,

2016, respectively. At the peanuts seedling stages (≥3 leaves), all

plants were foliar-sprayed carefully and evenly using moisture

sprayers twice a week (everyWednesday and Friday fromMay. 20

to Jun. 5 of 2015, and May. 18 to Jun. 3 of 2016) plus twice a day

(at around 8:30 am and 4:30 pm) with 15 mMCaCl2 (CK+Ca and

ES+Ca) or ddH2O (CK and ES).
A B

FIGURE 1

Daily precipitation and day/night mean temperatures during the (A) 2015 and (B) 2016 peanut-growing seasons in Shenyang, Northeast China.
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2.2 Plant sampling and measurements

2.2.1 Plant morphological indexes and
nonstructural carbohydrates measurements

All plant sampling and measurements were carried out every

7 days at the seedling stage from May. 23, 2015, and May. 21,

2016 onward, respectively. The main stem height was estimated

carefully using a meter scale. The leaf area was measured using

LI-3000C (LI-COR Biosciences, Lincoln NE, USA). All samples

were oven-dried at 105°C for 0.5 hr and then at 70°C to a

constant weight. Also, oven-dried leaflets from the third

youngest fully expanded leaves were pooled by treatment and

ground to a powder, and triplicate subsamples were used for

carbohydrate measurements. Soluble sugars were extracted from

approximately 0.1 g of the oven-dried leaf powder with 80% (v/

v) ethanol at 85°C and quantified using the microtiter method

(Hendrix, 1993). Pellets containing starch were oven-dried

overnight at 60°C. Starch in the pellet was first gelatinized by

the addition of 1 ml of 0.2 M KOH and incubated in a boiling

water bath for 0.5 hr (Rufty and Huber, 1983). After cooling,

0.2 ml of 1 M acetic acid was added, and the solution was

incubated with 2 ml acetate buffer (pH 4.6) containing

amyloglucosidase (6 units, Roche) at 55°C for 1 hr. The

reaction was terminated in a boiling water bath, and the

resulting supernatant was analyzed for glucose (Song et al.,

2020; Wu et al., 2020; Liu et al., 2022).

2.2.2 Peanut yield measurement
Peanut yield was measured at different harvesting times [i.e.

Sep. 25 (early harvest) and Oct. 9 (late harvest), 2015 or Sep. 23

(early harvest) and Oct.7 (late harvest), 2016]. During the early

harvest in September, the reproductive period of the CK is 139 d,

and the ES is 153 d. During the late harvest in October, the CK is

153 d, and the ES is 167 d. In order to improve the peanut yield

estimation and accuracy in each plot, samples were collected in

the specific one-third area of the experimental plot; when

harvested at different times, the other two-thirds area of the

plot was harvested to calculate the pod yield (Kramer et al.,

2004). The pod yield was determined on Sep.25 (early harvest),

Oct.9 (late harvest), 2015, and Sep.23 (early harvest), Oct.7 (late

harvest), 2016, respectively. For representative sampling, an area

of 2 × 2 m2 in the center of each plot was selected accordingly.

Plants were harvested at maturity (100 days after planting) and

the number and dry matter per pot were determined. These pods

were air-dried for 1 week and then weighted.
2.2.3 Leaf gas exchange, chlorophyll
fluorescence and P700 measurements

On each observation date, the chlorophyll fluorescence was

measured at 6:00 am after a dark adaptation of 1 hr, and leaf gas

exchange was measured at 10:00 am. Leaf gas exchange was

measured on the third youngest fully expanded leaves using an
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open system of gas exchange equipment (GFS-3000, Heinz Walz

GmbH, Effeltrich, Germany). During gas exchange

measurements, an LED array provided a PPFD 1000

mmol·quanta·m-2·s-1, and the leaf cuvette temperature was set

to 25°C and 60% RH. The CO2 concentration was maintained at

400 ± 5 mmol·mol-1. The third youngest fully expanded leaf was

kept in the chamber by ensuring the thermo-couple touching it

from the underside. Gas exchange parameters included net

photosynthetic rate (Pn), stomatal conductance (gs),

atmospheric CO2 concentration (Ca), transpiration rate (Tr),

intercellular CO2 concentration (Ci), water-use efficiency

(WUE), and leaf stomatal limitation (Ls).

The chlorophyll fluorescence and P700 parameters on the

third youngest fully expanded leaf (ca. 1 cm2) weremade using the

Dual-PAM 100 measuring system (Heinz Walz, Effeltrich,

Germany) which is controlled by Dual-PAM V1.19 software. All

steps were carried out following the standard protocols and

appropriate modifications (Shi et al., 2020; Song et al., 2020; Wu

et al., 2020; Liu et al., 2022). The fluorescence slow-kinetics were

measured after a dark adaptation of 1 hr, and the intensity of

saturation pulse light (red light) and actinic light (red light) were

set as 10,000 and 132 mmol·quanta·m-2·s-1, respectively. The

chlorophyll fluorescence parameters were calculated by Fo, Fm,

Fo’, Fm’, F. The Fo and Fm are respectively the minimum and

maximum fluorescence yield of the dark-adjusted sample with

the PSII center open and closed, while the Fo’ and Fm’ are the

illuminated sample with some PSII center open and closed. The

maximal/intrinsic photochemical efficiency of PSII (Fv/Fm) is

calculated by Fv/Fm=(Fm−Fo)/Fm (Klughammer and Schreiber,

1994). The actual quantum yield of PSII [Y(II)] is calculated by Y

(II)=(Fm"−F)/Fm (Genty et al., 1989). The non-regulated energy

loss in PSII [Y(NO)] is calculated by Y(NO)=F/Fm (Klughammer

and Schreiber, 2008). The regulatory quantum yield in PSII [Y

(NPQ)] is calculated by Y(NPQ)=1−Y(II)−Y(NO) (Kramer et al.,

2004). The relative electron transfer rate in PSII [ETR(II)] is

calculated by ETR(II)=PAR·Y(II)·0.84·0.5 is photosynthetically

active radiation which is 184 mmol·quanta·m-2·s-1 in this study

(Yamori and Shikanai, 2016).

The PSI parameters were based on the redox kinetics of P700

induced by far-red light (DA830-DA875, P700+), as well as the
PSII was measured by the Dual-pam 100 device and based on the

previous studies (Shi et al., 2020; Song et al., 2020; Wu et al.,

2020; Liu et al., 2022). The P700 parameters were calculated as:

The actual quantum yield in PSI [Y(I)] is calculated by Y(I)=

(Pm"−P)/Pm . The quantum yield of PSI non-photochemical

energy dissipation due to the donor-side limitation [Y(ND)] is

calculated by Y(ND)=P/Pm . The quantum yield of PSI non-

photochemical energy dissipation due to the acceptor-side

limitation [Y(NA)] is calculated by Y(NA)=(Pm"−P)/Pm . The

cyclic electron flow (CEF) was estimated as CEF=ETR(I)−ETR

(II) . Similarly, Y(CEF)=Y(I)−Y(II) was calculated as the ratio of

the quantum yield of CEF to Y(II) and later used to estimate

cyclic electron transfer.
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2.4 Statistical analyses

Statistical analyses were carried out using one-way ANOVA

in SPSS 19.0 (Chicago, IL, USA). Values are means ± SD (n= 3).

Different letters indicate significant differences according to

Duncan’s multiple range tests (p < 0.05). All graphs were

plotted using Origin 8.0 and Excel 2016 software.
3 Results

3.1 Effects of exogenous foliar calcium
(Ca2+) application on peanut growth
under early and normal sowing scenarios

The ES treatment significantly enhanced the main stem height

(10.5% in Jun. 6, 2015 and 20.6% in Jun. 4, 2016) and leaf area

(20.8% in Jun. 6, 2015 and 19.1% in Jun. 4, 2016) compared with

that of the CK. Meanwhile, ES+Ca and CK+Ca treatments further

increased main stem height (ES+Ca: 19.0%, CK+Ca: 6.3% in Jun.

6, 2015) and leaf area (ES+Ca: 20.8%, CK+Ca: 6.6% in Jun. 6,

2015) than that of ES treatment (seedling stage, Figure 2).

The ES treatment enhanced dry matter accumulation in

roots (17.1% in Jun. 6, 2015 and 12.2% in Jun. 4, 2016), stems

(15.6% in Jun. 6, 2015 and 16.2% in Jun. 4, 2016), and

leaves (16.6% in Jun. 6, 2015 and 15.1% in Jun. 4, 2016)

compared with that of CK. Meanwhile, ES+Ca and CK+Ca

treatments further enhanced dry matter accumulation in roots

(ES+Ca: 30.8%, CK+Ca: 8.2% in Jun. 6, 2015), stems (ES+Ca:

19.0%, CK+Ca: 7.4% in Jun. 6, 2015), and leaves (ES+Ca: 17.0%,

CK+Ca: 4.7% in Jun. 6, 2015, seedling stage, Figure 3).
3.2 Effects of exogenous foliar calcium
(Ca2+) application on soluble sugar,
starch, and total nonstructural
carbohydrates concentrations of
peanut leaves under early and
normal sowing scenarios

The ES treatment reduced soluble sugar (2.6% in Jun. 6, 2015

and 2.1% in Jun. 4, 2016), starch (4.4% in Jun. 6, 2015 and 4.8%

in Jun. 4, 2016), and total nonstructural carbohydrates (4.0% in

Jun. 6, 2015 and 4.2% in Jun. 4, 2016) concentrations compared

with that of CK. Meanwhile, ES+Ca and CK+Ca treatments

further decreased soluble sugar (ES+Ca: 8.1%, CK+Ca: 4.3% in

Jun. 6, 2015), starch (ES+Ca: 9.9%, CK+Ca: 5.3% in Jun. 6, 2015),

and total nonstructural carbohydrates (ES+Ca: 9.5%, CK+Ca:

5.1% in Jun. 6, 2015) concentrations than that of ES treatment.

However, the levels of soluble sugar, starch, and total
Frontiers in Plant Science 05
nonstructural carbohydrates had no significant difference

between all treatments on Jun. 6, 2015, and Jun. 4, 2016 (Figure 4).
3.3 Effects of exogenous foliar calcium
(Ca2+) application on the gas exchange
under early and normal sowing scenarios

The ES treatment increased Pn, gs, Tr, Ls, and WUE and

decreased Ci when compared to CK. While ES+Ca and CK+Ca

treatments further increased Pn, gs, Tr, Ls, and WUE and

decreased Ci compared with that of ES. Moreover, as the

peanut grows, the gas exchange characteristics did not differ

between CK and ES treatments on Jun. 6, 2015, and Jun. 4, 2016,

but they were still at a lower level than ES+Ca and CK+Ca

treatments (Figure 5, 6).
3.4 Effects of exogenous foliar calcium
(Ca2+) application on peanut photosystem
activities under early and normal
sowing scenarios

The Fv/Fm increased markedly under the ES treatment than

CK. Furthermore, ES+Ca and CK+Ca treatments also enhanced

Fv/Fm compared with the ES treatment. The Fv/Fm had no

significant difference between ES and CK treatments on Jun. 6,

2015, and Jun. 4, 2016, but they were still lower than ES+Ca and

CK+Ca treatments (Figure 7).

The ES treatment significantly enhanced Y(II) compared

with that of CK. In addition, Y(II) in CK decreased markedly

and dissipated excess energy by increasing the regulatory

quantum yield of PSII [Y(NPQ)]. The dissipated excess energy

depended mainly upon Y(NPQ) which was likely to be

insufficient thus increasing Y(NO) to a higher level.

Conversely, ES+Ca and CK+Ca treatments increased Y(II) and

decreased Y(NPQ) and Y(NO). As the peanut growing season

progresses, the Y(NO) did not differ between all treatments on

Jun. 6, 2015, and Jun. 4, 2016 (Figure 8).

The ES treatment enhanced Y(I) and reduced Y(ND) and Y

(NA) when compared to CK. Moreover, ES+Ca and CK+Ca

treatments delivered higher Y(I) and lower Y(ND), and Y(NA)

than the ES treatment. While Y(I), Y(ND), and Y(NA) had no

significant difference between CK and ES treatments on Jun. 6,

2015, and Jun. 4, 2016, and they remained at a lower level than

ES+Ca and CK+Ca treatments (Figure 9).

The ES treatment increased ETR(II), ETR(I), and CEF when

compared with that of CK. Meanwhile, ES+Ca and CK+Ca

treatments produced higher ETR(II), ETR(I), CEF, and Y

(CEF)/Y(II) than the ES treatment. The CEF and Y(CEF)/Y(II)
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did not differ between all treatments on Jun. 6, 2015, and Jun. 4,

2016 (Figure 10).
3.5 Effects of exogenous foliar calcium
(Ca2+) application on peanut yield under
early and normal sowing scenarios

The ES treatment dramatically enhanced the number of full

pods per plant and the 100-pod weight compared with that of

CK. Meanwhile, the ES+Ca treatment further increased the

number of full pods per plant and the 100-pod weight on

different harvest dates (Sep. 25 and Oct. 9, 2015, Sep. 23 and

Oct 7, 2016) compared with the CK and ES treatments (Table 1).

Values are means ± SD (n = 3). Different black letters (a, b

and c) in the same column indicate significant differences

according to Duncan’s multiple range tests (p < 0.05). Different

red letters (a and b) in the same index indicate significant (p <

0.05) differences between CK (Oct. harvest date), CK+Ca (Oct.

harvest date), ES (Sep. harvest date), and ES+Ca (Sep. harvest

date) at the relative full maturity stages (Shown in red

dashed box).

The ES treatment significantly increased peanut yield when

compared to CK. Moreover, ES+Ca and CK+Ca treatments

further increased peanut yield on different harvest dates.

Compared to the CK, the ES treatment increased peanut yield

by 21.9% and 21.4% in the Sep. harvest date in 2015 and 2016,
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respectively. While in the Oct. harvest date, the ES treatment

increased peanut yield by 23.3% and 21.7% in 2015 and 2016,

respectively, compared with that of CK. Compared to CK+Ca,

the ES+Ca treatment increased peanut yield by 22.4% and 21.3%

in the Sep. harvest date in 2015 and 2016, respectively. While the

ES+Ca treatment increased peanut yield by 13.7% and 13.6% in

the Oct. harvest date in 2015 and 2016, respectively, compared

to CK+Ca. When plants were harvested at full maturity (ES and

ES+Ca harvested in Sep., CK and CK+Ca harvested in Oct.), it

was observed that peanut yield did not differ between ES and CK

or ES+Ca and CK+Ca (Figure 11).
4 Discussion

4.1 Exogenous Ca2+ enhanced peanut
growth and photosynthetic capacity
under early sowing scenario in the field

Variations in temperature and precipitation were the

primary factors that influenced the peanut seedling stage

under the 15 d early sowing (daily minimum temperature

[Tmin] > 13.4°C) and normal sowing (daily minimum

temperature [Tmin] > 12.0°C) conditions (Figure 1). The

chilling injury and other combined chilling injuries are

the primary factors curtailing peanut production during the
A B

DC

FIGURE 2

Effects of exogenous foliar calcium (Ca2+) application on peanut main stem height (A, B) and leaf area (C, D) under early and normal sowing
scenarios. Values are means ± SD (n = 3). Different letters indicate significant differences according to Duncan’s multiple range tests (p < 0.05).
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seedling vegetative stage (Allen and Ort, 2001; Zhou et al.,

2017; Tian et al., 2019). Exogenous foliar Ca2+ application

restored the inhibition of plant growth and biomass

accumulation under the ES scenario (Figures 2, 3), which was

consistent with earlier research reported in maize and soybean

(Sicher, 2011; Alsajri et al., 2019; Román et al., 2021). Unlike

the regular sowing practice, the ES approach is likely to create

new biological challenges such as changes in the duration of the

nocturnal phase, and also the light-to-dark conversion chilling

adaptations (Virk et al., 2020; Wu et al., 2020). Previous studies

have shown that high levels of non-structural carbohydrates

are useful in conferring cellular protection; these serve as either

signaling substance(s) or act as osmoprotectants during cold

acclimation (Sicher, 2011). Chilling stress not only damaged

the chloroplast grana and expansion of starch grains but also

inhibited nonstructural carbohydrate translocation from

source to sink (Song et al., 2020; Wu et al., 2020; Liu et al.,
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2022). No matter whether in short-term or long-term chilling

stress (including early sowing and normal sowing of early

spring season), excessive accumulation of non-structural

carbohydrates at the seedling stage would significantly lead to

a negative feedback inhibition of leaves photosynthesis and

causes an over-reduction of the photosynthetic electron chain

to impair photosynthetic machinery and chloroplast

morphology (Adams et al., 2013; Liu, 2020; Wu et al., 2020).

Exogenous Ca2+ effectively promoted the export of

nonstructural carbohydrates and then decreased the excessive

accumulation of nonstructural carbohydrates in peanut

photosynthesizing leaves under ES stress (Figure 4).

Carbohydrate synthesis (such as soluble sugars, starch)

occurs generally in mature leaf (sources) and follows a

circadian rhythm (e.g., for sucrose) (Tovignan et al., 2016).

The source- to-s ink sugar t rans locat ion l inked to

photosynthesis is closely associated with plant growth
A B
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C

FIGURE 3

Effects of exogenous foliar calcium (Ca2+) application on peanut root dry weight (A, B), stem dry weight (C, D), and leaf dry weight (E, F) under
early and normal sowing scenarios. Values are means ± SD (n = 3). Different letters indicate significant differences according to Duncan’s
multiple range tests (p < 0.05).
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(Brauer et al., 1990; Sonoike, 1996; Tan et al., 2011). Exogenous

foliar Ca2+ application ameliorated photoinhibition due to the

stomatal limitations in peanut photosynthesizing leaves under

ES (Figure 5), which was consistent with findings in

Commelina communis L (Suorsa, 2015). Peanut is a typical

calciphilous plant and is vulnerable to photoinhibition caused

by the accumulation of photosynthetic end-products (e.g.

starch) (Virk et al., 2020; Wu et al., 2020). To maintain

optimal growth, there must be sufficient sinks to utilize the

translocated carbohydrates produced earlier by the sources

through photosynthesis; thus, any disruption to these

processes by unfavorable factors (e.g. chilling) will alter the

source-sink relationship. Ca2+ regulates carbon assimilation by

mediating the activity of deinoheptanose-1,7-diphosphatase

(SBPase) and fructose-1,6-diphosphatase (FBPase) (two key

enzymes in the Calvin cycle), where Ca2+ improved the

synthesis, phloem loading, and export of photosynthetic

carbohydrates (Brauer et al., 1990; Tan et al., 2011; Liu et al.,
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2013; Wu et al., 2020; Liu et al., 2022). Thus, exogenous Ca2+

alleviated the early sowing chilling-dependent feedback

limitation on peanut photosynthesis by increasing growth/

sink demand.
4.2 Exogenous Ca2+ alleviated the
adverse photodamage of photosystems
under the early sowing scenario in
the field

Exogenous Ca2+ alleviated the adverse photodamage of PSII

and PSI, which promoted photosynthetic electron transport flow

under early and normal sowing scenarios (Figures 7–10).

Exposing the leaves of Calathea makoyana to chilling in

darkness did not affect photosystems’ activities and visual

appearance, but chilling in the light led to severe photodamage

and leaf necrosis (Hogewoning and Harbinson, 2007). Both PSI
A B
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C

FIGURE 4

Effects of exogenous foliar calcium (Ca2+) application on peanut leaf soluble sugars concentrations (A, B), starch concentration (C, D), and total
nonstructural carbohydrates concentrations (E, F) under early and normal sowing scenarios. Values are means ± SD (n = 3). Different letters
indicate significant differences according to Duncan’s multiple range tests (p < 0.05).
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and PSII are known to be sensitive to excess light under chilling

stress; PSII is easily inactivated by an excess of excitations and

PSI is more prone to potential photo-damage caused by excess

electrons arriving from PSII and the decrease in the rate of

photosynthetic carbon fixation (Wang et al., 2016; Huang et al.,

2016). Chilling in light will decrease the production of △pH

with the accumulation of NADPH and reduce the production of

ATP, which inhibited CO2 fixation (Yamori and Shikanai, 2016;
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Huang et al., 2021). The stress conditions will start photosystem

protective mechanism, such as stimulation of violaxanthin de-

epoxidase (VDE) activity and increase the de-epoxidation state

of xanthophyll pigments to accelerate NPQ, or activate the cyclic

electron flow (Ding et al., 2017; Paredes and Quiles, 2017; Ma

et al., 2021). Exogenous calcium priming is necessary when

environmental conditions are extremely harsh and self-

protection mechanisms are not enough to resist environmental
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C

FIGURE 5

Effects of exogenous foliar calcium (Ca2+) application on peanut net photosynthetic rate (Pn, A, B), stomatal conductance (gs, C, D), transpiration
rate (Tr, E, F), intercellular CO2 concentration (Ci, G, H) under early and normal sowing scenarios. Values are means ± SD (n = 3). Different
letters indicate significant differences according to Duncan’s multiple range tests (p < 0.05).
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stress (Liu, 2020). Ca2+ can bind to its receptor protein CaM and

produce a Ca2+-CaM complex by activating phosphodiesterase,

Ca2+-ATPase, and decarboxylase at low temperatures (Ranty

et al., 2006; Li et al., 2017). Meanwhile, exogenous Ca2+ (i)

promoted the photosystem self-repairing by enhancing the

calcium-binding protein (Terashima et al., 2012); (ii) increased

△pH which promoted Ca2+ combined with PsbO to stabilized

PSII reaction center (Yi et al., 2005); (iii) reduced the
Frontiers in Plant Science 10
accumulation of NADPH (Zhang et al., 2014); (iv) enhanced

ATPase activity and CEF, which effectively ameliorated the PSII

and PSI-linked photochemical disruptions (Figure 10, Song

et al., 2020). In addition, cold signal-induced calcium may

trigger downstream signaling molecules such as CaM, ROS,

and Rbohs-respiratory burst oxidase (= NADPH oxidase) fully

regulated in the photoreaction and carbon assimilation of

chloroplasts (Pirayesh et al., 2021). In particular, exogenous
A B

DC

FIGURE 6

Effects of exogenous foliar calcium (Ca2+) application on peanut water-use efficiency (WUE, A, B) and leaf stomatal limitation (Ls, C, D) under
early and normal sowing scenarios. Values are means ± SD (n = 3). Different letters indicate significant differences according to Duncan’s
multiple range tests (p < 0.05).
A B

FIGURE 7

Effects of exogenous foliar calcium (Ca2+) application on peanut maximum quantum yield of PSII (Fv/Fm) under early and normal sowing
scenarios during the (A) 2015 and (B) 2016. Values are means ± SD (n = 3). Different letters indicate significant differences according to
Duncan’s multiple range tests (p < 0.05).
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Ca2+ could promote endogenous [Ca2+]cyt entering thylakoid

lumen regulated by a light signal, and enhanced intracellular

[Ca2+]cyt, which can maintain oxygen release complex (OEC)

activity and equilibrium regulation of transmembrane proton

dynamics (Krieger and Weis, 1993; Liang et al., 2009; Huang

et al., 2016).
4.3 Exogenous Ca2+ enhanced peanut
yield under the early sowing scenario
in the field

In general, ES effectively avoids drought stress and improved

peanut yield significantly (Wan, 2003; Zhang et al., 2022). When
Frontiers in Plant Science 11
ES was combined with exogenous foliar Ca2+ application, the

stimulation effect on yield will be amplified significantly

(Table 1). Previous studies showed that crop yield tends to

decrease with later sowing (Sallam et al., 2017; Manning et al.,

2020). Early sowing improves water availability (Soriano et al.,

2004) and delivers a harvest rapidly for early high-price markets

or extends the growth duration (Zhou et al., 2018). In our study,

exogenous Ca2+ priming enhanced the peanut pod yield under

early and normal sowing scenarios (Table 1). Compared to the

CK, the ES treatment significantly increased peanut yield by

21.9% and 21.4% in the Sep. harvest date in 2015 and 2016,

respectively. While in the Oct. harvest date, the ES treatment

increased peanut yield significantly by 23.3% and 21.7% in 2015

and 2016, respectively. In particular, ES+Ca treatment further

increased peanut yield significantly by 13.7% and 13.6% in the
A B
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C

FIGURE 8

Effects of exogenous foliar calcium (Ca2+) application on peanut PSII photochemistry effective quantum yield [Y(II), A, B], PSII regulated energy
dissipation quantum yield [Y(NPQ), C, D], PSII non-regulated energy dissipation quantum yield [Y(NO), E, F] under early and normal sowing
scenarios. Values are means ± SD (n = 3). Different letters indicate significant differences according to Duncan’s multiple range tests (p < 0.05).
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Oct. harvest date in 2015 and 2016, respectively (Figure 11). It

was indicated that exogenous Ca2+ significantly improved plant

growth, leaf extension, the accumulation of photosynthates and

pod yield in peanut seedlings, which is consistent with early

studies (White and Broadley, 2003; Hepler, 2005; Zhang et al.,

2020; Li et al., 2022; Liu et al., 2022). During early spring,

especially in 40°N high latitude areas, an increase in yield and the

concomitant economic value can be obtained by implementing

proper early sowing cultivation strategies (Román et al., 2021).

Thus, exogenous Ca2+ applications could further increase peanut
Frontiers in Plant Science 12
yield under any ES and NS scenarios and offer practical options

for growers to improve the yield through various early and late

cultivation practices in a high-altitude area.
5 Conclusions

Exogenous Ca2+ applications were proven effective in

restoring peanut photosynthesis and pod yield during early

sowing and normal sowing scenarios in northern China. The
A B
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C

FIGURE 9

Effects of exogenous foliar calcium (Ca2+) application on peanut PSI photochemistry effective quantum yield [Y(I), A, B], PSI non-photochemical
energy dissipation due to the donor-side limitation [Y(ND), C, D], PSI non-photochemical energy dissipation due to the acceptor-side limitation
[Y(NA), E, F] under early and normal sowing scenarios. Values are means ± SD (n = 3). Different letters indicate significant differences according
to Duncan’s multiple range tests (p < 0.05).
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FIGURE 10

Effects of exogenous foliar calcium (Ca2+) application on peanut PSII photosynthetic electron transport rate [ETR(II), A, B], PSI photosynthetic
electron transport rate [ETR(I), C, D], cyclic electron flow around PSI (CEF, E, F), the ratio of quantum yield of CEF to Y(II) [Y(CEF)/Y(II), G, H]
under early and normal sowing scenarios. Values are means ± SD (n = 3). Different letters indicate significant differences according to Duncan’s
multiple range tests (p < 0.05).
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two years experiments demonstrated that exogenous Ca2+

promoted foliar and root growth, alleviated PSI and PSII

photoinhibition, and ameliorated the ES-linked photosynthetic

feedback inhibition. Specifically for peanuts, moderate (15 mM)

exogenous foliar Ca2+ application could improve the pod yield at

both early and late harvest dates and include scenarios where

cold-stress periods are possible. From the peanut growers’

perspective, the simple Ca2+ priming approach provided an

effective biotechnological solution and delivered a concomitant

financial guarantee to secure peanut production against

potential abiotic stress periods commonly encountered in

high latitudes.
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Years Treatments No. of full pods per plant (g) 100-pod weight (g)

Sep. 25 Oct. 9 Sep. 25 Oct. 9

2015 CK 15.7±0.6 c 18.0±1.0 c b 165.8±4.6 c 180.8±4.6 c b

CK+Ca 18.0±1.0 b 20.3±0.6 b a 177.3±3.1 b 197.3±2.7 b a

ES 18.0±1.0 b b 20.3±0.6 b 176.9±3.5 b b 193.5±8.2 b

ES+Ca 20.7±0.6 a a 22.3±0.6 a 193.9±2.3 a a 209.1±2.9 a

Sep. 23 Oct. 7 Sep. 23 Oct. 7

2016 CK 16.0±1.0 c 19.0±1.0 c b 172.3±4.1 c 183.5±2.6 c b

CK+Ca 18.3±0.6 b 21.7±0.6 b a 183.3±3.9 b 203.7±5.7 b a

ES 18.7±0.6 b b 21.3±0.6 b 183.4±3.4 b b 200.7±8.9 b

ES+Ca 21.3±0.6 a a 23.3±0.6 a 200.0±3.8 a a 216.7±3.2 a
f

Values are means ± SD (n = 3). Different black letters (a, b and c) in the same column indicate significant differences according to Duncan’s multiple range tests (p < 0.05). Different red
letters (a and b) in the same index indicate significant (p < 0.05) differences between CK (Oct. harvest date), CK+Ca (Oct. harvest date), ES (Sep. harvest date), and ES+Ca (Sep. harvest date)
at the relative full maturity stages (Shown in red dashed box).
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FIGURE 11

Effects of exogenous foliar calcium (Ca2+) application on peanut yield under early and normal sowing scenarios during (A) 2015 and (B) 2016.
Values are means ± SD (n = 3). Different letters indicate significant differences according to Duncan’s multiple range tests (p < 0.05).
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Glossary

ATP Adenosine triphosphate

Ca Atmospheric CO2 concentration

Ci Intercellular CO2 concentration

CEF Cyclic electron flow

ES Early sowing chilling

ETR(I) Relative electron transport rate in Photosystem I

ETR(II) Relative electron transport rate in Photosystem II

F Fluorescence yield measured briefly before application of a
saturation pulse

Fo Minimal fluorescence yield of the dark-adapted sample with
all PSII centers open

Fo’ Minimal fluorescence yield of the illuminated sample with all
PSII centers open

Fm Maximal fluorescence yield of the dark-adapted sample with
all PSII centers closed

Fm’ Maximal fluorescence yield of the illuminated sample with all
PSII centers closed

Fv/Fm Maximal photochemistry efficiency in Photosystem II

FH1 Fenghua 1

gs Stomatal conductance

LA Leaf area

Ls Leaf stomatal limitation

NAD Nicotinamide adenine dinucleotide

NADK Nicotinamide adenine dinucleotide kinase

NADP Oxidation form of nicotinamide adenine dinucleotide
phosphate

NADPH Nicotinamide adenine dinucleotide phosphate

NPQ Nonphotochemical quenching

PAR Photosynthetically active radiation measured in mmol quanta
m–2 s–1

Pm Maximal P700 signal

Pm’ Realtime

P700 signal
under light

Pn Net photosynthetic rate

PPFD Photosynthetic photon flux density

Pred P700 reduction coefficient under light

PSI Photosystem I

PSII Photosystem II

RH Relative humidity

Tr Transpiration rate

WUE Water-use efficiency

Y(II) = FPSII Actual quantum yield in PSII under light

Y(NO) Non-regulatory quantum yield in PSII under light

Y(NPQ) Regulatory quantum yield in PSII under light

Y(I) = FPSI Actual quantum yield in PSI under light

Y(ND) Quantum yield of PSI non-photochemical energy dissipation
due to donor-side limitation

Y(NA) Quantum yield of PSI non-photochemical energy dissipation
due to acceptor-side limitation
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