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Confirmatory detection and
identification of biotic and
abiotic stresses in wheat using
Raman spectroscopy

Samantha Higgins1†, Valeryia Serada1†, Benjamin Herron2,
Kiran R. Gadhave2,3* and Dmitry Kurouski 1*

1Department of Biochemistry and Biophysics, Texas A&M University, College Station,
TX, United States, 2Texas A&M AgriLife Research, Amarillo, TX, United States, 3Department of
Entomology, Texas A&M University, College Station, TX, United States
Wheat is one of the oldest and most widely cultivated staple food crops

worldwide. Wheat encounters an array of biotic and abiotic stresses during

its growth that significantly impact the crop yield and consequently global food

security. Molecular and imaging methods that can be used to detect such

stresses are laborious and have numerous limitations. This catalyzes the search

for alternative techniques that can be used to monitor plant health. Raman

spectroscopy (RS) is a modern analytical technique that is capable of probing

structure and composition of samples non-invasively and non-destructively. In

this study, we investigate the accuracy of RS in confirmatory diagnostics of

biotic and abiotic stresses in wheat. Specifically, we modelled nitrogen

deficiency (ND) and drought, key abiotic stresses, and Russian wheat aphid

(Diuraphis noxia) infestation and viral diseases: wheat streak mosaic virus

(WSMV) and Triticum mosaic virus (TriMV), economically significant biotic

stresses in common bread wheat. Raman spectra as well as high pressure

liquid chromatography (HPLC)-based analyses revealed drastically distinct

changes in the intensity of carotenoid vibration (1185 cm-1) and in the

concentration of lutein, chlorophyll, and pheophytin biomolecules of wheat,

triggered in response to aforementioned biotic and abiotic stresses. The

biochemical changes were reflected in unique vibrational signatures in the

corresponding Raman spectra, which, in turn could be used for ~100%

accurate identification of biotic and abiotic stresses in wheat. These results

demonstrate that a hand-held Raman spectrometer could provide an efficient,

scalable, and accurate diagnosis of both biotic as well as abiotic stresses in

the field.
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Introduction

Wheat (Triticum aestivum) is one of the most important and

broadly cultivated crops in the world. In 2017 alone, wheat

production reached 750 million tons (Food and Agriculture

Organization of the United Nations, 2009). This crop is

cultivated in 124 different countries accounting for over 18%

of the total food supply of the world (Freije et al., 2016).

Global food security can be quickly jeopardized by several

biotic and abiotic stresses that staple food crops, such as wheat,

encounter during critical growth stages. For instance, crop yield

directly depends on primary, secondary and micronutrients in

soil. Nitrogen, arguably the most consequential element for plant

growth, is predominantly utilized by plants to synthesize

chlorophyll, an important photosynthetic pigment (Ding et al.,

2005; Pandey et al., 2017). Upon nitrogen deficiency (ND),

wheat growth decelerates, and plant leaves exhibit chlorosis.

Morphologically similar symptoms are observed in wheat upon

drought stress that drastically reduces crop yield. In turn,

morphological appearance of both ND and drought is very

similar to viral diseases caused by wheat streak mosaic virus

(WSMV) and Triticum mosaic virus (TriMV) (Mascia and

Gallitelli, 2016; Bryan et al., 2019). These viruses are vectored

by the wheat curl mites. BothWSMV and BYDV are filamentous

ssRNA viruses of the Potyviridae family that cause devastating

damages in various parts of the world, including Great Plains

region of the United States (Seifers et al., 2008).

Confirmatory diagnostics of WSMV and TriMV can be

achieved using polymerase chain reaction (PCR) or protein

based analyses (Martinelli et al., 2014). Although accurate,

both analyses are laborious and require sample shipment that

increases direct costs of diagnostics. Morphological similarities

of biotic (viral) and abiotic (drought and ND) stresses further

lowers the efficiency of PCR- and qPCR, as these molecular

methods of analyses fail to detect abiotic stresses. ND can be

determined by nitrate extraction from plant samples using a 1 M

KCl solution (Sáez-Plaza et al., 2013). After nitrate reduction to

nitrite, the concentration of nitrites can then be determined by

spectrophotometric measurement such as high temperature

combustion, atomic absorption spectroscopy, and atomic

absorption spectrophotometry (ICP) (Zaman et al., 2018).

These analytical approaches are laborious and destructive, as

well as require sample shipment to analytical laboratories.

Unlike ND, there is no reliable analytical method that allows

for confirmation of drought stress in plants. Imaging methods,

including thermography, hyperspectral, and RGB, can be used to

detect changes in the color, texture, or temperature of plants

(Baena et al., 2017). However, utilization of such imaging

methods for detection of drought stress is problematic because

visually drought stress is highly similar to ND and viral diseases

(Waraich et al., 2012; Ding et al., 2005). These limitations of

currently available molecular and imaging techniques catalyzed
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the search for an approach that can be used for confirmatory

identification of biotic and abiotic stresses in wheat.

A growing body of evidence suggests that Raman

spectroscopy (RS), an emerging analytical technique, can be

used for detection of plant stresses. Sanchez and co-workers

previously demonstrated that RS could be used to detect

nitrogen, phosphorus, and potassium deficiencies, as well as

salinity stress in rice (Yeturu et al., 2016; Egging et al., 2018;

Farber and Kurouski, 2018; Mandrile et al., 2019; Sanchez et al.,

2019a; Sanchez et al., 2019c; Huang et al., 2020; Sanchez et al.,

2020b; Sanchez et al., 2020c). Furthermore, RS could be used to

identify fungal pathogen on species level in wheat, sorghum, and

corn (Egging et al., 2018; Farber and Kurouski, 2018). Morey and

co-workers recently discovered that RS could be used to detect

drought and salinity stresses in peanuts. Although RS is

generally known to be a laboratory-based method, the past

decade has seen several developments of portable Raman

spectrometers. These hand-held instruments can be utilized

directly in the field (Yeturu et al., 2016; Sanchez et al., 2019b;

Sanchez et al., 2019c; Sanchez et al., 2020a). This technological

development sparked the interest of agronomists, plant

pathologists and plant biologists in utilization of this

technology for analysis of the plant health status.

In this study, we examined the potential of RS in

confirmatory identification of abiotic (drought and ND), as

well as biotic (Russian wheat aphid and mixed viral infection

of WSMV+TriMV) stresses in wheat. To achieve this, we

modeled these biotic and abiotic stresses in the greenhouse

and analyzed plant leaves using RS. Furthermore, we coupled

RS to chemometric analysis to determine the accuracy of

Raman-based identification of biotic and abiotic stresses in

plants. In parallel, we performed analysis of metabolic changes

in plants that took place upon drought, ND, aphid-induced

stress and bi-viral WSMV+TriMV infection using high

performance liquid chromatography (HPLC). Our findings

show that these stresses caused drastic changes in the

carotenoid profiles of wheat. Similar changes in intensities of

vibrational bands that originate from carotenoids were observed

in the corresponding Raman spectra. These findings provide a

proof-of-concept data on changes in plant carotenoids, which

enables confirmatory diagnostics of biotic and abiotic stresses

in wheat.
Methods

Plants

Wheat (cv. TAM304) seeds were planted in trays (6 x 5 cells,

4.2 in3/cell/plant) which were placed in W60 x D60 x H60 cm

insect-proof cages (MegaView Science Co., Taichung, Taiwan)

(one tray/cage/treatment) and maintained in an automated
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greenhouse under controlled environmental conditions (25°C

temperature, 14-hr photoperiod) in Bushland, TX. Plants were

arranged in five treatments: healthy control, water-stressed (i.e.,

drought), ND, aphid-stressed and disease-stressed (WSMV

+TriMV) with 30 replicates per treatment to ensure plant

survival. Seeds from nitrogen deficient treatment were planted

in sand, whereas in all other treatments, planted in Sungro

professional growing mix (Sungro Horticulture). Plants across

all treatments were watered as required (every 1-2 days), except

drought treatment in which plants were watered every four days

with bare minimal quantity required for wheat survival (based

on an initial assessment) and ND treatment, in which plants

were watered daily to ensure plant survival because of the poor

water holding capacity of sand. Two and half weeks after

planting, 20 adults of Russian wheat aphid (colony maintained

in the Entomology greenhouse at Bushland, TX) were evenly

distributed among 30 replicate plants in the aphid-stressed

treatment. At the same time, 20 1-cm leaf segments infested

with WSMV and TriMV viruliferous wheat curl mites were

evenly distributed among 30 replicate plants in the disease-

stressed treatment. Plants from all treatments were cut at ground

level seven weeks after planting when both aphid infestation and

disease incidence peaked. All samples were shipped overnight on

ice in a Styrofoam container to College Station, TX for

subsequent analysis. The presence of both viruses in the

disease treatment was confirmed using one-step qRT-PCR

(Tatineni et al., 2010).
Raman spectroscopy

Raman spectra of wheat leaves were measured with a hand-

held Resolve Agilent spectrometer with 831 nm laser. The

following experimental parameters were used for all collected

spectra: 1s acquisition time, 495 mW power, and baseline

spectral subtraction by device software. We recorded four

spectra from each leaf at four quadrants on its adaxial side. In

total, around 50 surface spectra were recorded from each stress

type, as well as healthy plants. Spectra shown in the Figure 1 are

raw baseline corrected, without smoothing.
Data analysis

MATLAB R2020a (Mathworks) equ ipped wi th

PLS_Toolbox (Eigenvector Research Inc.) was used for all data

analysis. First, the spectra were normalized at the 1440 cm-1

band. Second, the spectra were baselined using automatic

weighted least squares to the second order then the first

derivative was taken of the Raman spectra with a filter width

of 15 and polynomial order 2. Third, the spectra were area

normalized then multiplicative signal correction based on the
Frontiers in Plant Science
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mean was applied to all spectra. A partial least squares

discriminant analysis (PLS-DA) was performed for all classes

of spectra presented in the results and discussion of this

manuscript. The imported spectra wavenumbers that were

analyzed were included from 300 cm-1 to 1765 cm-1 which

includes all important spectra characteristics of wheat.

Analysis of variance (ANOVA) was used to determine the

changes at observed bands. The null hypothesis of this test is that

there is no significant difference at the band of interests. A

significant level (a) is 0.05. The ANOVA also reported a 95%

confidence interval for the true value of median for each

compared group, Figure S1. The overlapping confidence

intervals were conducted using MATLAB multcompare

function, which by default uses Tukey HSD to evaluate group-

to-group differences.
Carotenoid extraction

Wheat leaf samples (~150 mg) were homogenized using a

mortar and pestle. After, a 1.5 mL solution of chloroform and

dichloromethane (2:1, v/v) was added to the homogenate, the

mixture was agitated on thermomixer at 500 rpm at 4°C for 30

minutes. To achieve a phase separation, 0.5 mL of 1 M sodium

chloride solution was added to the homogenate and mixed by

inversion. Next, the solution was centrifuged at 5,000 g for 10

minutes. The aqueous and organic phases were separated in

different tubes. The aqueous phase was subjected to another

round of separation by adding 0.75 mL of chloroform and

dichloromethane (2:1, v/v), followed by centrifugation at 5,000

g for 10 minutes. The second organic phase was collected and

pooled with the first batch and dried by centrifugal evaporation

method. Dried pellet was re-dissolved in 1mL of methanol/tert-

methyl butyl ether (MTBE) (60/40, v/v) prior to injection

into HPLC.
HPLC analysis

Leaf extracts were analyzed by reversed phase HPLC using

Waters 1525 pump equipped with Waters 2707 auto sampler

and 2489 Waters photodiode array detector (PDA). Carotenoids

were separated on a reverse-phase C30, 3 mm column (250 × 4.6

mm) (Thermo Fisher Scientific Inc, part number 075723) using

mobile phases consisting of (A) methanol/water (95:5, v/v) and

(B) MTBE. The gradient elution used with this column was 97%

A and 3% B at 0-6 min with a linear increase of B to 100% at 20

min and return to initial conditions at 23 min. The column

temperature was maintained at 20°C. The eluting peaks were

monitored at 450 nm using PDA. Quantification was performed

using Breeze software comparing peak area with standard

reference curves.
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Results and discussion

Raman spectra acquired from healthy wheat leaves exhibit

vibrational bands that can be assigned to carbohydrates (747 and

915 cm-1), carotenoids (1000, 1048, 1120, 1155, 1184, 1218, and

1525 cm-1), polyphenols (1601 and 1630 cm-1), as well as proteins

(1665 cm-1) Table 1.We also observed vibrational bands that can be

assigned to CH and CH2 vibrations (1288, 1326, 1382 and 1440 cm-

1). These chemical groups are typically present in nearly all classes of

biological molecules. Therefore, these bands cannot be assigned to a

particular class of chemical compounds specified above.
Frontiers in Plant Science 04
Similar vibrational bands were observed in the spectra

collected from wheat exposed to each different type of stress.

For instance, in the Raman spectra collected from wheat exposed

to drought, we observed a small decrease in the intensity of

carotenoid (1000, 1048, 1120, 1155, 1184, 1218, and 1525 cm-1)

bands, Figure 1 and Table S1. These observations suggest that

drought causes a decrease in the concentration of carotenoids in

plants, thereby showing harmony with earlier findings by Morey

and co-workers (Morey et al., 2021). We observed even greater

decrease in the intensity of carotenoid vibrations in the spectra

collected from ND plants. Furthermore, we found an increase in
B

A

FIGURE 1

Raman spectra collected from leaves of healthy (green), ND- (light blue) and drought (black) stressed plants (A), as well as wheat exposed to
WSMV+TriMV infection (red) and aphid stress (blue) (B). *Spectra normalized on 1,440 cm-1 vibrational band, which were assigned to CH2
vibration.
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the intensity of polyphenol (1601 and 1630 cm-1) vibrations, as

well as a decrease in the intensity of 1665 cm-1. These spectral

changes point to drastically different changes in plant

biochemistry that are taken place upon ND compared to the

drought stress. Specifically, in addition to the decrease in the

concentration of carotenoids, ND is associated with an increase

in the concentration of phenylpropanoids and a decrease in the

concentration of proteins in plants. These results are in a good

agreement with the previously reported findings by Sanchez and

co-workers (Sanchez et al., 2020b).

We also observed a decrease in the intensity of carotenoid

vibrations in the Raman spectra collected from wheat leaves

mixed infected with WSMV+TriMV and those infested with

aphids. It is important to note that a decrease in the intensity of

carotenoids was much greater in the spectrum collected from

aphid-stressed wheat compared to plants experienced viral

infection. Furthermore, we observed a small shift in the

polyphenol vibration from 1601 cm-1 (healthy wheat) to 1598

cm-1 in the spectra collected from aphid-stressed wheat. These

results suggest that biotic and abiotic stresses cause distinctly

different changes in plant biochemistry, which, in turn, can be

detected by RS to enable confirmatory, non-invasive, and non-

destructive diagnostics of plant health.

Previously reported studies by our and other research groups

point to the drastic changes in biochemistry of carotenoids upon

biotic stresses caused by bacteria and viruses. A decrease in the

carotenoid content upon such stresses has strong physiological

relevance (Havaux, 2013). Plant defense mechanism is based on

activation of enzymatic oxidation of carotenoids that results in

formation of abscisic acid, a hormone that enhances plant

resistance to such stresses (Nambara and Marion-Poll, 2005).
Frontiers in Plant Science 05
Furthermore, oxidation and cleavage of b-carotene by reactive

oxygen species (ROS) yields b-lonone, b-cyclocitrals that can

protect the plant against insects (Nambara and Marion-Poll,

2005; Havaux, 2013). Thus, reduction in this molecule could be a

consequence of the higher ROS commonly triggered during

plant defense reactions (Yu et al., 2007).

To further investigate changes in carotenoid biochemistry in

response to biotic and abiotic stresses, we compared intensity of

carotenoid vibration (1185 cm-1) in Raman spectra collected

from wheat leaves, Figures 2, S1. PLS-DA results show that

different biotic and abiotic stresses can be accurately predicted

based on the corresponding Raman spectra, Table 2. Specifically,

the model highly accurately predicted ND, WSMV+TriMV

infection and aphid stress (100%), whereas very good

identification of drought (96%) and healthy plants (control,

98%) could be achieved.

We found that all biotic and abiotic stresses exhibit a

decrease in the concentration of carotenoids. Furthermore,

such changes are greater for ND and aphid stress compared to

WSMV+TriMV infection. Changes of carotenoids upon drought

stress are non-significant compared to healthy plants.

Next, we utilized HPLC to identify changes in carotenoid

profile of wheat. We found that HPLC profile of healthy wheat

was dominated by 4 carotenoids: lutein (RT=12.3 min),

chlorophyll (RT=14.1 min), pheophytin (RT=15.0 min) and b-
carotene (RT=17.6 min), Figure 3. Peaks with the same or

similar RTs were observed in HPLC profiles of wheat exposed

to drought, WSMV+TriMV infection, ND, and aphid stress. It

should be noted that we observed appearance of a new peak with

RT=18.4 min in the HPLC profile of aphid wheat, Figure 3.

However, we observed changes in the intensities of lutein
TABLE 1 Vibrational band assignments for wheat leaf spectra.

Band Vibrational mode Assignment

747 g(C–O-H) of COOH pectin (Synytsya et al., 2003)

915 n(C-O-C) in plane, symmetric cellulose, lignin (Edwards et al., 1997)

1000 in-plane CH3 rocking of polyene carotenoids (Adar, 2017; Devitt et al., 2018), proteins (Devitt et al., 2018)

1048 -C=C- carotenoids (Adar, 2017; Devitt et al., 2018)

1120 -C=C- carotenoids (Adar, 2017; Devitt et al., 2018)

1155 -C=C- carotenoids (Adar, 2017; Devitt et al., 2018)

1184 -C=C- carotenoids (Adar, 2017; Devitt et al., 2018)

1218 -C=C- carotenoids (Adar, 2017; Devitt et al., 2018)

1288 d(C-C-H) aliphatics (Yu et al., 2007)

1326 dCH2 bending vibration cellulose, lignin (Edwards et al., 1997)

1382 dCH2 bending vibration aliphatics (Yu et al., 2007)

1440 d(CH2)+d(CH3) aliphatics (Yu et al., 2007)

1525 -C=C- (in plane) carotenoids (Adar, 2017; Devitt et al., 2018)

1601 n(C-C) aromatic ring+s(CH) lignin (Agarwal, 2006; Kang et al., 2016)

1630 C=C-C (ring) lignin (Agarwal, 2006; Kang et al., 2016; Pompeu et al., 2017)

1665 C=O stretching, amide I proteins (Devitt et al., 2018)
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(RT=12.3 min), chlorophyll (RT=14.1 min), pheophytin

(RT=15.0 min) and b-carotene (RT=17.6 min) peaks in the

HPLC profiles of wheat with biotic and abiotic stresses, Figure 4.

Specifically, we observed a significant decrease in the

concentration of lutein in ND and aphid-stressed plants

compared to the concentration of lutein in healthy wheat. We

also found significant decrease in the concentrations of

chlorophyll and pheophytin in ND, WSMV+TriMV infected

and aphid-stressed wheat. Finally, no statistically significant

changes were observed in the concertation of b-carotene in

wheat exposed to any of the biotic or abiotic stress relative to the

concentration of this carotenoids in the control plants. These

results demonstrate that WSMV+TriMV infection, ND and

aphid stresses caused drastic decrease in the concentration of

lutein, chlorophyll and pheophytin in wheat. Furthermore, a

decrease in the concentration of these carotenoids matches with

the changes in the 1185 cm-1 band in the Raman spectra

acquired from plants exposed to biotic and abiotic stresses.
Frontiers in Plant Science 06
Our group previously demonstrated that chlorophyll and

pheophytin are highly fluorescent and provide no Raman

spectra at 830 nm excitation. Thus, we can conclude that RS

detects changes in lutein in wheat, which enables confirmatory

detection and identification of plant biotic and abiotic stresses.
Conclusions

Our results show that RS can be used for confirmatory

detection and identification of drought, WSMV+TriMV infection,

ND and aphid stresses in wheat with ~ 100% accuracy. HPLC

analyses of plant leaves revealed that WSMV+TriMV infection, ND

and aphid stresses resulted in a significant decrease in the

concentration of lutein, chlorophyll, and pheophytin. Similar

changes in the intensity of carotenoid vibration (1185 cm-1) were

also evident in the corresponding Raman spectra collected from

wheat leaves. These results show that RS detects changes in the
TABLE 2 Accuracy of classification by PLS-DA wild plant species.

Accuracy, % Aphid Drought Healthy ND WSMV+TriMV

Aphid 100 29 0 0 0 0

Drought 96 0 48 1 0 0

Healthy 98 0 2 49 0 0

ND 100 0 0 0 48 0

WSMV+TriMV 100 0 0 0 0 54
FIGURE 2

ANOVA (A) of carotenoid vibration (1185 cm-1) in the spectra of healthy (green), ND- (light blue) and drought (black) stressed plants, as well as
wheat exposed to WSMV+TriMV infection (red) and aphid stress (blue).
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FIGURE 3

HPLC profiles of leaves of healthy wheat, as well as wheat exposed to drought, WSMV+TriMV infection, ND and aphid stresses.
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concentration of carotenoids that are taken place upon biotic and

abiotic stresses. Furthermore, detailed analysis of changes in the

concentration of lutein, chlorophyll, and pheophytin, as well as

consideration of optical properties of these compounds, allows us to

conclude that RS primarily detects changes in lutein in plant leaves.
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