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Molecular basis of
nitrogen starvation-induced
leaf senescence

Yasuhito Sakuraba*

Plant Functional Biotechnology, Biotechnology Research Center, The University of Tokyo, Tokyo, Japan
Nitrogen (N), a macronutrient, is often a limiting factor in plant growth,

development, and productivity. To adapt to N-deficient environments, plants

have developed elaborate N starvation responses. Under N-deficient conditions,

older leaves exhibit yellowing, owing to the degradation of proteins and

chlorophyll pigments in chloroplasts and subsequent N remobilization from

older leaves to younger leaves and developing organs to sustain plant growth

and productivity. In recent years, numerous studies have been conducted on N

starvation-induced leaf senescence as one of the representative plant responses

to N deficiency, revealing that leaf senescence induced by N deficiency is highly

complex and intricately regulated at different levels, including transcriptional,

post-transcriptional, post-translational and metabolic levels, by multiple genes

and proteins. This review summarizes the current knowledge of the molecular

mechanisms associated with N starvation-induced leaf senescence.
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Introduction

Leaf senescence, the final phase of leaf development, is a highly controlled process

accompanied by massive transcriptional and metabolic changes that destabilize

intracellular organelles and macromolecules and lead to the translocation of nutrients

into developing tissues and storage organs. In the past two decades, molecular

mechanisms underlying the regulation of leaf senescence have been extensively studied

(Woo et al., 2019; Guo et al., 2021; Zhang et al., 2021). The initiation of leaf senescence is

tightly controlled by internal factors, such as the state of phytohormones, photosynthesis,

sugars, and other metabolites (Sakuraba et al., 2012a; Jibran et al., 2013; Woo et al., 2019),

and external stimuli such as high salinity, drought, pathogens, and light (Quirino et al.,

1999; Gepstein and Glick, 2013; Zhang et al., 2012; Sakuraba, 2021a). In addition to these

external stimuli, the deficiency of mineral nutrients in the soil is known to cause

premature leaf yellowing.
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Nitrogen (N) is a key mineral nutrient for plants and a major

constituent of molecules essential for plant growth, such as

nucleic acids, amino acids, and chlorophyll (Marschner, 1995).

Thus, the availability of N is often a limiting factor for many

aspects of plant growth and development. In the natural

ecosystem and the field, plants frequently encounter N

deficiency and thus exhibit N deficiency responses to

efficiently acquire and use available N in the soil (Kiba and

Krapp, 2016). N deficiency responses include the modification of

root architecture (Gruber et al., 2013) and the expression of

genes associated with high-affinity transport systems for nitrate

and ammonium (Lezhneva et al., 2014; Kiba and Krapp, 2016) to

promote the uptake of N sources. In addition, leaf yellowing due

to the remobilization of N sources from older leaves to younger

leaves and reproductive organs is also one of the representative

N deficiency responses and is considerably important for plants

to sustain growth and productivity. On the other hand, N

starvation-induced leaf yellowing in young seedlings causes

severe growth defects (Sakuraba et al., 2021b). Therefore,

understanding the molecular mechanisms underlying N

starvation-induced leaf senescence is critical for establishing

sustainable agriculture under N-deficient conditions.

In recent years, the regulatory mechanisms of N starvation-

induced leaf senescence have been widely uncovered at the

transcriptional, post-transcriptional, post-translational, and

metabolic levels. This review summarizes the results of studies

conducted to date on N starvation-induced leaf senescence in the

model dicot Arabidopsis thaliana and in agronomically

important crops.
Metabolic changes in plants during
N deficiency

Plants increase the capacity of N acquisition by enhancing

root growth and upregulating the expression of genes encoding

high-affinity nitrate and ammonium transporters under N

deficiency stress (Kiba and Krapp, 2016). However, when these

adaptations are not enough to provide a sufficient N supply,

plants are forced to respond with further adaptive metabolic

strategies that facilitate N remobilization to complete their

life cycle.

The metabolome of Arabidopsis seedlings exposed to long-

term N starvation showed dramatic changes (Krapp et al., 2011).

Under N deficiency stress, the accumulation of nitrate and

ammonium ions decreased rapidly. The total amino acid

content of shoots gradually decreased during N starvation,

while that of roots increased during the early phase of N

starvation and then gradually returned to the level observed

before the start of N starvation (Krapp et al., 2011). In shoots, the

levels of N-rich amino acids such as glutamine (Gln), glutamate

(Glu), asparagine (Asn), and aspartate (Asp) significantly
Frontiers in Plant Science 02
decreased within a few days of N starvation; the accumulation

of hydrophobic amino acids, such as leucine (Leu), isoleucine

(Ile), and valine (Val), showed no significant change; and the

levels of a few minor amino acids, such as lysine (Lys), arginine

(Arg), and histidine (His), increased during long-term N

starvation (Krapp et al., 2011). Since other N-containing

compounds such as proteins and chlorophylls are synthesized

from amino acids, the reduction in amino acid levels during

long-term N starvation directly affects the accumulation of these

compounds, leading to the promotion of leaf yellowing (Krapp

et al., 2011; Balazadeh et al., 2014).

On the other hand, the content of soluble sugars such as

sucrose, fructose, and galactose increased dramatically in

Arabidopsis plants during N starvation (Krapp et al., 2011;

Balazadeh et al., 2014). Several studies reported that sugars

play an important role in the promotion of leaf senescence.

Direct application of sucrose and glucose induced yellowing in

Xanthium pensylvanicum leaf discs and Arabidopsis seedling

leaves, respectively (Khudairi, 1970; Wingler et al., 2006).

Moreover, genetic mutants and transgenic plants with altered

sugar accumulation or sensing exhibited differences in the

promotion of leaf senescence. Transgenic tomato plants

overexpressing Arabidopsis HEXOKINASE1 (AtHXK1)

exhibited accelerated leaf senescence (Dai et al., 1999). On the

other hand, an Arabidopsis deficient mutant of MALTOSE

EXCESS 1 (MEX1) exhibited a pale-green leaf phenotype and

premature leaf senescence (Stettler et al., 2009). Thus, increased

accumulation of soluble sugars in plants under N-deficient

conditions may contribute to the promotion of leaf senescence.

N starvation also alters the accumulation of some organic

acids. During N starvation, the levels of fumarate and succinate

significantly increased, while those of aconitate and citrate

decreased in the shoots of Arabidopsis seedlings (Krapp et al.,

2011). While the accumulation of fumarate was shown to be

closely associated with the accumulation of amino acids

(Pracharoenwattana et al., 2010), the involvement of these

organic acids in the promotion or inhibition of leaf senescence

has not yet been investigated.
N deficiency induces the
degradation of N-containing
compounds and remobilization of
N in older leaves

Under N deficiency stress, N is remobilized from senescing

leaves to developing tissues, such as young leaves and other sink

organs, in the form of nitrate, ammonium, urea, amino acids,

and short peptides, leading to the promotion of leaf yellowing in

older leaves. This N remobilization is accompanied by increased

proteolysis activity in older leaves (Hörtensteiner and Feller,

2002). In addition, chlorophyll content, which is directly
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associated with the amount of photosystem proteins,

dramatically decreases under N-deficient conditions (Hanaoka

et al., 2002). Section 3 summarizes the molecular mechanisms

underlying the degradation of N-containing compounds and

remobilization of N that occur during N deficiency stress.
Degradation of chloroplast proteins
under N deficiency stress

In the mesophyll cells of C3 plants, approximately 80% of N

is located in chloroplasts, mainly as a component of ribulose 1,5-

bisphosphate carboxylase/oxygenase (Rubisco; a stromal

enzyme) and the light-harvesting complex (LHC; which

contains chlorophyll pigments) (Peoples and Dalling, 1988;

Makino et al., 2003). Previous studies showed that the

accumulation of Rubisco dramatically decreased in the leaves

of Phaseolus vulgaris (Crafts-Brandner et al., 1996) and

Arabidopsis plants (Izumi et al., 2010) under N-deficient

conditions. Rubisco and photosystem proteins are believed to

be degraded under N deficiency stress through multiple
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proteolytic pathways, one of which is mediated by chloroplast

proteases. Several studies reported the significance of chloroplast

proteases in the degradation of photosystem proteins. For

example, FtsH and DegP proteases are involved in the

degradation of the damaged D1 protein (Lindahl et al., 2000;

Haussühl et al., 2001), a core subunit of photosystem II (PSII).

FtsH is also involved in the degradation of the Lhcb2 protein

(Zelisko et al., 2005). Additionally, the chloroplast-localized

aspartic protease CND41 was shown to mediate the

degradation of Rubisco in tobacco leaves under N-deficient

conditions (Kato et al., 2004). Although direct evidence is

lacking, Rubisco is also speculated to be degraded by other

stromal proteases, such as Clp (Figure 1). Indeed, Clp was shown

to be involved in the degradation of Rubisco in the chloroplast of

the green alga Chlamydomonas reinhardtii (Majeran

et al., 2019).

Guiboileau and coworkers indicated the significance of

autophagy in N remobilization under N deficiency stress.

Tracer experiments using 15N-labeled nitrate showed that N

remobilization into seeds was reduced in autophagy mutants

under N deficiency stress (Guiboileau et al., 2012). Furthermore,
FIGURE 1

Model displaying the degradation of N-containing compounds in the chloroplast during leaf senescence. During leaf senescence, chloroplast
proteins including Rubisco and photosystem subunits are believed to be degraded through several proteolytic processes mediated by proteases
localized in the chloroplasts, senescence-associated vacuoles (SAVs), and central vacuoles as well as by Rubisco-containing bodies (RCBs) and
chlorophagy. The degradation of chlorophyll molecules occurs in two distinct phases; the first phase is associated with the degradation of
chlorophyll molecules by the chloroplast-localized chlorophyll catabolic enzyme (CCE) complex, while the second phase is associated with the
translocation of colorless chlorophyll catabolites fluorescent chlorophyll catabolite (FCC) from chloroplasts to the central vacuole.
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the N content of rosette leaves was significantly higher in

autophagy mutants than in the wild type (WT) (Guiboileau

et al., 2013). Although the number of Rubisco-containing

autophagosomes, called Rubisco-containing bodies (RCBs),

decreased during the period of N deficiency (Izumi et al.,

2010), a certain amount of Rubisco proteins is speculated to be

translocated into the central vacuole through the autophagy

pathway, and then degraded (Figure 1). In Arabidopsis plants

subjected to dark-induced senescence, chlorophyll fluorescence

was detected in the central vacuole of leaf cells (Wada et al.,

2009), indicating that the macroautophagy system also functions

in the transport of chlorophyll–apoprotein complexes and other

thylakoid proteins from chloroplasts to the central vacuole

during dark-induced leaf senescence and probably under other

senescence-inducing conditions including N deficiency.

Chlorophagy, in which whole chloroplasts are transported to

the central vacuole (Nakamura and Izumi, 2018), may also be

involved in the transport of thylakoid proteins to the central

vacuole during leaf senescence (Figure 1).

While autophagy is certainly involved in N remobilization,

its molecular mechanism remains to be elucidated. In previous

studies, Arabidopsis autophagy mutants exhibited early leaf

yellowing under N-deficient conditions (Thompson et al.,

2005; Guiboileau et al., 2012) and during dark-induced leaf

senescence (Thompson et al., 2005), and exhibited leaf necrosis

under abiotic stresses such as high salinity and drought (Liu

et al., 2009). Under these stress conditions, however, chlorophyll

degradation should be impaired when autophagy operates

properly, since autophagy is involved in the degradation of

chloroplast proteins. On the other hand, the leaves of

Arabidopsis autophagy mutants exhibited delayed leaf

yellowing under mild abiotic stress conditions (Sakuraba et al.,

2014a). This difference in the progression of chlorosis (or

necrosis) of autophagy mutant leaves between severe and mild

stress conditions may reflect the significance of autophagy in

adapting to severe stress. It is possible that autophagy mutants

cannot adapt to severe stress, since they cannot properly

maintain their proteome balance under extremely unfavorable

conditions and thus exhibit accelerated leaf yellowing and/or leaf

necrosis. Investigation of the phenotype of autophagy mutants

under different N concentrations will provide important insights

into autophagy-mediated N remobilization that occurs under N

deficiency stress.

During leaf senescence, senescence-associated vacuoles

(SAVs), which show greater lytic activity than the central

vacuole, are formed in the peripheral cytoplasm of mesophyll

cells (Otegui et al., 2005). SAVs contain stromal proteins such as

Rubisco and glutamine synthetase (GS) but do not contain

thylakoid proteins such as D1, LHC of PSII (LHCII), and

cytochrome c (Cyt c) (Martıńez et al., 2008), indicating that

SAVs are involved in the degradation of stromal proteins, but

not thylakoid proteins during senescence. In wheat (Triticum

aestivum L.), the activity of several vacuolar cysteine proteases
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increased in senescing leaves (Martı ́nez et al., 2007).

SENESCENCE-ASSOCIATED GENE 12 (SAG12), which

encodes a vacuolar cysteine protease, is one of the most widely

used senescence marker genes. The expression of SAG12 is

strongly induced during leaf senescence (Lohman et al., 1994),

and the encoded protein localizes to SAVs (Otegui et al., 2005).

Therefore, SAG12 is thought to participate in the degradation of

Rubisco proteins in SAVs (Figure 1). However, in the sag12

knockout mutants of Arabidopsis, the degradation of Rubisco

proteins was not affected under both high and low N conditions,

whereas the activity of aspartic protease was greatly enhanced

(James et al., 2018). These results suggest that some aspartic

proteases compensate for the effect of sag12 mutation on the

degradation of Rubisco proteins . Thus, functional

characterization of aspartic proteases in SAVs is necessary for

further understanding the proteolytic process of stromal

proteins in SAVs.
Degradation of chlorophyll pigments
under N-deficient conditions

Under N deficiency stress, the timing of chlorophyll pigment

degradation is consistent with that of photosystem protein

degradation, and is accompanied by the loss of green color. The

degradation of chlorophyll pigments occurs in two distinct phases.

The first phase is associated with the degradation of chlorophyll

pigments and their intermediates in the chloroplast, while the

second phase involves the translocation of colorless chlorophyll

catabolites from the chloroplast to the vacuole (Kuai et al., 2018).

In the first phase, the degradation of chlorophyll molecules is

catalyzed by at least seven enzymes. This catabolic process starts

with the conversion of chlorophyll b to 7-hydroxymethyl

chlorophyll a by two chlorophyll b reductase isoforms, NON-

YELLOW COLORING 1 (NYC1) and NYC1-LIKE (NOL)

(Kusaba et al., 2007; Horie et al., 2009), and is followed by the

conversion of 7-hydroxymethyl chlorophyll a to chlorophyll a by

7-HYDROXYMETHYL CHLOROPHYLL a REDUCTASE

(HCAR) (Meguro et al., 2011). The dechelation of magnesium

from chlorophyll a is catalyzed by a magnesium-dechelatase,

NON YELLOWING 1 (NYE1)/STAY-GREEN1 (SGR1)

(Shimoda et al., 2016), and the product of this reaction

(pheophytin a) is then dephytylated by PHEOPHYTINASE

(PPH) to form pheophorbide a (Schelbert et al., 2009).

Subsequently, the chlorin macrocycle of pheophorbide a is

oxygenolytically opened by PHEOPHORBIDE a OXYGENASE

(PAO) (Pruzinská et al., 2003) to form red chlorophyll catabolite

(RCC), which is then reduced to a non-phototoxic chlorophyll

catabolite, primary fluorescent chlorophyll catabolite (pFCC), by

RCC REDUCTASE (RCCR) (Pruzinská et al., 2007). These seven

chlorophyll catabolic enzymes physically interact with each other

and with LHCII (Sakuraba et al., 2012b, Sakuraba et al., 2013),

indicating that these chlorophyll catabolic enzymes form a multi-
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protein, and potentially highly dynamic, complex for cellular

detoxification during leaf senescence (Figure 1). During dark-

induced and developmental leaf senescence, the expression levels

of genes encoding some of the chlorophyll catabolic enzymes

increase rapidly (Schelbert et al., 2009). In Arabidopsis, the

expression levels of NYC1, HCAR, NYE1/SGR1, PPH, and PAO

increased significantly under N deficiency stress (Figure 2), which

implies that these enzymes are involved in chlorophyll

degradation during N starvation-induced leaf senescence.
Amino acid metabolism during N
deficiency-induced N remobilization

Gln and Asn residues are the major carriers of N in the

phloem sap of higher plants (Hayashi and Chino, 1990), and

thus their synthesis in source organs is considerably important

for N remobilization. The glutamine synthetase/glutamine-2-

oxoglutarate aminotransferase (GS/GOGAT) cycle is considered

to be the primary route of N assimilation in higher plants (Xu

et al., 2012). In this cycle, GS catalyzes the synthesis of Gln from

ammonium and glutamate (Glu) (Lam et al., 2003), while

glutamate synthetase GOGAT catalyzes the transfer of the

amide group of Gln to 2-oxoglutarate (2-OG) to synthesize

two molecules of Glu (Suzuki and Knaff, 2005). On the other

hand, asparagine synthetase (ASN) catalyzes the conversion

from Glu to Asp to form Asn, and plays a vital role in N
Frontiers in Plant Science 05
assimilation, remobilization, and allocation within the plant

(Gaufichon et al., 2010).

Enzymes associated with the accumulation of Gln and Asn

play important roles in the regulation of leaf senescence. The

Arabidopsis genome harbors three ASN genes (AtASN1–3),

among which AtASN2 is the most highly expressed in the

shoots (Gaufichon et al., 2010). The atasn2 knockout mutants

exhibit delayed leaf yellowing and relatively low SAG12

expression compared with the WT during developmental

senescence (Gaufichon et al., 2013). Similarly, in rice (Oryza

sativa L.), knockout mutation of OsASN1, encoding one of the

two ASN isoforms that plays a major role in Asn synthesis in

roots (Ohashi et al., 2015), leads to the stay-green phenotype

during developmental senescence (Lee et al., 2020). Delayed leaf

yellowing observed in asn knockout mutants is probably caused

by the decline in Asn synthesis, which likely leads to the

stabilization of chlorophyll and other N-containing

compounds in leaves. On the other hand, a rice knockout

mutant of the gene encoding ferredoxin-dependent GOGAT

(OsFd-GOGAT), which accumulates 10-fold more Gln than the

WT, exhibited accelerated leaf yellowing during the reproductive

phase, probably because of the promotion of N remobilization

from old leaves to young leaves and other sink organs (Zeng

et al., 2017).

The export of amino acids from older leaves is an important

process for N remobilization under N deficiency stress. In poplar

(Populus trichocarpa), the Gln content of senescing leaves
FIGURE 2

Expression profiles of seven genes encoding chlorophyll catabolic enzymes during N deficiency. Expression levels of seven chlorophyll catabolic
enzyme-encoding genes NYC1, NOL, HCAR, SGR1, PPH, PAO, and RCCR, and a high-affinity nitrate transporter-encoding gene NRT2.5 (positive
control) in the shoots of Arabidopsis Col-0 (wild type) seedlings are shown. Plants were grown in plates containing half-strength Murashige and
Skoog (1/2 MS)-agar medium for 7 days and then under N-deficient conditions (0.3 mM N) for the indicated time periods. Transcript levels of
each gene were normalized against the transcript levels of ACTIN2 (ACT2) and then against the value obtained from samples at time zero. Data
represent mean ± standard deviation (SD) of four biological replicates.
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dramatically increased, and a cationic amino acid transporter,

Pt-CAT11, played an important role in the transfer of Gln

during the senescence process (Couturier et al., 2010). In rice,

overexpression lines of OsAAP3 exhibited accelerated leaf

yellowing phenotype, whereas RNA interference (RNAi) lines

of OsAAP3 exhibited delayed leaf yellowing (Wei et al., 2021).

Higher plants possess a number of amino acid transporters (Yao

et al., 2020); however, their functions in N remobilization during

N deficiency stress remain unknown.
Roles of nitrate transporters in
N remobilization

Recent studies in Arabidopsis showed that NRTs play a

critical role in the regulation of N starvation-induced leaf

senescence and N remobilization. The Arabidopsis genome

possesses 53 and 7 genes encoding Nitrate Transporter 1

(NRT1)/Peptide Transporter (PTR) and NRT2 proteins,

respectively (Tsay et al., 2007). NRT2 proteins function as

high-affinity nitrate transporters, while most NRT1/PTR

family proteins have been functionally characterized as low-

affinity nitrate transporters (Krapp et al., 2014; Forde, 2000).

Among the NRT1/PTR family proteins, NRT1.1 is

considered as a unique protein, since it acts as a dual affinity

transporter that can facilitate nitrate uptake at concentrations

ranging from micromolar to millimolar (Liu et al., 1999).

Genome-wide association study (GWAS) of Arabidopsis

accessions suggested a significant association between

differences in N starvation-induced leaf yellowing and NRT1.1

sequence diversity (Sakuraba et al., 2021b). Indeed, nrt1.1

knockout mutant, chl1-5 exhibited accelerated leaf yellowing,

while transgenic NRT1.1-overexpressing (NRT1.1-OX) plants

retained greenness under N-deficient conditions (Sakuraba

et al., 2021b). Furthermore, grafted seedlings generated using

NRT1.1-OX scion and WT (Col-0) rootstock exhibited delayed

leaf yellowing under the N-deficient conditions; however, such a

delayed leaf yellowing phenotype was not conserved when

chimeras were generated by grafting WT (Col-0) on NRT1.1-

OX rootstock (Sakuraba et al., 2021b), indicating that the

enhanced expression of NRT1.1 in aboveground plant parts

negatively regulates N starvation-induced leaf yellowing.

Arabidopsis NRT1.5, which is also classified into the NRT1/

PTR family, is involved in the nitrate loading of the xylem (Lin

et al., 2008). The expression of NRT1.5 is highly upregulated

during leaf senescence (van der Graaff et al., 2006). Leaves of

nrt1.5 knockout (nrt1.5-KO) mutant plants turned yellow at a

rate comparable with those of WT plants when grown under low

N (i.e., low nitrate) conditions; however, leaves of the nrt1.5-KO

mutant turned yellow much earlier than those of WT plants

under low N conditions, when the only N source was

ammonium or amino acids (Meng et al., 2016), indicating that

accelerated leaf yellowing in nrt1.5-KO mutants is caused
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specifically by the nitrate starvation. Furthermore, the

accelerated leaf yellowing phenotype of nrt1.5-KO mutants

was diminished by supplementation with 10 mM foliar

potassium (K). Additionally, K supply during nitrate

starvation suppressed the expression of several genes

associated with K acquisition, including HIGH-AFFINITY K+

TRANSPORTER 5 (HAK5), which encodes a major transporter

that contributes to K uptake by roots (Gierth et al., 2005), and

RAP2.11, which encodes a transcriptional regulator of HAK5

(Kim et al., 2012), in nrt1.5-KO mutants (Meng et al., 2016). K

supplementation also inhibited stress-induced yellowing of flag

leaves in barley (Hordeum vulgare L.) (Hosseini et al., 2016).

These findings suggest that NRT1.5 suppresses nitrate

starvation-induced leaf senescence by modulating the K level.

Arabidopsis NRT1.7, which encodes a low-affinity nitrate

transporter, is highly expressed in the phloem tissues of leaves,

and its expression increases as leaves age (Fan et al., 2009). The

nrt1.7-KO mutants highly retained nitrate in older leaves, and

exhibited severe growth defects and premature leaf yellowing

phenotype compared with WT plants when grown under N

deficiency stress (Fan et al., 2009). Other Arabidopsis NRT1

family members, including NRT1.11 and NRT1.12, are also

involved in nitrate remobilization from older to younger

leaves. Both NRT1.11 and NRT1.12 are highly expressed in

fully expanded rosette leaves, and the nrt1.11 nrt1.12 double

mutant exhibits lower nitrate content than the WT (Hsu and

Tsay, 2013). However, the role of NRT1.11 and NRT1.12 in the

response to N deficiency stress remains unknown. Considering

the functions of NRT1 family proteins in the regulation of N

starvation-induced leaf senescence, impaired nitrate

remobilization in specific tissues may contribute to overall N

deficiency, leading to the promotion of leaf senescence.

On the contrary, the involvement of NRT2 family proteins in the

regulation of N deficiency-induced leaf senescence has not yet been

elucidated. However, the expression levels of four Arabidopsis NRT2

genes (NRT2.1, NRT2.2, NRT2.4, and NRT2.5) significantly increase

during N deficiency (Lezhneva et al., 2014). While NRT2.1, NRT2.2,

and NRT2.4 are dominantly expressed in roots, NRT2.5 is also

expressed in shoots and is upregulated during N deficiency

(Lezhneva et al., 2014). Thus, it is likely that some of the NRT2

family proteins also play important roles in the regulation of N

starvation-induced leaf senescence.
Transcriptional regulatory
network of N starvation-induced
leaf senescence

To cope with N deficiency stress, plants increase the capacity

of N acquisition by enhancing the expression of genes associated

with high-affinity transport systems for nitrate and ammonium

(Kiba and Krapp, 2016). When these adaptations are not enough
frontiersin.org

https://doi.org/10.3389/fpls.2022.1013304
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sakuraba 10.3389/fpls.2022.1013304
to provide a sufficient N supply, however, plants are forced to

respond with further adaptive transcriptomic strategies for the

remobilization of N to complete their life cycle.

In the last two decades, a number of leaf senescence-

associated transcription factors have been identified and

characterized in Arabidopsis and other plant species (Woo

et al., 2019; Guo et al., 2021), which has greatly expanded our

knowledge of the transcriptional regulatory network of leaf

senescence. The functions of these senescence-associated

transcription factors have been studied mostly during

developmental progression-induced natural senescence or dark-

induced leaf senescence (Guo and Gan, 2006; Kim et al., 2009;

Kim et al., 2013; Sakuraba et al., 2014b). While dark-induced leaf

senescence is known to be partially caused by the decline in N

metabolism (Watanabe et al., 2013), the transcriptional

regulatory network involved in this process remains unclear.

Section 4 summarizes the recently reported transcriptomic

changes that occur during N deficiency and the key regulatory

modules involved in N starvation-induced leaf senescence.
Transcriptomic changes in plants during
N deficiency

Changes of the transcriptome of Arabidopsis plants during N

starvation have been investigated using several different

experimental approaches. Scheible et al. (2004) used seedlings

grown initially in N-replete liquid medium and then in N-limited

liquid medium for several days for DNA microarray analysis

(Scheible et al., 2004). Bi et al. (2007) used the leaves of 3-week-

old Arabidopsis plants grown hydroponically under mild and

severe N deficiency (1 and 0.3 mM N, respectively) for DNA

microarray analysis (Bi et al., 2007). Balazadeh et al. (2014) used

leaves collected from Arabidopsis plants initially grown under N-

sufficient conditions for 19 days and then grown under N-free

conditions for several additional days to perform DNA

microarray analysis (Balazadeh et al., 2014). Although Krapp

et al. (2011) used a similar approach for growing Arabidopsis

plants as described above, these plants were grown under short-

day (8 h light/16 h dark) photoperiod (Krapp et al., 2011).

In the transcriptome data obtained from these studies,

several sets of genes were commonly up- or downregulated.

For instance, several genes associated with anthocyanin

biosynthesis, including CHALCONE SYNTHASE (CHS),

DIHYDROFLAVONOL 4-REDUCTASE (DFR), PRODUCTION

OF ANTHOCYANIN PIGMENT 1 (PAP1), and PAP2, were

significantly upregulated in the leaves of plants exposed to N

starvation. On the other hand, genes associated with cell wall

organization, including EXPANSIN A1 (EXPA1) and EXPA8, as

well as those associated with photosynthesis and chlorophyll

synthesis, including HEMA1 and HEME2, were downregulated

in shoots under N starvation (Scheible et al., 2004; Krapp et al.,

2011). These observations were expected, since anthocyanin
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accumulation in shoots increases while shoot growth rate and

photosynthetic activity decline under N starvation.

In addition, a number of senescence-associated genes were

differentially regulated under N starvation. In the DNA

microarray analysis performed by Balazadeh et al. (2014),

more than half of the N starvation-induced genes were

upregulated during developmental senescence upregulated

genes, including SAG12, SAG13, and ANAC029/NAC-LIKE,

ACTIVATED BY AP3/PI (NAP) (Buchanan-Wollaston et al.,

2005; Breeze et al., 2011; Balazadeh et al., 2014). Upregulation of

NAP under N starvation has also been reported in other

transcriptome analyses (Scheible et al., 2004; Bi et al., 2007;

Krapp et al., 2011; Balazadeh et al., 2014). NAP is classified into

NO APICAL MERISTEM/ATAF1 ,2 /CUP-SHAPED

COTYLEDON (NAC) transcription factor family, and acts as

an enhancer of developmental senescence and dark-induced leaf

senescence by directly upregulating the expression of

senescence-associated genes, including SAG113 and ABSCISIC

ALDEHYDE OXIDASE 3 (AAO3) (Guo and Gan, 2006; Lei et al.,

2020). In addition, the senescence-inducible gene DUF581 was

upregulated under N starvation in all transcriptome analyses

described above (Krapp et al., 2011; Balazadeh et al., 2014).

Transcriptomic changes under N starvation-induced leaf

senescence in the oilseed rape (Brassica napus) have been

investigated using the cultivars that exhibit different responses

to N starvation: NPZ-1 and Apex cultivars exhibit stay-green,

while NPZ-2 and Capitol exhibit accelerated leaf yellowing under

N deficient conditions (Schulte auf’m Erley et al., 2007; Koeslin-

Findeklee et al., 2015a). As in the case in Arabidopsis, N

deficiency in the leaves of oilseed rape also induced several

senescence-associated genes, including NAP and SGR1, and

some of these senescence-associated genes were highly

expressed in the early senescing NPZ-2 and Capitol cultivars

than in the stay-green NPZ-1 and Apex cultivars (Koeslin-

Findeklee et al., 2015a). Moreover, biologically inactive

cytokinins highly accumulated in the early senescing NPZ-1

and Apex cultivars, probably due to the altered expression of

genes involved in the cytokinin homeostasis, including

CYTOKININ OXIDASE/DEHYDROGENASE2 (CKX2)

(Koeslin-Findeklee et al., 2015b). Since the cytokinins are

senescence-delaying phytohormones (Gan and Amasino, 1995),

the homeostasis of biologically active cytokinins may be one of

the predominant factors for the differences in N starvation-

induced leaf senescence among cultivars of oilseed rape.
Roles of NAC transcription factors in
the promotion of N deficiency-induced
leaf senescence

The NAC family is one of the plant-specific transcription

factor families (Riechmann et al., 2000). To date, a number of

NAC transcription factors have been identified in Arabidopsis
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and other plant species as key regulators of leaf senescence

(Sakuraba et al., 2015; Kim et al., 2016; Pimenta et al., 2016;

Sakuraba et al., 2020). Among the senescence-associated NAC

transcription factors in Arabidopsis, the functions of

ORESARA1 (ORE1)/ANAC092 have been widely studied. A

number of studies revealed that ORE1 acts as a central regulator

of both developmental senescence and dark-induced leaf

senescence. Additionally, the regulatory cascades for the

induction of ORE1 (Kim et al., 2009; Sakuraba et al., 2014b;

Kim et al., 2018; Yu et al., 2021) and its downstream target genes

(Matallana-Ramirez et al., 2013; Qiu et al., 2015) have been

identified. A recent study showed that ORE1 also acts as a key

regulator of N starvation-induced leaf senescence. On N-

deficient growth medium, leaves of the ore1 knockout mutant

turned yellow much faster than those of the WT, while the leaves

of ORE1 overexpressors (ORE1-OX) retained their green color
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(Park et al., 2018). Under N deficiency, the transcript level of

ORE1 was elevated 15–20-fold. In addition, the mRNA levels of

PHOSPHATE 2 (PHO2), encoding a ubiquitin-conjugating E2

enzyme (Bari et al., 2006), and NITROGEN LIMITATION

ADAPTATION (NLA), encoding an E3 ubiquitin ligase that

acts together with PHO2 (Park et al., 2014), were also elevated

during N deficiency (Park et al., 2018). ORE1 interacts with NLA

in the nucleus and then destabilized through polyubiquitination

by the NLA–PHO2 module (Park et al., 2018). On the other

hand, ubiquitin-specific protease 12 (UBP12) and UBP13, which

act redundantly in the de-ubiquitination of target proteins

(Derkacheva et al., 2016; Jeong et al., 2017), remove the

ubiquitin moieties from the polyubiquitinated ORE1 protein,

restoring its stable state. Thus, these two deubiquitinases

counteract the effect of the NLA–PHO2 module during ORE1-

mediated N starvation-induced leaf senescence (Figure 3).
FIGURE 3

Transcriptional regulatory network of N starvation-induced leaf senescence in Arabidopsis. Under N-deficient conditions, the expression of
several senescence-associated genes, including WRKY53, NAP, and ORE1, is enhanced. On the other hand, N deficiency downregulates the
expression of miR164, which destabilizes ORE1 mRNA, leading to a further increase of the accumulation of ORE1 protein. WRKY53 directly
enhances the expression of ATL31, a key regulator of high C/low N-induced leaf senescence. NAP directly enhances the expression of SAG113
and AAO3. ORE1 directly enhances the expression of SAG29 and genes encoding chlorophyll catabolic enzymes (CCEs) including SGR1 and
NYC1. On the other hand, the expression of two genes associated with N deficiency responses, NLA and PHO2, is also enhanced. The NLA and
PHO2 proteins promote the ubiquitination of ORE1, which leads to the degradation of ORE1, thus allowing the maintenance of a proper ORE1
protein level during N starvation-induced leaf senescence. phyB-mediated red light signaling may involve the suppression of N starvation-
induced leaf senescence. Under the red light, the active Pfr form of phyB moves from cytosol to the nucleus. Under the downstream of phyB,
HY5 directly activates the expression of genes associated with N acquisition, including NRT2.1. On the other hand, phyB promotes the
proteasomal degradation of PIF4 and PIF5, which directly activate the expression of several senescence associated genes, including ORE1 and
SAG29. Solid lines indicate direct regulation, while dotted lines indicate indirect regulation.
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In apple (Malus domestica), MdNAC4 participates in N

starvation-induced leaf senescence. When grown under N-

deficient conditions, the leaves of MdNAC4-overexpressing

plants turned yellow faster than those of the WT, whereas the

leaves of MdNAC4-antisense plants retained greenness (Wen

et al., 2022). MdNAC4 was shown to directly enhance the

expression of two genes encoding chlorophyll catabolic

enzymes, MdNYC1 and MdPAO (Wen et al. , 2022).

Additionally, MdNAC4 physically interacts with PSEUDO-

RESPONSE REGULATOR2 (MdAPRR2), which enhances the

expression of genes encoding chlorophyll biosynthesis enzymes,

including MdHEMA, MdCHLI, and MdCHLM, to inhibit the

activity of MdAPRR2 (Wen et al., 2022). Thus, the interaction

between MdNAC4 and MdAPRR2 appears to be a balancing

mechanism for regulating N starvation-induced leaf senescence

in apple.
Roles of WRKY53 and ATL31 in the
regulation of high carbon (C)/low
N-induced leaf senescence

The carbon (C) status of plants affects N deficiency-induced

leaf senescence. The rosette leaves of Arabidopsis WT (Col-0)

plants turned yellow under high C and low N conditions (780

ppm CO2 and 0.3 mM N) but not under low C and low N

conditions (280 ppm CO2 and 0.3 mM N), even at the same

growth stage (Aoyama et al., 2014), indicating that the C status

of plants is one of the key determinants of N starvation-induced

leaf senescence. ARABIDOPSIS TOXICOS EN LEVADURA 31

(ATL31), a RING-type ubiquitin ligase, regulates the balance

between C and N availability in Arabidopsis (Sato et al., 2009).

Under high C/low N conditions, the leaves of atl31-KO plants

turned yellow faster than those of WT plants, while the leaves of

ATL31-OX plants retained greenness much longer (Aoyama

et al., 2014), indicating that ATL31 acts as a negative regulator

of high C/low N-induced leaf senescence. The transcript level of

ATL31 significantly increases under high C/low N conditions,

similar to the expression pattern of the Arabidopsis WRKY53

gene, which encodes a senescence-associated WRKY

transcription factor (Miao et al., 2004; Miao and Zentgraf,

2007). WRKY53 was shown to activate the promoter of ATL31

(Aoyama et al., 2014), indicating that WRKY53 acts as an

enhancer for the induction of ATL31 under high C/low N

conditions (Figure 3). WRKY53 is one of the most widely

studied senescence-associated transcription factors in

Arabidopsis, and several key factors in the regulation of

WRKY53 expression and protein activity have been identified

and characterized (Miao et al., 2013; Zentgraf and Doll, 2019;

Doll et al., 2020). Additionally, the downstream targets of

WRKY53 have been identified (Miao et al., 2004). While

Aoyama et al. (2014) showed that WRKY53 enhances the

expression of ATL31, it is still not clear how WRKY53 affects
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Investigation of the effects of knockout mutation and

overexpression of WRKY53 on the promotion of N deficiency-

induced leaf senescence is necessary for understanding the

significance of the WRKY53–ATL31 regulatory module in N

starvation-induced leaf senescence.
Possible involvement of phytochrome
B-mediated red light signal in the
regulation of N starvation-induced
leaf senescence

While red light has long been considered to delay leaf

senescence (Pfeiffer and Kleudgen, 1980; Tucker, 1981), the

molecular mechanisms underlying red light signaling-mediated

regulation of leaf senescence were partially revealed only in the last

decade, especially in the model plant Arabidopsis. Among five

phytochromes in Arabidopsis, namely phyA, phyB, phyC, phyD,

and phyE (Sharrock and Clack, 2002), phyA plays a major role in

the far-red light response (Reed et al., 1994). On the other hand,

phyB–phyE are involved in the red/far-red low-fluence response

via the reversible transition between the red-light-absorbing

biologically inactive Pr form and the far-red-light-absorbing

biological active Pfr form (Li et al., 2011). Among five

Arabidopsis phytochromes, phyB is involved in the regulation

of dark-induced leaf senescence; two phyB knockout mutants,

namely phyB-9 and phyB-10, exhibited accelerated leaf yellowing,

while phyB overexpressors highly retained greenness after the dark

incubation (Sakuraba et al., 2014b). PHYTOCHROME

INTERACTING FACTOR4 (PIF4) and PIF5 act downstream of

phyB, and promote both age-dependent and dark-induced leaf

senescence by directly enhancing the expression of senescence-

associated genes, including ORE1, ETHYLENE INSENSITIVE 3

(EIN3), ABA INSENSITIVE 5 (ABI5), ENHANCED EM LEVEL

(EEL), SGR1, and SAG29 (Sakuraba et al., 2014b; Song et al., 2014;

Zhang et al., 2015; Sakuraba et al., 2017). In rice, phyB-mediated

red light signaling is also involved in the promotion of dark-

induced leaf senescence; the osphyB T-DNA insertion knockout

mutant exhibited accelerated leaf yellowing during dark-induced

leaf senescence (Piao et al., 2015). In addition, RNAi of PIF4 in

tomato (Solanum lycopersicum L.) delayed greenness during

developmental leaf senescence (Rosado et al., 2019), indicating

that phyB/PIF-mediated red-light signaling acts as a key

regulatory module of dark-induced and developmental leaf

senescence in many plant species.

While the role of phyB-mediated red light signaling in the

regulation of dark-induced leaf senescence has been widely

studied, this mechanism has also been shown to affect leaf

senescence under light. Detached leaves of the osphyB

knockout mutant turned yellow faster than those of WT plants

when incubated in N-free liquid medium, and the accelerated

leaf yellowing phenotype of osphyB leaves was recovered by the
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supplementation with N sources such as potassium nitrate

(KNO3) and ammonium nitrate (NH4NO3) (Piao et al., 2015),

indicating that N availability is one of the key determinants for

OsphyB-mediated regulation of leaf senescence under

light conditions.

In Arabidopsis, phyB-mediated red-light signaling is

involved in the promotion of phosphate (PO3−
4 ) uptake via

roots by enhancing the expression of high-affinity phosphate

transporter genes, including PHOSPHATE TRANSPORTER1;1

(PHT1;1) (Sakuraba et al., 2018). On the other hand, the

expression of ammonium transporter genes, AMT1;1, AMT1;2,

and AMT2;1, was upregulated in Arabidopsis seedlings grown

under red-light illumination (Huang et al., 2015). Genome-wide

chromatin immunoprecipitation sequencing (ChIP-seq)

analyses showed that HY5, a positive regulator of phyB-

mediated red-light signaling (Gangappa and Botto, 2016),

as well as PIF4, directly bind to the promoters of genes

associated with the uptake and assimilation of N (Lee et al.,

2007; Oh et al., 2012). Moreover, upon the exposure of plants to

light, HY5 is translocated from shoots to roots, where it directly

enhances the expression of NRT2.1 (Chen et al., 2016).

Considering the involvement of phyB-mediated red-light

signaling in the acquisition of nutrients in Arabidopsis, it is

highly likely that phyB-mediated red-light signaling also plays

important roles in the regulation of N starvation-induced

leaf senescence.
Involvement of NIGT1 transcription
factors in the regulation of N starvation-
induced leaf senescence

NITRATE-INDUCIBLE, GARP-TYPE TRANSCRIPTIONAL

REPRESSOR1 (NIGT1) transcription factors act as negative

regulators in nitrate inducible gene expression. In Arabidopsis,

NIGT1 transcription factors directly repress NRT2 genes and

other N deficiency-inducible genes (Maeda et al., 2018; Kiba

et al., 2018), and thus a gradual reduction in NIGT1 transcript

levels under N deficiency leads to the activation of N deficiency-

inducible genes (Kiba et al., 2018).

Very recently, Tan et al. (2022) reported that Malus

domestica HYPERSENSITIVE TO LOW PI-ELICITED

PRIMARY ROOT SHORTENING1 (HRS1) HOMOLOG3

(MdHHO3), which is phylogenetically classified into NIGT1

family protein, directly represses Malus domestica NRT2.1

(MdNRT2.1) transcript level, similar to Arabidopsis NIGT1s

(Tan et al., 2022). Moreover, Arabidopsis and tobacco transgenic

plants that overexpressing MdHHO3 exhibited premature leaf

yellowing phenotype, with the upregulation of senescence-

associated genes, such as NYC1, PAO, and SGR1, under N

deficiency (Tan et al., 2022), that NIGT1 transcription factors

also act as a negative regulator in the N starvation-induced

leaf senescence.
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Involvement of microRNAs in the
regulation of N starvation-induced
leaf senescence

Small RNAs, including microRNAs (miRNAs) and small

interfering RNAs (siRNAs), are considered the key signaling

molecules that regulate the expression of genes at the post-

transcriptional level. In plants, miRNAs play important roles in

the regulation of various environmental stress responses,

including nutrient deficiency responses (Paul et al., 2015).

During N starvation, the accumulation of a number of

miRNAs also changes in Arabidopsis and other plant species.

Small RNA sequencing of Arabidopsis seedlings grown under N-

sufficient and N-deficient conditions showed that the expression

of more than 20 miRNAs significantly decreased, while that of

several miRNAs increased (Liang et al., 2012). Among these

miRNAs, miR826 was strongly upregulated during N deficiency,

and transgenic Arabidopsis plants overexpressing miR826 or

miR5090, which was identified from the complementary

transcripts of miR826, exhibited better growth with delayed

leaf yellowing under N-deficient conditions (He et al., 2014).

On the other hand, the expression of miR169 significantly

decreased during N deficiency, and transgenic Arabidopsis

plants overexpressing miR169 exhibited accelerated leaf

yellowing phenotype under N-deficient conditions (Zhao et al.,

2011). miR164s are known to target the mRNA of ORE1, a

central regulator of leaf senescence in Arabidopsis, to repress its

expression at post-transcriptional level (Kim et al., 2009).

During N deficiency, the expression levels of three miR164s

(miR164a,miR164b, andmiR164c) significantly decreased, while

the ORE1 transcript level was significantly elevated (Park et al.,

2018), indicating thatmiR164s are involved in the suppression of

N starvation-induced leaf senescence.

As described above, several N starvation-responsive

miRNAs function in the regulation of N starvation-induced

leaf senescence. Thus, it would be highly interesting to

elucidate the roles of other N starvation-responsive miRNAs,

as well as N starvation-responsive siRNAs, for further

understanding of the regulatory mechanisms in N starvation-

induced leaf senescence at the post-transcriptional level.
Conclusion and perspectives

N starvation-induced leaf senescence is a highly complex

process finely controlled by several regulatory factors at different

levels. To date, numerous genes associated with N starvation-

induced leaf senescence have been identified, mostly in

Arabidopsis. However, many more genes are expected to be

involved in the regulation of N starvation-induced leaf

senescence and to form a highly complex regulatory network.

In recent years, several studies have attempted to identify the
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genes associated with N deficiency responses using experimental

approaches that employ big data, such as GWAS and gene co-

expression analysis, providing new insights into the mechanisms

of N deficiency responses. In the GWAS using the parameter of

the reduction in chlorophyll content of 52 Arabidopsis

accessions grown under N deficient conditions, several peaks

potentially associated with N deficiency-induced leaf yellowing

were identified, and several genes, including NRT1.1,

AGAMOUS-LIKE65 (AGL65), ATP-BINDING CASSETTE G1

(ABCG1), and INOSITOL 1,3,4-TRISPHOSPHATE 5/6-KINASE

3 (ITPK3), were found near the peaks (Sakuraba et al., 2021b).

As described in section 3.4, the significance of NRT1.1 in the

regulation of N starvation-induced leaf senescence has been

demonstrated. To dissect the gene regulatory network and

identify novel genes associated with N deficiency responses in

rice, Ueda et al. (2020) performed gene co-expression analysis

and machine learning-based pathway inference using the

transcriptome data of rice seedlings exposed to N-sufficient

and N-deficient conditions (Ueda et al., 2020). Based on the

results, several transcription factors were predicted to function

as key regulators of the gene regulatory networks involved in N

deficiency responses. In addition, transcription factors identified

based on gene co-expression analysis and machine learning-

based pathway inference also included OsNAC2, which acts as

an enhancer of leaf senescence by controlling the accumulation

of abscisic acid (ABA) (Mao et al., 2017), and OsWRKY23,

which is used as a marker gene of leaf senescence (Han et al.,

2020). Therefore, the transcription factors identified Ueda et al.

(2020) most likely include key regulators of N starvation-

induced leaf senescence. Functional characterization of each

gene identified by the analyses using big data will further

reveal the regulatory networks of N starvation-induced

leaf senescence.

Recent studies revealed the significance of peptide hormones

in the regulation of leaf senescence and nutrient starvation

responses. In Arabidopsis, the small secreted peptide

CLAVATA3/ESR-RELATED 14 (CLE14) functions in the

suppression of leaf senescence by regulating the accumulation

of reactive oxygen species (Zhang et al., 2022a). In Arabidopsis,

CLE42 also acts as a negative regulator of leaf senescence by

suppressing the biosynthesis of ethylene (Zhang et al., 2022b).

Moreover, CLE42 showed functional redundancy with CLE41

and CLE44 in the suppression of leaf senescence: cle41 cle42

cle44 triple mutant exhibited a strong early senescence

phenotype (Zhang et al., 2022b). On the other hand, the root-

to-shoot mobile peptide hormones C-TERMINALLY

ENCODED PEPRIDEs (CEPs) and two CEP receptors

(CEPRs) mediates N acquisition response accompanied by N-

deficiency symptom to adapt to fluctuations in local N

availability (Tabata et al., 2014). The involvement of these

peptide hormones in the regulation of N starvation-induced

leaf senescence is not yet investigated, therefore, examining this

possibility is important for a better understanding of the
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molecular mechanisms underlying N starvation-induced

leaf senescence.

While the molecular mechanisms underlying N starvation-

induced leaf senescence have been studied mostly in the model

plant Arabidopsis, the knowledge gained from Arabidopsis must

be applied to crop plants. In the last two decades, the genome of

a variety of crop plants has been sequenced (Goff et al., 2002;

Schmutz et al., 2010; Sato et al., 2012), thus enabling the

systematic analysis of plant biological processes, including N

starvation-induced leaf senescence, by comparative genomics.

Furthermore, owing to the recent advent of the CRISPR/Cas9

technology, which allows the modification of genomes without

leaving behind any trace of foreign DNA (Jyoti et al., 2019), it is

now possible to generate crop plants capable of displaying

enhanced growth and high yield under a N-limited

environment by modulating the function of gene(s) associated

with N starvation-induced leaf senescence.
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