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Soluble sugars and organic acids are themost abundant components in ripe fruits,

and they play critical roles in the development of fruit flavor and taste. Some

loquat cultivars have high acid content which seriously affect the quality of fruit

and reduce the value of commodity. Consequently, studying the physiological

mechanismof sugar-acidmetabolism in loquat can clarify themechanismof their

formation, accumulation and degradation in the fruit. Minerals application has

been reported as a promising way to improve sugar-acid balance of the fruits. In

this study, loquat trees were foliar sprayed with 0.1, 0.2 and 0.3% borax, and

changes in soluble sugars and organic acids were recorded. The contents of

soluble sugars and organic acids were determined using HPLC-RID and UPLC-

MS, respectively. The activities of enzymes responsible for the metabolism of

sugars and acids were quantified and expressions of related genes were

determined using quantitative real-time PCR. The results revealed that 0.2%

borax was a promising treatment among other B applications for the increased

levels of soluble sugars and decreased acid contents in loquats. Correlation

analysis showed that the enzymes i.e., SPS, SS, FK, and HK were may be

involved in the regulation of fructose and glucose metabolism in the fruit pulp

of loquat. While the activity of NADP-ME showed negative and NAD-MDH

showed a positive correlation with malic acid content. Meanwhile, EjSPS1,

EjSPS3, EjSS3, EjHK1, EjHK3, EjFK1, EjFK2, EjFK5, and EjFK6 may play an

important role in soluble sugars metabolism in fruit pulp of loquat. Similarly,
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EjPEPC2, EjPEPC3, EjNAD-ME1, EjNAD-MDH1, EjNAD-MDH5-8, EjNAD-MDH10,

and EjNAD-MDH13 may have a vital contribution to malic acid biosynthesis in

loquat fruits. This study provides new insights for future elucidation of key

mechanisms regulating soluble sugars and malic acid biosynthesis in loquats.
KEYWORDS

malic acid, PEPC, fruit quality, malate dehydrogenase, borax, fructokinase, sucrose,
liquid chromatography
Introduction

Fruits have their own biochemical and nutritional features

over the course of their growth, which eventually results in their

distinct fruit quality (Bermejo and Cano, 2012; Ren et al., 2015;

Zhang et al., 2021). This process promotes the development of

sugar and organic acid metabolites, which are important for the

development of fruit flavor since the growth of fruit is usually

accompanied by the accumulation and degradation of sugars

and organic acids (; Zhang et al., 2014: 2021). The balance

between the sugar-acid production, breakdown, and vacuole

storage determines their ultimate content in ripe fruits

(Ruffner et al., 1984; Pan et al., 2021). Fruits are categorised

into three major categories based on the amount of organic acid

they contain: malic acid, citric acid, and tartaric acid (Batista-

Silva et al., 2018). Malic acid is the primary organic acid type in

loquat (Li et al., 2015b; Ali et al., 2021a).

Loquat (Eriobotrya japonica Lindl.) is an evergreen fruit tree

native to China (Ali et al., 2021b). It is a member of family

Rosaceae, subfamily Maloideae (Ali et al., 2021c). Vitamin A,

vitamin B6, potassium, magnesium, and dietary fibre are all

abundant in this fruit (Badenes et al., 2003). It is an orange-

colored fruit with a mildly sweet flavor (Zhi et al., 2021). Loquat

fruit cannot be preserved for lengthy periods of time due to its soft

and juicy flesh and thin peel (Tian et al., 2011). Besides its

utilization as fruit, it is a good source of honey. Its flowers are

much attractive to honey bees, especially white-colored flowers

(Karadeniz et al., 2012). Japan, Korea, India, Pakistan, and China’s

south-central area are the main producers of loquat (Ali et al.,

2021d). In California, it’s also cultivated as an ornamental shrub

(LaRue, 2020). Loquat is grown on more than 130 thousand

hectares in China, making it the world’s biggest producer and

exporter. China produces 650 thousand tonnes of loquats each

year (Zheng et al., 2019). High fruit acidity and low sugars have

been major factors lowering fruit quality and commodity value in

commercial loquat production (Chen et al., 2009).

The mineral elements are absorbed to variable degrees and

play important roles in fruit quality, since many of them are

required for photosynthesis, respiration, energy metabolism, and

cell structure (Broadley et al., 2012; Engels et al., 2012; Wiesler,
02
2012; Ali et al., 2021d). In comparison to soil application, foliar

application of nutrients has a 10-20 percent greater influence

(Zaman and Schumann, 2006; Ali et al., 2021b). Boron (B) is

involved in a variety of metabolic functions, such as sugar

transport and respiration (Ali et al., 2019), cell wall formation

(Brown et al., 2002), cell division and elongation (Goldbach

et al., 2001; de Oliveira et al., 2006), membrane stability,

carbohydrate metabolism and Ca2+ uptake, hormone

activation, root development, water translocation (Zhao and

Oosterhuis, 2002; Sheng et al., 2009), and the activation of

dehydrogenase enzymes (Marschner, 1995; El-Sheikh et al.,

2007). However, the physiological and molecular functions of

boron in regulating sugar-acid metabolism are not fully known

at this time, and more research is required to clarify this.

Here, in this study, loquat trees were foliar sprayed with 0.1,

0.2 and 0.3% borax, and changes in soluble sugars and organic

acids were recorded. Soluble sugars (fructose, glucose and

sucrose) and organic acids (fumaric acid, ascorbic acid, malic

acid, cis-aconitic acid and acetic acid) were quantified using

HPLC and UPLC, respectively. The HPLC method can directly

determine oligosaccharide with a simple sample preparation. It

is one of the most promising methods for sugar analysis, due to

its universality, time efficiency, accuracy, and selectivity for the

quantification of carbohydrates (Kakita et al., 2002). Similarly,

UPLC method is used to determine organic acid content of

fruits, because of its simplicity, speed and stability (Fedorova

et al., 2020). We not only investigated the effect of different

concentrations of B on yet unexplored aspects of loquat sugar-

acid metabolism but also segregated concentration-dependent

variations in activities of related enzymes and relative expression

of their biosynthesis-related genes.
Materials and methods

Plant material, experimental design
and treatments

The young loquat trees (Cv. Jiefangzhong), growing in an

orchard located in the subtropical area of Fujian province
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(Fuqing) (25°47’26.0”N 119°20’31.0”E), were selected for this

study. The loquat trees ranged in height from 4 to 5.5 m and had

a canopy diameter of 4 to 5 m. The spacing between each tree in

the planting was roughly 6 × 6 m. Throughout the last three

growing seasons, loquat trees have been subjected to methodical

pruning and thinning, as well as fertilization with nitrogen (N),

phosphorus (P) and potassium (K) (15:15:15) at a rate of 5 kg

per plant every season. A randomized block design was used to

allocate the distribution of plants for various treatments

(RCBD). Each treatment had a total of four replications, or

blocks, allocated to it, and each individual tree was counted as a

single replicate for each treatment. Standard agricultural

procedures were used throughout the production of

loquats. These activities included drip irrigation, mineral

supplementation, weed management, and the management of

insects/pests and diseases. The experiment consisted of four

separate treatments, the control (water spray), 0.1% borax,

0.2% borax, and 0.3% borax respectively. These foliar

concentrations were chosen after an earlier study about phyto-

nutritional composition of loquat (Ali et al., 2021b). The foliar

treatment was done twice during the full bloom stage (the first

week of January, 2020), with a three-week break in between each

application. Early in the morning, a foliar spray of B was applied

to loquat trees using an electronic sprayer with a capacity of 5 L

that was set at a constant pace. Fully ripened fruits were sampled

from the sun-exposed tree canopy (Ali et al., 2021c; Ali et al.,

2021b), at about 1.5–2.5 m height, 90 days after first foliar spray,

and brought back immediately to the laboratory (Institute of

Tropical and Subtropical Fruits, FAFU).
Fruit weight and size

The average fresh weight, length (from the tallest point), and

width (from the widest point) of the fruit were determined by

averaging five batches of fruit, each of which consisted of 10

loquats from the same treatment. The fruit’s weight was

measured using a digital weighing balance (MJ-W176P,

Panasonic, Japan), and its length and diameter were gauged

with digital Vernier callipers (DR-MV0100NG, Ningbo

Dongrun Imp. & Exp. Co., Ltd., China). The length-to-width

ratio, hereafter referred to as the fruit shape index, was

determined by dividing each fruit’s length by its diameter.
Soluble solids, titratable acids, sugar-acid
ratio and fruit juice pH

Using a titrimetric approach based on NaOH (Hortwitz,

1960), the total titratable acids were calculated and shown as a
Frontiers in Plant Science 03
percentage of citric acid. A portable digital refractometer was

used to calculate the total soluble solids (Atago, Hybrid PAL-

BXIACID F5, Japan). Total soluble solids in the sample were

divided by total titratable acids to get the sugar-acid ratio. The

acidity level of fruit juice was measured using a digital pH meter

(Hanna, HI-98107, Mauritius).
Soluble sugars determination
through HPLC-RID

The contents of soluble sugars were determined through

high-performance liquid chromatography – refractive index

detection (HPLC-RID) as earlier described by Yu et al. (2021).

Fruit samples (pulp stored at -80°C) were ground up in liquid

nitrogen, and the resulting 2 g of fine powder was mixed with a

modest quantity of polyvinylpyrrolidone in 10 mL of 95%

methanol. The supernatant fluid was collected after ultra-

sonification at 40°C for 30 min and centrifugation at 1000

rpm for 10 min. With 8 mL of ultrapure water, the procedure

was repeated using the leftover residue. A 0.22 m syringe filter

was then used to filter the clear liquid (ANPEL, China). A

Waters 2695 autosampler system was used for HPLC-RID

analysis. Ellistat Supersil NH2 column (4.6 mm × 250 mm, 5

µm particle size) (Waters Inc, Zellik, Belgium) was used to

separate soluble sugars, operated at 40°C. The mobile phases

consisted of 82% acetonitrile and 18% ultrapure water solution

mixture. The amount of the injection was 20 µL, and the flow

rate was 1.2 mL per min. In the end, the concentration of each

and every solitary soluble sugar was determined by using the

calibration curve of the standard that corresponded to it. The

standards of fructose (99%), glucose (99.5%)) and sucrose

(99.5%) were obtained from Sigma-Aldrich, USA. Every single

one of the assays for soluble sugars was carried out using three

separate samples. The output was given in milligrams per

milliliter, which was denoted with the notation mg·ml-1.
Organic acids determination
through UPLC-MS

The extraction of organic acids was carried out using the

method outlined by Nour et al. (2010), although with minor

adjustments. In order to extract juice from the loquat fruits, they

were first halved and then pressed. After going through three

layers of gauze material, the pulp was removed. Following

centrifugation of the juice at 4000 rpm for 15 min, the

supernatant was diluted 25 times and passed through an MF-

Millipore™ Membrane Filter with a pore size of 0.22 mm in

diameter. The ultra-performance liquid chromatography – mass
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spectrometry (UPLC-MS) technique was used in order to

investigate organic acids. A sample of 10 µL of eluate was

injected into an Acquity UPLC HSS T3 column (1.8 µm

particle size, 2.1 mm × 100 mm). When employing a solution

containing 0.025% H3PO4 as the solvent, the flow rate was 0.2

mL per min. Organic acids were detected at 210 nm, while

column temperature was 30°C. A Waters 2996 diode array

detector (Waters Corporation, USA) was used to detected the

eluted peaks. Using the calibration curve of the relevant

standard, the contents of the various organic acids were able

to be determined and computed. The standards of fumaric acid

(99%), ascorbic acid (99%), malic acid (99%), cis-aconitic acid

(98%) and acetic acid (99.7%) were obtained from Sigma-

Aldrich, USA. Every one of the assays for organic acids was

carried out using three separate samples. The output was

reported in milligrams per milliliter of fresh juice, which is

abbreviated as mg·ml-1 juice.

Limits of detection and quantification were included as parts

of the HPLC-RID and UPLC-MS procedures’ validation

parameters (Ribani et al., 2004). The peaks were identified by

their retention times, comparing the UV–Visible spectra and

spiking with standards. Quantification has been done using an

external standard curve with five points (Table 1; Figures S1, S2).
Enzymes extraction and activity assay

The enzymes responsible for sugar [sucrose-phosphate

synthase (SPS), sucrose synthase (SS), hexokinase (HK) and

fructokinase (FK)] and acid metabolism [phosphoenolpyruvate

carboxylase (PEPC), NADP – dependent malic enzyme (NADP-

ME) and NAD – malate dehydrogenase (NAD-MDH)] were

extracted and measured using the Solarbio enzyme activity kits

(Solarbio Life Sciences, Beijing, China) according to the

manufacturer’s instructions (Zhang et al., 2021). The

extraction kits were based on the earlier determined methods

for SPS (Schrader and Sauter, 2002), SS (Schrader and Sauter,

2002), HK (Pancera et al., 2006), FK (Papagianni and Avramidis,
Frontiers in Plant Science 04
2011), PEPC (Zhang et al., 2008), NADP-ME (Spampinato et al.,

1994), and NAD-MDH (Yao et al., 2011).
RNA extraction and real-time
quantitative PCR

Total RNA was extracted from loquat fruit pulp using a

Total RNA kit (TianGen Biotech, Beijing, P.R. China).

NanoDrop N-1000 spectrophotometer (NanoDrop

technologies, Wilmington, DE, USA) was used to analyze

RNA concentration and purity. First-strand cDNA was

synthesized from 1 µg of total RNA using the Prime Script RT

Reagent Kit with a gDNA Eraser (TaKaRa, Dalian, China).

High-performance real-time PCR (LightCycler® 96, Roche

Applied Science, Penzberg, Germany) was used for the qPCR

analysis. Primers used in quantitative real-time polymerase

chain reaction (qRT-PCR) are included in Table S1, which

were designed using Primer-blast.

The reaction mixture contained 10 mL 2×RealStar Green Fast
Mixture (GenStar, Bejing, China), 1 µL cDNA, 0.25 µM of each

primer and water was added to make a final volume of 20 µL.

The qRT-PCR protocol started with a 5 min “preincubation” at

95°C, then 40 cycles at 95°C for 10 s and 60°C for 30 s, a

“melting” step at 95°C for 10 s, 65°C for 1 min, and 97°C for 1 s,

and a “cooling” phase at 37°C for 30 s. The 2-DDct approach

(Munhoz et al., 2015) was used to determine relative gene

expression, with the actin protein (EVM0004523.1) serving as

the internal control (Gan et al., 2020). The validation of

2−DDCt method was carried out by DCt variation analysis at

different template concentrations (Livak and Schmittgen, 2001;

Xu et al., 2017; De Rossi et al., 2021). Each sample was analysed

using three biological replicates.
Statistical analysis

The collected data was analyzed using an ANOVA with the

help of the statistical programme “Statistix 8.1” (https://www.
TABLE 1 Validation parameters for HPLC/UPLC method.

Sugar/Acid type Linearity (R2) Standard deviation (SD) Slope (y) Response (Sy) Sy/y LOD* (mg·ml-1) LOQ** (mg·ml-1)

Fructose 0.9767 1.5811 6544.8 1845.64 0.28 0.93 2.82

Glucose 0.9864 1.5811 5743.4 1231.92 0.21 0.71 2.15

Sucrose 0.9799 1.5811 4413.2 1154.19 0.26 0.86 2.62

Fumaric acid 0.9713 0.0016 1814350 381.7 0.0002 0.0006 0.0021

Ascorbic acid 0.9804 0.0174 232772.1 1303.62 0.0056 0.0184 0.056

Malic acid 0.9998 0.3488 31444.57 626.07 0.0199 0.0657 0.1991

Cis-aconitic acid 0.9777 0.0014 669100 228.85 0.0003 0.0011 0.0034

Acetic acid 0.9771 0.3488 14109.31 820.78 0.0581 0.1919 0.5817
*Limit of detection; **Limit of quantification
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statistix.com/). Means of replicated data from each treatment

were compared using Fisher’s least significant difference (LSD)

method, when p ≤ 0.05. The Pearson (n) approach was used in

‘Statistix 8.1’ to calculate the correlation coefficient values, and

“TBtools ver. 0.6655” (https://github.com/CJ-Chen/TBtools)

was used to depict the data as a heat map. Principle

component analysis (PCA) of treatments and tested variable

was done through Pearson (n) method using “XLSTAT ver.

2019” (https://www.xlstat.com/en/).
Results

Fruit weight and size

Loquat plants treated with foliar supplied B exhibited a

significant increase (p ≤ 0.05) in fruit weight and size (fruit

length, width, and fruit shape index) as compared to untreated

plants. The plants receiving 0.2% borax exhibited maximum

fruit weight (57.95 g), which was 18.19% higher than that of

untreated plants (Figure 1A). Regardless of concentration, B

improved the loquat fruit length by 8-18% as compared to

control (Figure 1B). The maximum fruit width (43.52 mm)

was recorded in the plants treated with 0.2% borax followed by

the plants receiving 0.1% (40.88 mm) and 0.3% borax

(39.11 mm) (Figure 1C). Boron application reduced fruit
Frontiers in Plant Science 05
shape index regardless of concentration applied, indicating its

possible role in improving fruit size in terms of diameter. The

minimum fruit shaped index (1.25) was recorded in the plants

treated with 0.1-0.2% borax, which was 8% less as compared to

that of untreated plants (Figure 1D).
Soluble solids, titratable acids, sugar-acid
ratio and fruit juice pH

Total soluble solids (TSS) and titratable acidity (TTA) of

loquat fruits showed reciprocal responses to each other. Foliar

application of 0.2% borax enhanced TSS by 36.86%, while

reduced the TTA by 61.90% comparing with control

(Figures 2A, B). The plants receiving foliar application of 0.2%

B exhibited 3.60-fold increase in sugar-acid ratio, as compared to

control. The increased sugar-acid ratio and fruit juice pH

indicates the positive influence of applied treatments on sugars

accumulation in loquat fruits (Figures 2C, D).
Soluble sugars

Three soluble sugars i.e., fructose, glucose and sucrose were

quantified in the fruit pulp of B-treated loquat fruits through

HPLC (Figure 3). The results revealed that fructose and glucose
B

C D

A

FIGURE 1

Effect of foliar application of B on weight (A), length (B), diameter (C), and shape index (D) of loquat fruits. Loquat plants were foliar sprayed with
B twice at blooming stage. Same letters indicate non-significant difference among treatments according to Fisher’s least significant difference
(LSD) test, when p ≤ 0.05. Vertical bars indicate mean ± standard error (n=4, 4-block RCBD arrangement).
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were the abundant soluble sugars in loquat pulp as compared to

sucrose contributing 45.31%, 41.95% and 12.74%, respectively.

The fructose and glucose accumulation in loquat fruits showed

same pattern with respect to applied treatments. The plants
Frontiers in Plant Science 06
receiving exogenous application of 0.2% borax exhibited

maximum fruit fructose level (8.91 mg·ml-1) among all other

treatments, which was 1.34-times higher (33.89%) than that of

untreated plants (Figure 3A). Among B treatments, 0.2% borax
B

C

A

FIGURE 3

Effect of foliar application of B on soluble sugars i.e., fructose (A), glucose (B), and sucrose (C) content of loquat fruits. Same letters indicate
non-significant difference among treatments according to Fisher’s least significant difference (LSD) test, when p ≤ 0.05. Vertical bars indicate
mean ± standard error (n=4, 4-block RCBD arrangement).
B

C D

A

FIGURE 2

Effect of foliar application of B on total soluble solids (A), titratable acidity (B), sugar-acid ratio (C), and pH (D) of loquat fruits. Same letters
indicate non-significant difference among treatments according to Fisher’s least significant difference (LSD) test, when p ≤ 0.05. Vertical bars
indicate mean ± standard error (n=4, 4-block RCBD arrangement).
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improved fruit glucose level by 58.21%, as compared to the fruit

glucose level of untreated plants (Figure 3B). In case of fruit

sucrose, plants receiving 0.3% borax showed a significant (p ≤

0.05) improvement in sucrose level, which was recorded as 3.31-

fold higher than control (Figure 3C).
Organic acids

Five organic acids i.e., fumaric acid, ascorbic acid, malic acid,

cis-aconitic acid and acetic acid were quantified in the fruit pulp

of B-treated loquat fruits through UPLC. The results revealed

that malic acid was the most abundant organic acid in loquat

pulp followed by acetic acid contributing 81.12% and 18.21%,

respectively. The proportion of fumaric acid, ascorbic acid and

cis-aconitic acid was less than 1% among tested organic acids

(Figures 4A, B, E). The exogenous application of B significantly
Frontiers in Plant Science 07
reduced the malic acid concentration as compared to control,

ultimately reduced overall acidity of the fruits. The plants

receiving 0.2% borax exhibited minimum fruit malic acid level

(1.31 mg·ml-1) among all other treatments, which was 1.56-times

(36.07%) lower than that of untreated plants (Figure 4C). In case

of acetic acid content, it was observed that B treatments reduced

the acetic acid content in dose-dependent manner (Figure 4D).
Key enzymes involved in soluble
sugars metabolism

The SPS activity in the fruit pulp of loquat significantly

(p ≤ 0.05) increased with B application. The maximum SPS

activity was detected in the fruit pulp of the plants treated with

0.2% borax (3237.07 U·g-1 protein) (Figure 5A). Interestingly,

the SS activity was found decreased with the foliar application of
B

C D

E

A

FIGURE 4

Effect of foliar application of B on the level of organic acids i.e., fumaric acid (A), ascorbic acid (B), malic acid Ali et al.,, acetic acid (D), and cis-
aconitic acid (E) in loquat fruits. Same letters indicate non-significant difference among treatments according to Fisher’s least significant
difference (LSD) test, when p ≤ 0.05. Vertical bars indicate mean ± standard error (n=4, 4-block RCBD arrangement).
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0.2% borax (401.97 U·g-1 protein) as compared to control

(669.69 U·g-1 protein), which was 39.98% reduced as

compared to control (Figure 5B). Unlike SS, HK and FK

activities were recorded improved in fruit pulp of loquat with
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all preharvest treatments of B. The maximum HK activity (61.22

U·g-1 protein) was measured in the fruit pulp of the plants

treated with 0.2% borax (Figure 5C). Similarly, maximum FK

activity was recorded in fruit pulp of the loquat plants receiving
B

C D

A

FIGURE 5

Effect of foliar application of B on the activities of key enzymes involved in soluble sugars metabolism i.e., sucrose-phosphate synthase
(A), sucrose synthase (B), hexokinase (C) and fructokinase (D) of loquat fruits. Same letters indicate non-significant difference among treatments
according to Fisher’s least significant difference (LSD) test, when p ≤ 0.05. Vertical bars indicate mean ± standard error (n=4, 4-block
RCBD arrangement).
B

C

A

FIGURE 6

Effect of foliar application of B on the activities of key enzymes involved in malic acid metabolism i.e., PEPC (A), NADP-ME (B), and NAD-MDH
(C) of loquat fruits. Same letters indicate non-significant difference among treatments according to Fisher’s least significant difference (LSD) test,
when p ≤ 0.05. Vertical bars indicate mean ± standard error (n=4, 4-block RCBD arrangement).
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foliar application of 0.2% borax (391.50 U·g-1 protein), which

was 5.61-fold higher than that of untreated plants (Figure 5D).
Key enzymes involved in malic
acid metabolism

The PEPC activity in the fruit pulp of loquat significantly

(p ≤ 0.05) reduced with B application. The minimum PEPC

activity was detected in the fruit pulp of the plants treated with

0.2% borax (150.87 U·g-1 protein) (Figure 6A). Interestingly, the

NADP-ME activity was found increased with the foliar

application of B at the concentration of 0.2%. The maximum

NADP-ME activity was recorded in the fruit pulp of loquats

receiving 0.2% borax (1578.76 U·g-1 protein) in comparison with

control (771.68 U·g-1 protein), which were 2.04-fold higher that

of untreated plants, respectively (Figure 6B). Conversely, the

exogenous application of B significantly reduced the activity of

NAD-MDH as compared to control. Among B treatments, the

minimum NAD-MDH activity level was recorded in the loquats

treated with 0.20-0.30% borax (2668.87-2733.18 U·g-1

protein) (Figure 6C).
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Expression profiling of soluble sugars
metabolism-related genes

The expression patterns of core genes i.e., EjSPS1-4, EjSS1-5,

EjHK1-3, and EjHK1-6 encoding key enzymes i.e., SPS, SS, HK

and FK responsible for the metabolism of soluble sugars in fruit

pulp of loquat were studied (Figure 7). The expression patterns

of EjSPS1-4 genes increased with the foliar application of B.

Briefly, the relative expression of EjSPS1 was recorded maximum

in the fruit pulp of loquat when treated with 0.2% borax.

Similarly, EjSPS2 was maximally expressed under the influence

of 0.2% borax, which was 2.14-fold higher than that of control.

The EjSPS3 and EjSPS4 exhibited maximum upregulation under

the influence of 0.1-0.2% and 0.2-0.3% borax, respectively.

The EjSS3 and EjSS5 were maximally expressed under the

influence of 0.2% borax. Specifically, EjSS1 was significantly (p ≤

0.05) down-regulated by aforementioned treatment, while

showed non-significant (p ≤ 0.05) variation under the

influence of 0.1 and 0.3% borax. The EjSS2 significantly (p ≤

0.05) upregulated under the influence of 0.1% borax by 2.14-fold.

The maximum expression of EjSS3 was recorded in the loquats

treated with 0.2% borax. Foliar application of B significantly (p≤
FIGURE 7

The expression profiling of core genes involved in soluble sugars metabolism of loquat as influenced by the foliar application of B Same letters
indicate non-significant difference among treatments according to Fisher’s least significant difference (LSD) test, when p ≤ 0.05. Vertical bars
indicate mean ± standard error (4 biological and 3 technical replicates).
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0.05) reduced the expression of EjSS4 as compared to control.

Conversely, EjSS5 was found upregulated under the influence of

B. The maximum relative expression of EjSS5 was recorded in

the loquat treated with 0.2% borax.

Among B treatments, 0.2% borax significantly (p ≤ 0.05)

upregulated the expressions of EjHK1-3. The expressions of

EjHK1 and EjHK2 remained unchanged with B treatments

except when loquats received 0.20% borax. While, in the case

of EjHK3, 0.1% borax also upregulated the expression by 41.9%.

The relative expression level of EjFK1 was significantly (p ≤

0.05) increased with the foliar application of B. The EjFK1 was

maximally upregulated under the influence of 0.2% borax (by 2.41-

fold). Similarly, in the case of EjFK2, the maximum transcript level

was observed in the loquats treated with 0.2% borax (3.43). The

borax application significantly (p ≤ 0.05) upregulated EjFK3 when

applied at the concentration of 0.10% and reduced with increase in

its concentration. Among B treatments, 0.2% borax maximally

upregulated the EjFK4 by 2.23-fold. Although the maximum

expressions of EjFK5 and EjFK6 were recorded in the loquats

treated with 0.2% borax, their levels remained upregulated with all

B treatments (Figure 7).
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Expression profiling of malic acid
metabolism-related genes

The expression patterns of core genes i.e., EjPEPC, EjNAD

(P)ME and EjNAD-MDH encoding key enzymes i.e., PEPC,

NADP-ME and NAD-MDP responsible for the malic acid

metabolism in fruit pulp of loquat were studied (Figure 8).

The expression of EjPEPC1 found significantly decreased with

the foliar application of 0.2-0.3% borax. The loquats treated with

0.1-0.2% borax exhibited downregulated expression of EjPEPC2.

EjPEPC2 was minimally expressed under the influence of 0.1 and

0.2% borax, which was ≥40% lower than that of control. The

EjPEPC3 also exhibited maximum downregulation under the

influence of 0.2% borax.

The relative expression patterns of EjNAD(P)-ME genes

increased with the foliar application of B. Among B

treatments, 0.1-0.2% borax significantly (p ≤ 0.05) upregulated

the expressions of EjNAD-ME1. Specifically, the maximum

expression of EjNAD-ME1 was recorded in the loquats treated

with 0.2% borax, which were 1.56-fold higher than that of

untreated loquats. Similarly, 0.1-0.3% borax significantly (p ≤
FIGURE 8

The expression profiling of core genes involved in malic acid metabolism of loquat as influenced by the foliar application of B. Same letters
indicate non-significant difference among treatments according to Fisher’s least significant difference (LSD) test, when p ≤ 0.05. Vertical bars
indicate mean ± standard error (4 biological and 3 technical replicates).
frontiersin.org

https://doi.org/10.3389/fpls.2022.1039360
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2022.1039360
0.05) improved the expression of EjNAD-ME2 in fruit pulp. The

expression of EjNADP-ME remained unchanged with B

treatments except when loquats received 0.1 and 0.3% borax.

Its maximum expression was recorded under the influence of

0.3% borax which was 2.20-fold higher than that of

control loquats.

The expression of EjNAD-MDH1 decreased with the

application of borax, regardless of its concentration. The

lowest EjNAD-MDH1 transcript was recorded in the loquats

treated with 0.2% borax. EjNAD-MDH2 was maximally

expressed under the influence of 0.1% borax, which was 2-fold

higher than that of control. The EjNAD-MDH3 exhibited

downregulation under the influence of 0.1-0.3% borax. The

relative expression pattern of EjNAD-MDH4 comparatively

increased with the foliar application of 0.1% borax, while

remained unchanged under the influence of other treatments.

The expression of EjNAD-MDH5 significantly reduced with the

foliar application of B, regardless of its concentration applied.

The expression of EjNAD-MDH6 reduced with the application

of 0.1-0.2% borax. The minimum expression of EjNAD-MDH6

was observed in the loquats treated with 0.2% borax, which was

29% less than that of control. The relative expression pattern of

EjNAD-MDH7 and EjNAD-MDH8 remained unchanged under

the influence of B treatments. The EjNAD-MDH9 and EjNAD-

MDH10 exhibited its upregulated expression only under the

influence of 0.1% borax. The 0.1-0.2% borax significantly (p ≤

0.05) improved the expressions of EjNAD-MDH11. Its

maximum expression level was recorded in the loquats treated

with 0.2% borax, which was 10.75-fold higher than control. The
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expression of EjNAD-MDH12 significantly (p ≤ 0.05) reduced

under the influence of 0.2-0.3% borax. The EjNAD-MDH13 was

significantly downregulated in fruit pulp of loquat with the foliar

application of 0.2% borax (Figure 8).
Correlation analysis

Principal component analysis (PCA) was conducted to

delineate concentration-dependent effects of B on basic fruit

quality variables (i.e., fruit weight, size, total soluble solids, total

titratable acidity and fruit juice pH), soluble sugars (i.e., fructose,

glucose and sucrose), organic acids (i.e., fumaric acid, ascorbic

acid, malic acid, cis-aconitic acid and acetic acid), key enzymes

related to soluble sugars (i.e., SPS, SS, HK and FK) and malic

acid metabolism (i.e., PEPC, NADP-ME and NAD-MDH), and

relative expression levels of sugar-acid metabolic pathway genes

(Figure 9A). Based on the highest squared cosine values

corresponding to factors F1 or F2, measured attributes were

clustered around B treatments. Factor F1, covering 64.18%

variability in data (eigenvalue 38.51), showed clustering of fruit

weight, fruit length, fruit diameter, total soluble solids, sugar-

acid ratio, fruit fructose, fruit glucose, ascorbic acid, activity of

SPS, HK, FK, NADP-ME, expression of EjSPS1-4, EjSS3, EjHK1-

3, EjFK1, EjFK2, EjFK4, EjFK6, EjNAD-MDH11, and EjNAD-

MDH13 with 0.2% borax suggesting its positive influence on

these parameters. While, the clustering in opposite quadrant

exhibited negative associat ion of 0.2% borax with

aforementioned variables. Second factor, covering 19.28%
BA

FIGURE 9

(A) Principal component analysis (PCA)among B treatments and sugar-acid attributes of loquat. Clustering of B treatments and measured
attributes into groups (coloured circles) is based on their highest squared cosine values corresponding to the factor, F1 (red) or F2 (green).
(B) Pearson (n) correlation analysis between “sugar-acid profile and key enzymes involved in their metabolism” and “relative expressions of
related genes” in fruit pulp of loquat. CK, control; B1, 0.1% borax; B2, 0.2% borax; B3, 0.3% borax; FW, fruit weight; FL, fruit length; FD, fruit
diameter; FSI, fruit shape index; TSS, soluble solid contents; TTA, total titratable acidity; TSS/TTA, sugar-acid ratio; pH, fruit juice pH; Fruc, fruit
fructose; Gluc, fruit glucose; Sucr, fruit sucrose; SPS, sucrose-phosphate synthase; SS, sucrose synthase; HK, Hexokinase; FK, fructokinase.
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variability in data (eigenvalue 11.566), showed clustering of cis-

aconitic acid, EjNAD-MDH2, EjNAD-MDH4, EjNAD-MDH9,

EjNAD-MDH10, EjSS2, and EjFK3 with 0.1% borax. The

presence of EjSS4 and EjNAD-MDH3 in opposite quadrant

indicated the negative association of 0.1% borax with these

parameters. Third factor of PCA (not shown), covering

16.55% variability in data (eigenvalue 9.927), showed

clustering of pH, fruit sucrose, fumaric acid, EjNADP-ME, and

EjNAD-MDH7 with 0.3% borax. Thus, principal component

analysis helped to delineate individual roles of B concentrations

in regulating sugar-acid metabolism of loquat (Figure 9A).

The correlation between “relative expression levels of sugar-

acid metabolism-related genes” and “sugar-acid profile and key

enzymes related to their metabolism” was analysed (Figure 9B).

The fructose and glucose were positively correlated with EjSPS1-

4, EjSS5, EjHK1-3, EjFK1,2,4-6, EjNAD-ME1,2, and NAD-

MDH7,11. The fruit sucrose content was negatively correlated

with most of the studied genes except EjSPS4, EjPEPC2, EjNAD-

ME3, and EjNAD-MDH6,12. The ascorbic acid was significantly

(p ≤ 0.05) positively correlated with EjSPS1-3, EjSS5, EjHK1-3,

EjFK1,2,4,6, EjNAD-ME1,2, andNAD-MDH7,11. The fruit malic

acid content was significantly (p ≤ 0.05) positively correlated

with EjSS1, EjPEPC3, EjNAD-MDH1, EjNAD-MDH5, EjNAD-

MDH8 and EjNAD-MDH13, while significantly (p ≤ 0.05)

negatively correlated with EjSPS1-3, EjSS5, EjHK1,3, EjFK1,2,4,

EjNAD-ME1,2, and NAD-MDH11. The negative association of

cis-aconitic acid was observed with the expression of EjSS4 and

EjNAD-MDH3. A positive correlation was also found between

acetic acid and EjPEPC3, EjNAD-MDH1 and EjNAD-MDH5.

The enzymatic activity of SPS was positively correlated with

EjSPS1-4, EjSS5, EjHK1-3, EjFK1,2,4-6, EjNAD-ME1,2, and

NAD-MDH7,11, while SS only found significantly (p ≤ 0.01)

and positively associated with EjSS1 and EjNAD-MDH8. The

HK and FK activity significantly (p ≤ 0.05) and positively

correlated with EjSPS1-4, EjSS5, EjHK1-3, EjFK1,2,4-6, EjNAD-

ME1,2, and NAD-MDH7,11. The enzymatic activity of PEPC

was positively correlated with EjSS1, EjPEPC2,3 and EjNAD-

MDH1,5,6,8,13. The NADP-ME activity was found significantly

(p ≤ 0.05) positively associated with EjSPS1-3, EjHK1,

EjFK1,2,4,6 and NAD-MDH11, while negatively correlated

with EjSS1 and EjNAD-MDH8. The NAD-MDH activity

positively correlated with EjPEPC3, EjNAD-MDH1, EjNAD-

MDH5 and EjNAD-MDH6 (Figure 9B).
Discussion

Soluble sugars

The quality of fruit is heavily influenced by soluble sugars

and organic acids, the two main components of fruit flavor

(Borsani et al., 2009). At the ripe fruit stage, the soluble sugar
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content of ‘Jiefangzhong’ loquat was increased to a maximum of

19 mg·ml-1 in the current investigation. Previous research has

shown that the primary sugars that may be found in loquat fruits

are sucrose, glucose, and fructose (Toker et al., 2013; Wei et al.,

2017). When it comes to the amount of sugar that they contain,

various loquat cultivars have varying degrees of variation. The

majority of cultivars have a high concentration of sucrose,

followed by fructose and glucose, although wild species do not

have any sucrose (Liu et al., 2016). According to the findings of

our study, the fructose level was found to be the highest among

the soluble sugars that were examined.

In the present study, maximum fructose and glucose were

recorded in the loquats treated with 0.2% borax. In a previously

reported study, foliar spraying of B alone or in combination with

Zn led to a large rise in the concentration of non-reducing sugar

in fruit juice. On the other hand, these sprays led to a significant

reduction in the concentration of reducing sugar and total sugar

in pomegranate (Maity et al., 2021). After being sprayed with B,

it was found that the content of sugar in papaya, mandarin

orange, mango, and pomegranate fruits increased (Babu and

Yadav, 2005; Anees et al., 2011; Davarpanah et al., 2016; Subedi

et al., 2019). The effect of B on sugar concentration could be

attributed to its role in photosynthesis, starch and nucleic acid

metabolism, the transport of sugars, and carbohydrate

metabolism (Maity et al., 2021).

During soluble sugars metabolism in plant cell, sucrose is

cleaved into UDG-glucose and fructose by sucrose synthase (SS),

or can be cleaved into glucose and fructose by invertases (Ghosh

et al., 2013; Irfan et al., 2014; Chen et al., 2017). Fructokinases

(FKs) and hexokinases (HKs) can phosphorylate free fructose

with high substrate specificity and affinity (Renz and Stitt, 1993;

Irfan et al., 2016; 2021; 2022). The cleavage of sucrose and the

metabolism of sugar are crucial processes in the formation of

healthy vascular tissue, and hence it is thought that fructose

phosphorylation by FKs and HKs is required for these processes

to take place German et al., 2003; Damari-Weissler et al., 2009;

Kumar et al., 2016; 2019; Kumari et al., 2022). Both sucrose

phosphate synthase (SPS) and sucrose synthase (SS) are

important prerequisites in the biochemical process that results

in the formation of sucrose. The synthesis of 6-phosphate

sucrose from UDP-glucose and 6-phosphate fructose is

facilitated by the presence of SPS (Stein and Granot, 2019),

whereas SS converts sucrose into UDP-glucose and fructose

(Ruan, 2014) (Figure 10A). The majority of the SS proteins may

be found in either the cytosol or the plasma membrane, but some

can be localized in the vacuole, the cell wall, or the mitochondria

(Stein and Granot, 2019). In Arabidopsis thaliana and Malus

domestica, there are 4 and 6 SPS genes, respectively

(Langenkämper et al., 2002; Li et al., 2012). The number

of SS genes varies greatly among plant species. There are 6, 8,

12, and 14 SS genes in Arabidopsis, carrot (Daucus carota),

soybean (Glycine max) and tobacco (Nicotiana tabacum),

respectively (Wang et al., 2015; Xu et al., 2019). In Chinese
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pear, it is reported that there were thirty SS genes (Abdullah

et al., 2018).

The expressions of most important genes involved in sugar

metabolism and accumulation were studied under the influence

of B treatments. The SPS genes showed relative high expression

level, while sucrose content was very low. The high transcript

level, indicated a negative correlation between sucrose

accumulation and SPS activity. A possible reason for this

discrepancy is that sucrose is the major soluble sugar in

tomato (Dali et al., 1992) and watermelon (Liu et al., 2013;

Zhu et al., 2017) but the ‘Jiefangzhong’ loquat mainly showed the

accumulation of fructose (Li et al., 2015a).
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The enzyme known as sucrose synthase (SS) is also capable

of catalyzing the reversible process of the production of sucrose.

In peaches and pears, the SS activity has a positive correlation

with the amount of sucrose present, but in strawberries and

papaya, the correlation is negative (Moriguchi et al., 1992; Lo

Bianco et al., 2000; Zhou and Paull, 2001; Basson et al., 2010). It

has been hypothesised that when there is a high quantity of

glucose and fructose, the SS may be able to be down-regulated in

order to lower the enzyme activity (Stein and Granot, 2019). In

this study, the EjSS1-4 showed negative correlation with sucrose

content. The EjSS3,5 showed positive correlation with glucose

and fructose. Similar to sucrose, EjSS2,4 showed negative
B

A

FIGURE 10

Proposed schematic representation of soluble sugars (A) and malic acid (B) metabolic pathway in fruit cell. SUT, sucrose transporters; CWINT,
cell wall invertase; HT - hexose transporters; HK, hexokinase; FK, fructokinase; SPS, sucrose phosphate synthase; SS, sucrose synthase; SPP,
sucrose-phosphate phosphatase; SWEET, sugars will eventually be exported transporter; PK, phosphokinase; PPDK, pyruvate phosphate
dikinase; PEPC, phosphoenolpyruvate carboxylase; NADP-ME, NADP-dependent malic enzyme; NAD-MDH, NAD-malate dehydrogenase; ALMT,
aluminium activated malate transporter; tDt, terminal deoxynucleotidyl transferase.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1039360
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Ali et al. 10.3389/fpls.2022.1039360
correlation with glucose and fructose. These results indicated

that EjSS3 or EjSS5 might were the candidate genes related to

fructose and glucose synthesis, while EjSS2,4 for sucrose

degradation at fruit ripening stage.

The glucose and fructose content, activities of their

metabolism related enzymes and expressions EjHK and EjFK

genes increased in loquats with the application of B. All EjHK

and EjFK genes exhibited significantly positive correlation with

fructose and glucose contents as well as SPS, HK and FK activity

of loquat fruits. However, the expression level of EjFK3 showed

negative correlation with glucose and fructose contents,

suggesting that EjFK3 may play a crucial role in regulating the

accumulation of glucose through post-transcriptional level

(Jiang et al., 2019).
Organic acids

Aliphatic carboxylic acids, sugar-derived organic acids, and

phenolic acids are the three categories that may be used to

classify fruit organic acids (Ren et al., 2017). The majority of the

organic acids found in loquat fruits are aliphatic carboxylic acids.

Some examples of these types of acids are fumaric acid, ascorbic

acid, and malic acid (Kumar et al., 2017; Batista-Silva et al., 2018;

Sáenz-Galindo et al., 2018). In the present study, the optimized

UPLC-MS method was used to detect fumaric acid, ascorbic

acid, malic acid, cis-aconitic acid and acetic acid from the fruit

pulp of loquat under the influence of foliar applied B. Among

them, the content of malic acid accounted for about 70%-80% of

the total acid. These results are in line with the previous findings

about organic acid profile of loquat (2009; Chen et al., 2007;

Yang et al., 2021). The composition and content of organic acids

in loquat fruits have genetic variation (Famiani et al., 2015), and

the differences are also manifested between different varieties

(Chen et al., 2009). In present study, the cultivar “Jiefangzhong”

was used as plant material which is already reported as high-acid

cultivar (Chen et al., 2007; 2009; Ali et al., 2021a; Yang

et al., 2021).

Fruits with intermediate acidity tend to be more palatable,

but increasing acid content can often lower the quality of the

fruit (Zhang et al., 2021). Organic acids build throughout fruit

development and are utilised as respiratory substrates as the fruit

ripens (Raza et al., 2022). The balance of organic acid

production, membrane transit, and breakdown or use

determines the ultimate organic acid content in ripened fruits

(Sadka et al., 2000; Cercós et al., 2006; Sharma et al., 2022). In

this process, malic acid metabolism-related enzymes including

phosphoenolpyruvate carboxylase (PEPC), NADP – dependent

malic enzyme (NADP-ME), and NAD-malate dehydrogenase

(NAD-MDH) may potentially play a role in fruit malic acid

biosynthesis and degradation (Chen et al., 2009; Wu and Chen,
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2016). The first step in the production of malic acid begins in the

cytosol with phosphoenolpyruvate (PEP), which is then actively

transported into the mitochondria and transformed to

oxaloacetate (OAA) by phosphoenolpyruvate carboxylase

(PEPC) (Tayal et al., 2022). Then, NAD-malate dehydrogenase

(NAD-MDH) catalyses the condensation of OAA to produce

malic acid. The cytosolic enzyme NADP - dependent malic

enzyme (NADP-ME) catalyses the conversion of pyruvate to

malic acid (Chen et al., 2009; Ma et al., 2019). According to these

metabolic routes, malic acid is mostly synthesised by the

catalytic activities of PEPC, NADP-ME and NAD-MDH (Wu

and Chen, 2016; Zhou et al., 2019) (Figure 10B).

Because of the relevance and high quantity of malic acid in

fruits, great progress has been made in determining the

metabolism of malic acid in fruits. NAD-MDH activity is

inversely linked to NADP-ME activity (Chen et al., 2009),

indicating that NAD-MDH and NADP-ME may both play

essential roles in malate production and degradation,

respectively. Yang et al. (Yang et al., 2011) also cloned the

genes encoding EjPEPC, EjNADP-ME, and EjcyNAD-MDH,

and they discovered that the transcript level of EjNADP-ME in

the high-acid cultivar was considerably greater than that in the

low-acid cultivar, but EjNADP-ME and EjmNAD-MDH

expression patterns were comparable in both cultivars,

however EjPEPC and EjcyNAD-MAD expression patterns were

different, suggesting that the expression of these genes may be

crucial in controlling malic acid production in loquat fruit.

Due to coenzyme specificity, subcellular localization, and

biochemical function, NAD-malic enzyme (NAD-ME)

contributes 70-80% to malic acid accumulation (Rao and

Dixon, 2016). In a recent study, it has been proved that NAD-

cytMDH is a key gene that regulates the acidity of peach fruits

(Etienne et al., 2002). The overexpression of MdNAD-ME genes

significantly increased the content of malic acid in apple callus

(Drincovich et al., 2001). It has been reported earlier that

NADP-ME catalyzes the carboxylation of pyruvate and fixes

CO2 to produce malic acid in grapes (Sweetman et al., 2009).

NADP-ME plays a major role in the degradation of malic acid in

the cytoplasm, such as the content of organic acids in apple were

negatively correlated with NADP-ME activity (Yao et al., 2009).

The change in the activity of NAD-ME is consistent with the

biosynthesis of malic acid, the increase in fruit respiration, and

the gradual decrease of malic acid during fruit ripening (Khan

et al., 2018). During storage of climacteric fruits e.g., apple, pear,

banana, etc. the respiration increases, accompanied by

accelerated degradation of malic acid (Farrar et al., 2000;

Ruan, 2014). In the current study, the fruit malic acid content

was significantly and positively correlated with EjSS1, EjPEPC3,

EjNAD-MDH1, EjNAD-MDH5, EjNAD-MDH8 and EjNAD-

MDH13, while significantly (p ≤ 0.05) negatively correlated

with EjSPS1-3, EjSS5, EjHK1,3, EjFK1,2,4, EjNAD-ME1,2, and

NAD-MDH11.
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Conclusions

The results of the current study suggest that fructose and

malic acid are the predominant sugar and acid in fruit pulp of

loquat, respectively. Among B treatments, 0.2% borax was the

promising treatment to enhance soluble sugars and reduce malic

acid concentration in fruit pulp of loquat. Boron treatments

remarkably improved the soluble sugars content by regulating

the activities of SPS, SS, HK and FK enzymes, and altering the

expressions of related genes. The combined activity of many

enzymes, including PEPC, NADP-ME, and NAD-MDH, was

responsible for controlling the dynamics of the malic acid

concentrations evaluated in the present investigation.

Correlation analysis suggested that NAD-MDH played a vital

role in the decrease of malic acid. These findings not only

elucidated previously unknown aspects of the metabolism of

soluble sugars and organic acids, but they also provide a

significant resource for prospective studies on the application

of molecular breeding techniques to loquat fruit.
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