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First genetic maps development
and QTL mining in Ranunculus
asiaticus L. through ddRADseq

Matteo Martina1, Alberto Acquadro1, Davide Gulino1,
Fabio Brusco2, Mario Rabaglio2, Ezio Portis1*

and Sergio Lanteri1

1Dipartimento di Scienze Agrarie, Forestali e Alimentari (DISAFA), Plant Genetics and Breeding,
University of Torino, Grugliasco, Italy, 2Biancheri Creazioni, Camporosso, Italy
Persian Buttercup (Ranunculus asiaticus L.; 2x=2n=16; estimated genome size:

7.6Gb) is an ornamental and perennial crop native of Asia Minor and

Mediterranean basin, marketed both as cut flower or potted plant. Currently

new varieties are developed by selecting plants carrying desirable traits in

segregating progenies obtained by controlled mating, which are propagated

through rhizomes or micro-propagated in vitro. In order to escalate selection

efficiency and respond to market requests, more knowledge of buttercup

genetics would facilitate the identification of markers associated with loci and

genes controlling key ornamental traits, opening the way for molecular assisted

breeding programs. Reduced-representation sequencing (RRS) represents a

powerful tool for plant genotyping, especially in case of large genomes such as

the one of buttercup, and have been applied for the development of high-

density genetic maps in several species. We report on the development of the

first molecular-genetic maps in R. asiaticus based on of a two-way pseudo-

testcross strategy. A double digest restriction-site associated DNA (ddRAD)

approach was applied for genotyping two F1 mapping populations, whose

female parents were a genotype of a so called ‘ponpon’ and of a ‘double flower’

varieties, while the common male parental (‘Cipro’) was a genotype producing

a simple flower. The ddRAD generated a total of ~2Gb demultiplexed reads,

resulting in an average of 8,3M reads per line. The sstacks pipeline was applied

for the construction of a mock reference genome based on sequencing data,

and SNP markers segregating in only one of the parents were retained for map

construction by treating the F1 population as a backcross. The four parental

maps (two of the female parents and two of the common male parent) were

aligned with 106 common markers and 8 linkage groups were identified,

corresponding to the haploid chromosome number of the species. An

average of 586 markers were associated with each parental map, with a

marker density ranging from 1 marker/cM to 4.4 markers/cM. The developed

maps were used for QTL analysis for flower color, leading to the identification

of major QTLs for purple pigmentation. These results contribute to dissect on
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the genetics of Persian buttercup, enabling the development of new

approaches for future varietal development.
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ornamentals, ddRADseq, linkage maps, genetic markers, anthocyanins, QTLs
Introduction

Persian Buttercup (Ranunculus asiaticus L.; 2x=2n=16;

estimated genome size: 7.6Gb - Goepfert, 1974) is an

outcrossing ornamental and perennial crop native of Iran,

Turkey and Greece. The species is marketed both as cut flowers

and potted plant (De Hertogh, 1996). As reported by Berruto et al.

(2019), Ranunculus counted for the 0,4% of the total turnover of

cut flowers and foliage, with the highest production in Italy (132

million of stem) and 300-350 ha of cultivated surface. Due to its

high level of heterozygosity and self-incompatibility, the crossing

of selected genotypes originates highly segregant progenies. The

development of new varieties is based on the selection within the

progenies of plants carrying traits of interested, which are

propagated through rhizomes or micro-propagated in vitro

from meristematic apexes (Beruto et al., 2018). In order to

escalate breeding efficiency and respond to market demand,

some more knowledge of buttercup genetics is needed in order

to enable the development of molecular breeding approaches.

High throughput DNA sequencing methodology (next

generation sequencing; NGS) has rapidly evolved over the past

20 years (Slatko et al., 2018), and novel sequencing-associated

protocols allow the access to thousands of genomic regions

across the genome (Barchi et al., 2012; Vıq́uez-Zamora et al.,

2013; Scaglione et al., 2016; Vukosavljev et al., 2016; van Geest

et al., 2017). The reduced-representation sequencing (RRS)

represents one of most powerful tools for plant genotyping,

especially in case of large genomes such as the one R. asiaticus.

Indeed, RRS has been applied in the development of high-

density genetic maps in many species (Acquadro et al., 2017;

Feng et al., 2018; Jin et al., 2019; Song et al., 2020; Toppino et al.,

2020; Wang et al., 2020; Valentini et al., 2021).

Here we report on the application of a double digest

restriction-site associated DNA (ddRAD) approach for

genotyping two F1 mapping populations and on development

of the first molecular-genetic maps in R. asiaticus. The strategy

adopted was the two-way pseudo-testcross, previously exploited

in a number of out-breeding species (Acquadro et al., 2009; Wu

et al., 2010; Portis et al., 2012; Gartner et al., 2013; Torello

Marinoni et al., 2018; Mariotti et al., 2020; Wang et al., 2022).

The two F1 mapping populations shared a common male

parental line, and four parental maps were developed (two of
02
the female parents and two of the common male parent), then

aligned on the basis of common SNPs markers. The resulting

consensus map included eight linkage groups, corresponding to

the haploid chromosome number of the species, and represents a

background for future mapping of genes and QTLs and

application of marker assisted breeding in the species. Besides,

we performed QTL analysis for flower color, identifying a major

locus affecting flower purple pigmentation.
Materials and methods

Mapping populations and DNA extraction

Two F1 segregating populations were obtained by crossing

the male parental genotype ‘Cipro’, producing white flowers

with one row of petals typical of the wild-type (called ‘single’

flowers), with two female parental genotypes, of which one

producing violet-greenish flowers with wavy margin (called

‘pon pon’ flowers) and one producing violet flowers with

multiple rows of petals (called ‘double’ flowers). The progenies

were respectively named PON-PON and DOUBLE (Figure 1A).

The parental genotypes were selected by Biancheri Creazioni

(IM, Italy). The two F1 progenies included 129 and 103 plants for

the PON-PON and DOUBLE population respectively, and were

grown in a green-house located in Camporosso (43.794, 7.632,

IM – Italy) for two seasons (2020 and 2021), adopting the

cultivation techniques in use for commercial production. In

2020 plants originated from seeds, while in the 2021 were

vegetatively propagated through rhizomes obtained at the end

of the first season. Genomic DNA was extracted from frozen

leaves with the Plant DNA Kit (E.Z.N.A.®) following the

manufacturer’s instructions. DNA quality was assessed

through the NanoDrop™ 2000 spectrophotometer, and the

Qubit® 2.0 Fluorometer was used for DNA quantification.
ddRAD-seq library preparation
and sequencing

The ddRAD (double digest restriction-site associated DNA)

libraries were produced using a custom protocol with minor
frontiersin.org
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modifications proposed by Peterson et al. (2012). Enzyme

combination was selected by in silico analyzing the draft

genome of the related species Anemone coronaria L. (Martina

et al., 2022), with the aim of selecting a combination predicted to

produce ~30k fragments across the provided genome. After

fluorometric quantification, the genomic DNA was normalized

for uniforming its concentration and 375ng (10ul, ~37ng/ul)

were double digested with 2.4U of both PstI and EcoRI

endonucleases (New England BioLabs) in 30µL reaction,
Frontiers in Plant Science 03
supplemented with CutSmart Buffer and incubated at 37°C for

90’, followed by 20’ at 65°C’. Fragmented DNA was purified with

1.5 volumes of AMPureXP beads (Agencourt) and then ligated

with 200U of T4 DNA ligase (New England BioLabs) to 2.5pmol

of overhang barcoded adapter for rare cut sites and to 5pmol of

overhang barcoded adapter for frequent cut sites. Reactions were

performed in 50µL volume at 23°C for 60’ and at 20°C for 60’,

followed by 20’ at 65°C. Samples were then pooled on

multiplexing batches and bead purified as above. For each
B

A

FIGURE 1

(A) Crossing scheme for the development of the two mapping populations (PON-PON and DOUBLE); (B) RHS-based color scale used for flower
phenotyping. RHS classes were coded according to their intensity in 1-7 scale. 1: white; 2: light blue pink; 3: light violet; 4: medium purple red;
5: dark blue pink; 6: medium purple; 7: dark purple.
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pool, targeted fragments distribution was collected on the

BluePippin instrument (Sage Science Inc.), setting the range of

380 bp – 500 bp. Gel eluted fraction was then PCR amplified

with indexed primers using Phusion High-Fidelity PCR Master

Mix (New England BioLabs) in a final volume of 50µL, and

subjected to the following thermal protocol: [95°C, 3’] - [95°C,

30’’ - 60°C, 30’’ - 72°C, 45’’] x 12 cycles - [72°C, 2’]. Products

were purified with 1 volume of AMPureXP beads. The resulting

libraries were checked with both Qubit 2.0 Fluorometer

(Invitrogen, Carlsbad, CA) and Bioanalyzer DNA assay

(Agilent technologies, Santa Clara, CA). Libraries were then

PE sequenced with 150 cycles on NovaSeq 6000 instrument

following the manufacturer’s instructions (Illumina, San Diego,

CA). A low coverage sequencing and a draft assembly of the

male parent (‘Cipro’) was obtained as reference for investigating

data obtained with ddRADseq.
Sequence analysis and linkage
maps development

Raw reads were demultiplexed using the process_radtags

pipeline included in Stacks v2.53 (Catchen et al., 2013).

Assembly of the short-reads of each sample into matching

stacks was performed using the ustacks utility included in

Stacks v2.53. A set of consensus loci from all the analyzed

samples (catalog) was identified by the cstacks pipeline, and

each sample was matched against the catalog using sstack and

tsv2bam utilities. Sequences for each genotype were mapped to

the catalog file using the Burrows-Wheeler Aligner (BWA,

v0.7.17) program and the ‘mem’ command with the default

parameters (Li and Durbin, 2009). BAM files were processed and

used for SNP calling using Samtools mpileup (v1.6 - Danecek

et al., 2021) with default parameters except for the minimum

mapping quality (Q = 20). Markers were named according to the

catalog sequence in which they were identified. Each name starts

with an S, followed by the catalog sequence number and the

position of the SNP in the sequence (i.e S0004445_269).

Independent framework linkage maps were constructed for

each parent (male and female) from each progeny-based dataset

(PON-PON and DOUBLE), using the double pseudo-testcross

mapping strategy (Plomion and Durel, 1996) and JoinMap v4.0

(Van Ooijen, 2006). Four separate datasets were assembled: (i)

‘Violet-greenish’ - ‘PP -’; (ii) Cipro I - ‘C-I’ -; (iii) ‘Violet’ - ‘Db’ -

and (iv) Cipro II - ‘C-II’. Only SNP markers in testcross

configuration (expected segregation ratio of 1:1) were included

in the datasets: maternal testcross markers segregating only in

‘PP’ or ‘Db’, and paternal testcross markers segregating only in

‘C-I’ or ‘C-II’.

Genotyping data were quality filtered by removing not

segregating markers, markers with >20% missing values, and

skewed markers. The similarity of the loci option of JoinMap was

used to identify perfectly identical markers (similarity value =
Frontiers in Plant Science 04
1.000), expected to map to exactly the same position. To reduce

the load of calculation effort, only one representative of each

group of identical loci was used for mapping. Goodness-of-fit

between observed and expected segregation ratios was assessed

using the c2 test. Markers fitting a Mendelian pattern closely

associated with a c2 value c2 a = 0.1 or with only a minor

deviation (c2 a = 0.1< c2 c2 a = 0.01) were used for map

construction, provided that their inclusion did not alter the local

marker order. Loci suffering from significant segregation

distortion (c2 > c2 a = 0.01) were excluded.

For all maps, LGs were established based on a threshold

logarithm of odds (LOD) ratio >4. To determine marker order

within a linkage group (LG), the JoinMap parameters were set at

Rec = 0.40, LOD = 1.0 and Jump = 5. Map distances were

converted to centiMorgans (cM) using the Kosambi mapping

function (Kosambi, 1943). Linkage maps were drawn using

MapChart 2.2 software (Voorrips, 2002), and markers

deviating in their segregation only marginally from the

expected Mendelian ratio are presented with one (c2 a = 0.1 <

c2 c2 a = 0.05) or two (c2 a = 0.05 < c2 c2 a = 0.01) asterisks. LG

of the female and male maps were respectively named PP_01 to

PP_08 and CI_01 to CI_08 for the ones present in the PON-

PON dataset, and Db_01 to Db_08 and CII_01 to CII_08 for the

ones present in the DOUBLE dataset (Supplemental Figure 1

and Supplemental Table 1).
Flower color assessment

The first blooming flower of market quality of each genotype

was phenotyped in both seasons (2020 and 2021), as

representative of the genetic potential of each individual. The

main color of the internal (Main Interior Color - MiC) and

external (Main Exterior Color - MeC) layer of the petals were

scored following RHS classification (Figure 1B).
Statistical analyses and QTL detection

Statistical analyses were performed with R software (Team,

2016). A conventional analysis of variance was applied to

estimate genotype and environment effects based on the linear

model Yij = m + gi + bj + eij, where m, g, b and e represent the

mean, the genotypic effect, the block effect and the error

respectively. Correlations between traits were estimated using

the Spearman coefficient, and normality, kurtosis and skewness

were assessed with the Shapiro–Wilks test (a = 0.05). QTL

detection was performed by considering each season

independently and was based on the newly developed map

using MQM mapping, as implemented in MapQTL v5

software (Van Ooijen, 2004). QTLs were initially identified

using interval mapping. LOD thresholds for declaring a QTL

to be significant at the 5% genome-wide probability level were
frontiersin.org
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established empirically by applying 1000 permutations per trait

(Doerge and Churchill, 1996). After permutation analysis, linked

marker per putative QTL was treated as a co-factor in the

approximate multiple QTL model. Co-factor selection and

MQM analysis were repeated until no new QTL could be

identified. Additive effect, as well as the percentage of the

phenotypic variation (PVE) explained by each QTL, were

obtained from the final multiple QTL model. Individual QTLs

were prefixed by the parental line abbreviation (‘PP’, ‘C-I’, ‘C-II’,

or ‘Db’), followed by a trait abbreviation, the relevant

chromosome designation, while the season was followed by a

letter when there were more than one QTL for the season.

Confidence interval of the QTL was calculated by considering

0.5Mb upstream and downstream the marker identified at

the QTL.
Results and discussion

Sequencing and linkage
map construction

The ddRAD approach generated a total of ~2Gb

demultiplexed reads, and an average of 8,3M reads per

genotype (detailed info about the raw data per individual can

be found in Supplemental Table 1). Cleaned reads with quality

scores >30 were mapped against the catalog obtained through

the stacks pipeline (see Materials and Methods). Before filtering,

~578k polimorphisms where identified. However, after filtering

at DP>15, this number was lowered to ~22k SNPs and 790

indels. Only markers heterozygous in a single parent were

retained for map construction, by treating the F1 population
Frontiers in Plant Science 05
as a backcross. For each of the parental lines, skewed markers,

showing highly significant distortion from the expected 1:1 ratio,

or markers with identical segregation patterns were excluded

from further map construction steps (Supplemental Table 1).

Overall, 3,376 single nucleotide polymorphisms (SNPs) were

identified as segregating in the PONPON population, of which

1,607 and 1,769 were used as input in JoinMap for the

development of Cipro (C-I) and PonPon (PP) maps,

respectively. In C-I, 732 markers were excluded by the

JoinMap pipeline being co-segregating (i.e. markers showing

the same segregation pattern), leading to an overall number of

875 markers used for map construction. Analogously, in PP, 796

SNPs were co-segregating, while 973 were used for map

construction. A further stringent selection was applied by

considering only markers grouped at LOD >4, and a set of 568

SNPs in PP, and 556 in C-I were identified as suitable for map

development. The generated PP map spanned 829 cM over 8

LGs (corresponding to the haploid chromosome number of the

species) ranging from 80.5 to 130.7 cM, with a marker density

between 1.1 and 3 cM, and 23 gaps bigger than 5 cM. The LG7

harbored the highest number of gaps (8), while only one gap was

present in LG4. The C-I map spanned 1305.8 cM across 8 LGs,

ranging between 123.7 and 201.4cM and with a marker density

between 1.8 and 3 cM. In this map a higher number of gaps (>5

cM) was present (60), with LG3 and LG7 including 13 and 11

gaps respectively, and LG8 harboring the lower number of gaps

(3). The LGs of the two maps were aligned on the basis of 35

common markers, as shown in Figure 2.

Overall, 4,098 SNPs were identified in the DOUBLE

population, of which 2,344 and 1,754 segregating in Cipro (C-

II) and Double (Db) maps respectively. In C-II, 1,211 co-

segregating markers were discarded and 1,113 SNPs used for
TABLE 1 Statistics of the four linkage maps.

LG 1 LG 2 LG 3 LG 4 LG 5 LG 6 LG 7 LG 8 Average Total

PonPon (PP) Size 112.0 130.7 97.4 113.4 102.9 80.5 110.8 82.2 103.7 829.8

N° of markers 93 83 63 82 74 58 37 78 71 568

Marker Density 1.2 1.6 1.5 1.4 1.4 1.4 3.0 1.1 1.6

Gaps (> 5cM) 3 3 4 1 2 2 8 0 3 23

Cipro I (C-I) Size 199.1 201.4 189.5 173.6 156.1 123.7 147.8 114.6 163.2 1305.8

N° of markers 102 75 64 72 74 55 49 65 70 556

Marker Density 2.0 2.7 3.0 2.4 2.1 2.2 3.0 1.8 2.4

Gaps (> 5cM) 5 9 13 6 4 9 11 3 8 60

Cipro II (C-II) Size 226.7 160.2 116.6 132.6 151.4 149.0 127.0 118.8 147.8 1182.2

N° of markers 152 98 113 71 49 73 50 74 85 680

Marker Density 1.5 1.6 1.0 1.9 3.1 2.0 2.5 1.6 1.9

Gaps (> 5cM) 6 4 3 3 9 6 9 2 5 42

Double (Db) Size 169.1 145.6 102.5 161.4 151.1 106.9 105.4 117.6 132.5 1059.7

N° of markers 68 33 65 112 68 74 46 74 68 540

Marker Density 2.5 4.4 1.6 1.4 2.2 1.4 2.3 1.6 2.2

Gaps (> 5cM) 9 12 4 4 9 2 5 6 6 51
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map construction. For Db, 919 SNPs were co-segregating,

leading to 835 mappable markers. A further stringent selection

was applied by considering only markers grouped at LOD >4,

identifying 680 loci for C-II, and 540 for Db maps development.

A genetic map with an overall dimension of 829 cM was

generated for Db, identifying 8 LGs ranging from 102.5 and

169.1 cM with a marker density between 1.4 and 4.4, and 51 gaps

bigger than 5 cM. The highest number of gaps (12) was scored

on LG2, while only two gaps were present on LG6. The 8 LGs

developed for the C-II map covered 1182.2 cM, ranging between

116.6 and 226.7 cM with a marker density between 1 and 3.1 cM.

Forty-two gaps were identified across LGs, with LG5 and LG7

presenting 9 gaps, and LG8 harboring only 2 gaps. Each LGs of

the two maps were aligned using 27 common markers, as shown

in Figure 2 and Table 1.

The 8 LGs of the two maps of the male parental genotype (C-

I and C-II) were aligned by means of 44 markers. Furthermore,
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the four maps were aligned on the basis of 106 common markers

of which 7 markers were common across PP, C-I and C-II, while

one was common among the four maps. A clustering of markers

was observed in some LGs, and in most cases was located in the

central part of a LG. This clustering might correspond to the

centromeric regions (Keim et al., 1990; Reiter et al., 1992;

Tanksley et al., 1992; Vallejos et al., 1992; Ott et al., 2011), in

which a reduced recombination usually takes place (Vincenten

et al., 2015; Zafar et al., 2017; Acquadro et al., 2020).

An average number of 586 markers was included in each

parental map, with a marker density ranging from 1 marker/cM

to 4.4 markers/cM. Assuming an expected genome size of 7.6Gb

(Goepfert, 1974), the average mapping length of ~1093 cM was

used for estimating the physical dimension of a cM, which

corresponds to a physical distance of about 7Mb. The average

LG dimension ranged from 829.8 cM (PP) to 1305.8 cM (C-

I).Both the male parent maps (C-I and C-II) were larger than the
FIGURE 2

From the left to the right: PP, C-I, C-II, and Db Linkage Groups. Eight LGs (corresponding to the haploid chromosome number of the species)
were identified within each parental map. C-I map was the bigger one, covering 1,305.8 cM, while the PP map was the smaller one with 829.8
cM (Table 1). QTL regions are reported as green (MeC) and red (MiC) bars on the right side of the associated LGs.
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ones of the female parents (PP and Db). As previously reported

(Lenormand and Dutheil, 2005), differences between paternal

and maternal linkage maps could be associated with

heterochiasmy (i.e., the presence of different crossover

frequencies in male and female meiosis). Differential

recombination rates between the sexes have been reported in

several plant species, and attributed to processes such as sexually

antagonistic selection acting on coding and regulatory genetic

elements, female meiotic drive as well as selection during the

haploid phase of the life cycle (Sardell and Kirkpatrick, 2020).

The latter has been associated to the reproductive system (selfing

or outcrossing) characterizing the species (Giraut et al., 2011;

Mariotti et al., 2020), although even in closely related species

sharing the same reproduction pattern, such as Sinapis alba

(Nelson et al., 2013), Brassica oleracea (Kearsey et al., 1996) and

Brassica napus (Kelly et al., 1997), contrasting results have

been reported.
Phenotypic variation, traits correlation
and QTL identification

Table 2 reports a summary of the phenotypic performance

for main color of the internal (MiC) and external (MeC) layer

of the petals in the parental genotypes and F1 population,

together with skewness and kurtosis of the traits. The male

parent ‘Cipro’ did not present anthocyanin content in both

petal layers. Conversely, the ‘Double’ genotype produced violet

flowers, and PonPon violet- greenish petals. While the MiC

trait appears to be stable in the two seasons in the parental

lines, MeC showed a certain level of variability in the PP
Frontiers in Plant Science 07
parent. In the F1 populations transgressive segregation was

observed in respect to both maternal parents, except for MeC

in the DOUBLE population.

Significant inter-trait correlations were detected within and

across growing seasons (Table 3), albeit detecting a certain level

of variability introduced by the environment. The least

correlated traits were DB_MiC_20 and DB_MeC_21 (+0.70),

while the most highly correlated were PP_MiC_21 and

PP_MeC_21 (+0.94).

In Season 2020, the plants originated from seeds were less

vigorous in respect to plants originated from rhizomes in season

2021. The flower color was limitedly affected by the environment

traits in the two seasons. However, in Season 2020 the PP

population distribution appeared to be leptokurtic, while in

the Season 2021 the distribution was platykurtic. Such

differences did not appear in the DOUBLE population.

Transgressive genotypes always deviate towards the more

pigmented parent (PP and Db), with petals exceeding the

parental lines in pigment accumulation. Furthermore, in some

cases the petal color appeared to be not uniform and presented

mottling, suggesting the involvement of regulatory elements and

epigenetic mechanisms, as reported in literature (Koseki et al.,

2005; Le Maitre et al., 2019; Wang et al., 2019; Zheng

et al., 2021).

The genetic basis of variation in quantitative traits can

traditionally be resolved by the QTL approach, which

partitions the variation into distinct genomic regions defined

by a linkage map (Paterson et al., 1988). One of the most

important issues to determine is the stability of the trait and

how stable the expression of the various loci is by repeating the

phenotypic evaluation over time and/or space. QTL detection
TABLE 2 List of the traits analyzed and their code, means, standard deviations (SD), overall statistics, coefficients of variation (cv), and
transgressive genotypes.

Population PON-PON DOUBLE

Trait MiC_20 MiC_21 MeC_20 MeC_21 MiC_20 MiC_21 MeC_20 MeC_21

Trait code PP_MiC_20 PP_MiC_21 PP_MeC_20 PP_MeC_21 Db_MiC_20 Db_MiC_21 Db_MeC_20 Db_MeC_21

PP/Db mean 6 6 7 4 5 5 7 7

C mean 1 1 1 1 1 1 1 1

F1 mean 2.7 3.4 3.0 3.7 3.4 3.6 4.0 4.2

± SD 1.7 2.0 1.9 2.2 1.7 1.7 2.0 2.1

Cv 0.6 0.6 0.6 0.6 0.5 0.5 0.5 0.5

Shapiro-Wilks 0.80 0.80 0.80 0.78 0.85 0.85 0.79 0.77

Skewness -1.13 -1.61 -1.41 -1.69 -0.18 -0.42 -0.53 -0.63

SE 0.43 0.43 0.43 0.43 0.24 0.24 0.24 0.24

Kurtosis 0.48 -0.11 0.19 -0.22 -1.20 -1.01 -1.32 -1.26

SE 0.22 0.21 0.22 0.21 0.48 0.47 0.48 0.47

Transgressive respect PP/Db 4 45 0 58 17 15 0 0

Transgressive respect C 0 0 0 0 0 0 0 0
fro
Ponpon parent (PP) and double parent (Db) mean are reported, as well as the Cipro mean (C mean) and the average of the corresponding F1 population (F1 mean). F1 population’s
distribution histograms for the investigated traits can be found in in Supplemental Figure 2.
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was performed considering each season independently and was

based on the newly developed map using MQM mapping (see

Materials and Methods). LOD score, percentage of variance

explained (PVE), and confidence interval (CI) related to QTLs,

are described in Table 3. QTL analyses on all traits and

environments yielded a total of 12 major (PVE values >10),

located on LG3 (see Figure 2 and Table 4). In both female

parents (PP and Db), 8 major QTLs were located in the same

scaffold (S0004445) for both MiC and MeC. On the other hand,

QTLs were identified only in the male parental map from the

PON-PON population (C-I), both for MiC andMeC. Our results

highlight a very high correlation between the external (MeC) and

internal (MiC) pigmentation of the flower (Table 3), suggesting

that the same genomic regions affect both traits. Thus, MiC and

MeC appear to be controlled by commonmajor QTLs located on

LG3, justifying a PVE ranging from 31.7 to 84%, with a LOD

ranging from 11.23 to 50.6.

To the best of our knowledge, this is the first report on QTLs

detection in Persian buttercup. The identified QTLsshould be
Frontiers in Plant Science 08
further on investigated and, once validated on a large collection

of breeding material, the developed molecular markers might be

applied for molecular assisted breeding.
Conclusions

Genome size varies greatly across the flowering plants and

has played an important role in shaping their evolution.

Ranunculus asiaticus harbors a very large genome size of

about 7Gb.Mainly as a consequence of its large genome size,

the development of genomic tools in the species has been to date

very limited. We have applied for the first time in Persian

buttercup, a reduced -representation sequencing (RRS)

approach with the goal to develop its first genetic maps. Based

on the two-way pseudo test cross strategy in two F1 populations,

sharing the same male parent, we constructed maps which were

used for positioning the first QTLs affecting the flower

anthocyanin pigmentation. Our results lay the foundations for
TABLE 3 Inter-trait Spearman correlations assessed in the mapping populations.

PP_MiC_20 PP_MiC_21 PP_MeC_20 PP_MeC_21

PP_MiC_20 –

PP_MiC_21 0.76 –

PP_MeC_20 0.90 0.81 –

PP_MeC_21 0.77 0.94 0.84 –

Db_MiC_20 Db_MiC_21 Db_MeC_20 Db_MeC_21

Db_MiC_20 –

Db_MiC_21 0.82 –

Db_MeC_20 0.88 0.81 –

Db_MeC_21 0.70 0.88 0.86 –
TABLE 4 QTL detected in the mapping population.

Map Trait Year Name Group Pos. Locus LOD CI PVE Add. GW

PP MiC 20 PP_MiC-3_20 LG3 60.8 S0004445_269 21.74 58.8-61.3 48.3 2.5 18

21 PP_MiC-3_21 LG3 60.8 S0004445_269 38.66 58.8-61.3 67.4 3.4 23

MeC 20 PP_MeC-3_20 LG3 60.8 S0004445_269 29.2 58.8-61.3 49.4 2.7 19.4

21 PP_MeC-3_21 LG3 60.8 S0004445_269 46.1 58.8-61.3 71.9 3.9 25.8

C-I MiC 20 C-I_MiC-3_20 LG3 155.9 S0038600_63 23.32 155.38-156.38 57.9 -2.7 18

21 C-I_MiC-3_21 LG3 155.9 S0038600_63 43.45 155.38-156.38 79.3 -3.7 23.1

MeC 20 C-I_MeC-3_20 LG3 155.9 S0038600_63 28.81 155.38-156.38 65.7 -3.1 19.6

21 C-I_MeC-3_21 LG3 155.9 S0038600_63 50.6 155.38-156.38 84 -4.1 26

Db MiC 20 Db_MiC-3_20 LG3 48.3 S0004445_68 11.23 47.565-48.796 31.7 -2.0 9.3

21 Db_MiC-3_21 LG3 48.3 S0004445_68 15.62 47.565-48.796 45.1 -2.4 10.1

MeC 20 Db_MeC-3_20 LG3 48.3 S0004445_68 22.37 47.565-48.796 59 -3.2 14.8

21 Db_MeC-3_21 LG3 48.3 S0004445_68 21.41 47.565-48.796 58.9 -3.3 18.7
frontiersi
For each trait the location (LG and position), the associated marker, the LOD, confidence interval (CI), percentage of explained variation ( PVE), additive effect (Add.), and the genome-wide
thresholds (GW) at p = 0.05 (as determined from 1000 permutations) are indicated.
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future genetic and genomic studies and provide a framework for

implementing more targeted breeding programs in R. asiaticus.
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