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Environmental filtering (EF) and dispersal filtering (DF) are widely known to

shape plant community assembly. Particularly in arid and semi-arid

mountainous regions, however, it remains unclear whether EF or DF

dominate in the community assembly of different life forms or how they

interact along elevational gradients. This research aims to reveal how

different ecological processes influence herbaceous and woody community

assembly and how they respond to various environmental drivers and

elevational gradients. Here we integrated taxonomic diversity (TD),

phylogenetic diversity (PD), and ecological drivers across an elevational

gradient of 1,420 m in the Helan Mountain Nature Reserve, in typical arid and

semi-arid areas of China. This study showed that the TD and PD of herbaceous

communities significantly increase linearly with changing elevation gradients,

while woody ‘TD’ showed a unimodal pattern, and there was little relationship

between woody ‘PD’ and elevation. Herbaceous species exhibited significant

phylogenetic clustering at low elevations, where they were influenced by

climate, aspect, and tree cover. However, woody species exhibited random

patterns across elevations. Herbaceous and woody species’ taxonomic and

phylogenetic beta diversity is governed primarily by spatial turnover rather than

nestedness. Spatial turnover is caused primarily by EF and DF’s combined

influence, but their relative importance differs between herbaceous and

woody communities. Therefore, we conclude that the responses of

herbaceous and woody plants along elevation gradients in the Helan
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Mountains are decoupled due to their different adaptation strategies to climate

factors in the drylands. These findings are important for understanding the

assembly mechanisms driving plant communities in dryland under the context

of dramatic increases in drought driven by climate warming.
KEYWORDS

dryland, community assembly, taxonomic diversity, phylogenetic diversity, Helan
Mountain Nature Reserve
Introduction

Mountains are hotspots of biodiversity, covering 24% of the

total geographical area and supporting about 50% of the planet’s

biodiversity (Körner et al., 2011) They provide refuge for many

plants and animals due to the various conditions created by the

complex topography and could play an important role in

protecting biodiversity (Becker et al., 2007; Körner et al., 2011;

Yuancai et al., 2022). Mountains often establish unique local

climates along elevation gradients (Wang et al., 2022).

Continuous change in landscape and climate factors across

elevation leads to variations in resource availability (i.e., light

and moisture), creating different microenvironmental

conditions within short distances (Becker et al., 2007; Ahmad

et al., 2020; Behzad et al., 2022). It leads to a sharp

transformation in the ecophysiological adaptation of plants

(Jiang et al., 2016) and ultimately alters their diversity patterns

along elevation gradients (Boscutti et al., 2018). Because of their

steep climatic gradients, mountains are considered sentinels of

global warming and, therefore, offer a unique field laboratory for

understanding the mechanisms driving the evolution and

maintenance of biodiversity along elevation gradients (Körner

et al., 2016).

Elevation-diversity relationships have been popular in

ecology, biogeography, and biodiversity conservation in recent

decades (Körner et al., 2011; Shahriari et al., 2019; Montano-

Centellas et al., 2021). Previous studies about biodiversity

patterns along elevation gradients found an evident disparity

in elevation-richness relationships worldwide (Berhanu et al.,

2016; Zhang et al., 2016; Mayor et al., 2017). The maximum

species diversity occurs in the mid-elevation range (Grytnes,

2003), but decreases or increases in species richness along

elevation have also been documented (Zhu et al., 2009;

Berhanu et al., 2016; Qianwen et al., 2022). Yet, contemporary

changes in biodiversity across the globe have been investigated

based largely on taxonomic diversity (TD; i.e., species identity)

(Li et al., 2020), which does not necessarily reflect changes in

phylogenetic diversity (PD) (Faith, 1992). To solve this problem,

Webb et al. (2002) developed the basis for using phylogenetic

data to discover the influence of deterministic processes on
02
community assembly. The method based on PD, considering

the phytogeographical affinities that drive community

assemblages (Webb et al., 2002), has been used to reveal

species diversity in elevation gradients (Dainese et al., 2015;

Wang et al., 2022). Combining TD and PD has been increasingly

recommended to reveal the underlying driving mechanisms of

community assemblages (Li et al., 2020; Macheroum et al., 2021)

because it provides more comprehensive information on

community assembly from ecological and evolutionary

processes at the a and b diversity scales (Li et al., 2020; Du

et al., 2021). Approaches that relate local processes to regional

and evolutionary processes based on PD or spatial turnover will

quantify the elevation-diversity relationship from an ecological

and evolutionary perspective (Webb et al., 2002). However, to

date, the assembly mechanisms driving plant communities along

elevational gradients remain well elusive (Luo et al., 2019).

Theories of community assemblages, including niche-based

processes and stochastic processes (Montano-Centellas et al.,

2021), considered processes of species dispersal, species

persistence, and species coexistence, were used to illustrate the

species assembly (Webb et al., 2002; Grigoropoulou et al., 2022).

Niche theory highlights the role of environmental filtering (EF;

species with specific traits coexist under specific environmental

stresses) and biological interactions (competitive exclusion

causes limiting similarity) (Wang et al., 2021). Webb et al.

(2002) claimed that interspecific competition might result in a

community pattern of phylogenetic overdispersion. It might also

result in phylogenetic clustering if certain clades have stronger

competitiveness than others. Some evidence suggests that high-

elevation habitats are generally under harsher conditions (low

temperatures, dramatic temperature fluctuations) (Wang et al.,

2021), in which plant community compositions are more

sensitive to climate change than those of low-elevation habitats

(Sproull et al., 2015). In contrast, the neutral theory holds that

stochast ic fluctuations and dispersal fi l tering (DF)

independently determine the patterns of community assembly

(Tilman, 2004; Hubbell, 2005). It is now commonly accepted

that community assembly is determined by both processes

(Farjalla et al., 2012; Grigoropoulou et al., 2022). Recent

studies demonstrate that EF could become more critical for
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shaping plant community structure in stressful environmental

conditions, while DF might dominate under benign conditions

(Pouteau et al., 2019). Thus, a shift in the community assembly

from overdispersal in low elevations to clustering in high

elevations appears to occur. For heterogeneous mountains,

however, the species assemblage along elevation gradients may

be very complex and show various trends (Jarzyna et al., 2021;

Montano-Centellas et al., 2021) for different life-form plants

because they have diverged from adaptation strategies to specific

environmental factors (Lee and Chun, 2015; Loidi et al., 2021;

Macheroum et al., 2021). Moreover, due to different spatial

scales and life forms in terms of evolutionary relationships and

dispersal ability (Liu et al., 2015; Shahriari et al., 2019),

quantifying the relative importance of the EF and DF along

elevation gradients remains challenging (Du et al., 2021).

Despite knowing that communities are being formed, it

remains unclear whether EF or DF dominate in the

community assembly of different life forms or how they

interact along elevational gradients, especially in arid areas

(Macheroum et al., 2021).

Drylands are defined as places with an aridity index of less

than 0.65. They encompass over 45% of the planet’s land surface

and inhabit over 38% of the Earth’s population (Peng et al.,

2020). The drylands of China account for about 10.8% of the

world’s drylands, and China is the most drought-affected

country in Asia (Huang et al., 2015). The dramatic increase in

climate warming-driven drought is considered a potential threat

to worldwide biodiversity (Dai, 2010; Jiao et al., 2021). Climate

change may aggravate dryland degradation through the

alteration of spatial and temporal patterns in temperature,

rainfall, solar radiation, and winds, leading to vegetation

degradation and ecosystem service loss in the drylands

(Macheroum et al., 2021; Gul et al., 2022). Nevertheless, plant

diversity patterns and assembly mechanisms in dryland

mountain ranges are not well documented. The Helan

Mountains, a typical arid and semi-arid region of China with

particularly fragile habitats exposed to extreme climate change,

are one example (Pang et al., 2013; Cheng et al., 2020). The

Helan Mountains are also the boundary line between the

grassland and desert areas of Northwest China (Jiang et al.,

2007). The vegetation types can be classified as desert grassland,

sparse mountain grassland, montane coniferous forest,

subalpine scrub meadow or alpine meadow. The vegetation

distribution patterns in these regions are strongly influenced

by climatic and topographical factors (Cheng et al., 2020; Arif

et al., 2022a; Chen et al., 2022). However, to our knowledge,

elevation-diversity relationships have not been well revealed in

the drylands of China, especially when considering the different

life forms of plants.

This study investigated herbaceous and woody communities

along elevational gradients in the Helan Mountains of arid and

semi-arid regions in Northwest China. Here we integrate

taxonomic and phylogenetic diversity and environmental
Frontiers in Plant Science 03
drivers (climatic and topographic variables; Cheng et al., 2020)

to elucidate how various ecological mechanisms shape

herbaceous and woody community assemblages and to reveal

how these communities respond to different environmental

drivers along elevational gradients. Specifically, we aimed to

answer the following key scientific questions:
(1) How do the TD and PD of herbaceous and woody

communities vary with changing elevation gradients in

the Helan Mountains?

(2) Which factors in the environment impact the TD and

PD of herbaceous and woody communities in this area?

(3) How and to what extent do EF and DF affect the spatial

turnover of herbaceous and woody species in this

region?
Materials and methods

Study area and vegetation surveying

This research was performed in the Helan Mountains (38°

13′ N, 105°41′ E; Figure 1), which are situated in arid to semi-

arid regions in Northwest China. The climate in this region is

primarily subject to the influence of the summer and winter

monsoons, with mean annual temperatures ranging from 8.2°C

to 8.6°C (-8.54°C in January and 21.43°C in August) and mean

annual precipitation of 209.2 ± 57.2 mm, of which around 44%

of precipitation occurs during the July-August growing season

(Pang et al., 2013). High-elevation areas had lower temperatures

and higher precipitation than low-elevation areas (Jiang et al.,

2007). Gray cinnamonic soils prevail in this area (Wang and

Yang, 2021). It is robust evidence of local vegetation evolution in

northern China and its relationship with East Asian summer

winds (Cheng et al., 2020). Trees (such as Picea crassifolia, Pinus

tabuliformis, and Ajania fruticulose), shrubs, and grasses are the

main land cover types across this region. However, due to the

long lifespan and limited distribution of trees, it is difficult to

detect tree distribution patterns with changing elevation

gradients. Specifically, an interspersed distribution of

continuous woody (shrubs and small trees) and grassland

dominates in this area. Considering accessibility, we identified

23 study sites with the peak growing season of 2021, from 1,169

m to 2,589 m in the Helan Mountains. At each site, we

established a permanent plot (20 m × 20 m) (Lopez-Angulo

et al., 2018), and its vegetation structure and composition were

assessed by systematic sampling by using the quadrat method, as

it has less bias and covers the entire plant composition (Ahmad

et al., 2020). Within each permanent plot, five quadrats of 25 m2

(5 m × 5 m for woody) and 1 m2 (1 m × 1 m for herbaceous)

were sampled (Shi et al., 2020). Each 1 m2 quadrat was nested

within each 25 m2 quadrat. A total of 230 quadrats were
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sampled. We recorded and measured all the species’

compositions and abundance in each quadrangle. We found

120 species that came from 90 genera and 41 families.
Taxonomic and phylogenetic
diversity metrics

We classified the plants into 44 woody (including all shrubs

and trees) and 76 herbaceous species according to the Flora of

China (http://www.iplant.cn/) and field observations to

understand how different species responded to elevational

gradients. To compare the TD and PD of herbaceous and

woody communities, species-level phylogenetic trees based on

the mega-tree approach were constructed using the

“V.PhyloMaker” package (Smith and Brown, 2018; Jin and

Qian, 2019). The package is the largest dated phylogeny for

vascular plants and includes 74,533 species of extant vascular

plants (Jin and Qian, 2019). We then used the pruned versions of

the tree for calculating the phylogenetic structure of both

herbaceous and woody species in each of the 23 communities.

We then calculated TD using species richness and PD using the

mean pairwise distance (MPD) and the mean nearest taxon

distance (MNTD) (Qian et al., 2019). To disentangle the

assembly mechanisms of herbaceous and woody communities

(Luo et al., 2019), we converted their MPD and MNTD metrics

into standardized effect values (SESmpd and SESmntd indices)

in the ‘Picante’ package (Kembel et al., 2010). Positive and
Frontiers in Plant Science 04
negative values of SESmpd and SESmntd respectively indicate

overdispersal and clustering (Yakimov et al., 2020). Their

absolute values are higher than 1.96, meaning that the

community structure is significantly overdispersed or clustered

compared to null expectations (Webb et al., 2002; Yakimov et al.,

2020). In addition, to distinguish TD and PD of herbaceous and

woody communities at the beta scale, in the “betapart” package,

we calculated three pairwise dissimilarity indices (Baselga, 2010;

Baselga and Orme, 2012), in which the Sørensen dissimilarity

(bsor) index measures the overall beta diversity, the Simpson

dissimilarity (bsim) index measures the turnover component,

and the nestedness dissimilarity (bnes) index measures the

nestedness component derived from nestedness-related

richness differences.
Environmental and climatic variables

Temperature, precipitation, and their extremes will

remarkably influence species’ ecological and evolutionary

processes (Qian et al., 2019). Consequently, seven indicators of

temperature and precipitation (Table S1) from the WorldClim

database (Hijmans et al., 2005) were used to represent the

climatic characteristics of the study area. Before the analyses, a

principal component analysis (PCA; Table S1) was used to

prevent the effects of collinearity (Figure S1) (Dormann et al.,

2013), and the PCA axes with an interpretation rate higher than

10% were retained for subsequent analysis (Slik et al., 2013),
FIGURE 1

Map of the study site and plots on Helan Mountain of arid and semi-arid regions in Northwest China.
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resulting in two axes of climate variables (PC1 and PC2; Figure

S2). Besides, the slope and aspect (a proxy for topographic

heterogeneity; Shiferaw et al., 2018) of each plot were

determined and closely related to the amount of incoming

solar radiations and the construction of different microclimatic

conditions (Pang et al., 2013), which is a significant factor that

promotes diversification in plant community composition. In

addition, the altitude, longitude, and latitude of each plot were

recorded with GPS.
Statistical methods

We analyzed the relationship between TD, SESmpd,

SESmntd and elevation using simple linear and quadratic

regression models (without significant spatial autocorrelation

based on Morans’I index, Table S2). The analysis considered

both linear and quadratic terms but only retained the results for

the linear term when the quadratic term was not significant. A

linear multiple regression model involving the ordinary least

squares (OLS) method was used to identify the role of climate

(climate PC1, climate PC2), topographic (slope and aspect), and

biotic (woody cover for herbaceous) drivers (Figure S3) in

determining a regional disparity in the TD and PD of

herbaceous and woody species. Prior to the OLS analyses, all

predictors were centered and scaled (Chun and Lee, 2017). To

understand the relative contribution of predictor variables to the

diversity of herbaceous and woody species, model averaging

methods based on Akaike information criterion weights were

used in the “MuMIn” package (Barton, 2019). We estimated the

coefficients by averaging over all possible models and weighting

them according to the probability associated with each model.

We investigated the correlation between taxonomic and

phylogenetic turnover based on the bsim index with spatial

and environmental distance to evaluate the species turnover

along altitudinal gradients by employing the “ecodist” package

(Goslee and Urban, 2007). A variance partitioning approach was

performed to quantify the relative contribution of EF and DF in

taxonomic and phylogenetic turnover. Prior to variation

partitioning, the redundancy analysis and the forward

selection were executed to reduce redundant components

(Zheng et al., 2021). In this analysis, the ‘vegan’ package

partitions the total explained variance (R2) into three parts

(Oksanen et al., 2020; Shi et al., 2021), including their

unexplained, joint, and independent effects. The Euclidean

distances of five environmental variables (PC1, PC2, elevation,

aspect, slope) between 23 sites were chosen to reflect EF, and

spatial distances between study sites were selected to reflect DF

(Li et al., 2021; Shi et al., 2021). We use the adjusted R2 to

estimate the explanatory power of each component because of

the different number of explanatory variables in our models.

In addition, to further examine clustering or overdispersion

of plant communities, we performed a co-occurrence analysis by
Frontiers in Plant Science 05
calculating the C-score (Checkerboard score; Stone and Roberts,

1990), which is a widely used index to measure associations

between species pairs. We used null model analyses to quantify

whether species co-occurrence patterns deviated from the

expectations of a random (stochastic) assembly process (Ulrich

et al., 2012). The values obtained were standardized to allow

comparisons among assemblages using the standardized effect

size (SES). The observed C-score was higher than randomized

expectations, indicating that pairs of species co-occurred to a

lesser extent than expected at random. The magnitude of SES

was interpreted as the strength of the effect of deterministic

processes on the assemblage. The C-score was evaluated based

on 10,000 simulations and using the sequential swap

randomization algorithm with the package “EcoSimR” (Gotelli

et al., 2015).
Results

The TD and PD of herbaceous and
woody community

The TD (species richness) and PD (SESmpd and SESmntd)

of herbaceous communities significantly increased linearly along

the elevational gradient (Figure 2A, Figures 3A, C). The

nonlinear model was remarkable for woody communities with

relatively low richness at the ends of the elevation range and

peak richness in the 1500 ~ 1600 m range (Figure 2B). However,

the PD (SESmpd and SESmntd) of woody communities did not

significantly change as elevation increased (Figures 3B, D). The

SESmpd and SESmntd of herbaceous communities showed

random patterns at high elevations (above 2000 m) and were

characterized by significant phylogenetic clustering (negative

values below ‐1.96) at low elevational sites (Figures 3A, C).

Surprisingly, all woody communities showed random patterns

for SESmpd and SESmntd, except for two communities at low

elevations that showed significant phylogenetic clustering for

SESmntd (Figures 3B, D). Overall, most phylogenetic SESmpd

and SESmntd values of herbaceous and woody communities

were less than zero, indicating that phylogenetic clustering was

driven by deterministic processes. This result was further

supported by the co-occurrence analysis, where the observed

C-score was higher than the simulated C-score values (Figure

S4), indicating a non-random co-occurrence pattern. In

addition, the C-score showed a higher standardized effect size

(SES) for woody plants compared to herbaceous plants,

indicating the greater importance of deterministic processes

for woody plant assemblages (Figure S4).

For herbaceous communities, climate PC1 and woody cover

had significantly negative effects on species richness (Figure 4A),

whereas SESmntd indices showed significant negative

relationships with climate PC1 and aspect, and no relationship

between SESmpd and multi-dimensional variables (Figures 4C,
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BA

FIGURE 2

Elevational patterns of species richness of herbaceous (A) and woody (B). Trend lines and shaded areas represent the fitted values from linear
regression with a linear term (A) and quadratic (B) and their 95% confidence intervals, respectively.
B

C D

A

FIGURE 3

Elevational patterns of standardized values of mean phylogenetic structure (SESmpd and SESmntd) of plant communities of herbaceous (A, C)
and woody (B, D). The size of the circle indicates the relative species richness associated with each plot.
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E). Surprisingly, regional (climatic PC1 and PC2) and local

(aspect and slope) variables were not significantly correlated

with the TD and PD of woody communities (Figures 4B, D, F).
Taxonomic and phylogenetic beta
diversity of herbaceous and
woody communities

Overall variation in the taxonomic and phylogenetic b-
diversity of the herbaceous and the woody resulted mainly

from turnover rather than nestedness (Figure 5). In taxonomic
Frontiers in Plant Science 07
b-diversity, the species turnover of herbaceous and woody were
0.842 (94.08%) and 0.825 (94.83%), whereas species nestedness

accounted for only 0.053 (5.92%) and 0.045 (5.17%),

respectively (Figure 5A). In phylogenetic b-diversity, the

species turnover of herbaceous and woody were 0.912

(97.33%) and 0.875 (96.05%), whereas species nestedness

accounts for only 0.025 (2.67%) and 0.036 (3.95%),

respectively (Figure 5B).

For herbaceous communities, the taxonomic turnover was

related to environmental distance after accounting for spatial

effects (Mantel’s r = 0.42, p = 0.001), but it did not depend on the

spatial distances when considering the environmental influences
B

C D

E F

A

FIGURE 4

The effects of multi-dimensional variables on the species richness and phylogenetic structure (SESmpd, SESmntd) of plant communities of
herbaceous (A, C, E) and woody (B, D, F). The parameter estimates (standardized model-averaged coefficients for variables) and the associated
95% confidence intervals are shown. Coefficient > 0 represents a positive effect, while coefficient < 0 indicates a negative effect (red). All
predictors were centered and scaled to make the coefficients directly comparable.
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(Mantel’s r = -0.14, p = 0.12). Phylogenetic turnover displayed a

similar trend, but it was reduced in prominence when

considering spatial influences (Mantel’s r = 0.34, p = 0.001) or

environmental effects (Mantel’s r = -0.20, p = 0.06). For woody

communities, the taxonomic turnover was related to
Frontiers in Plant Science 08
environmental (Mantel’s r = 0.53, p = 0.001) but it was not

associated significantly with spatial distance (Mantel’s r = -0.16,

p = 0.06). Phylogenetic turnover was significantly correlated

with the environment (Mantel’s r = 0.55, p = 0.001) and spatial

distance (Mantel’s r = -2.4, p = 0.011).
BA

FIGURE 5

The taxonomic (A) and phylogenetic (B) b-diversity and its composition of the herbaceous and the woody community in the arid and semiarid
areas of China.
B

C D

A

FIGURE 6

Venn diagram displaying the relative importance of environmental filtering and dispersal filtering on herbaceous (A, C) and woody (B, D) species
turnover in the arid and semiarid areas of China.
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Environmental and spatial variables explained 33% to 77%

of the variation in species turnover (Figure 6). The independent

effects of environmental variables accounted for 3% and 7% of

the overall variances of taxonomic turnover and phylogenetic

turnover, respectively. Independent spatial effects accounted for

3% and 2% of overall variances of taxonomic turnover and

phylogenetic turnover (Figures 6A, C). In comparison,

environmental variables (24% for taxonomic turnover and

12% for phylogenetic turnover) were drastically higher than

that spatial variables (4% and 3%) (Figures 6B, D). Compared to

the pure effects, their combined effects accounted for most of the

turnover variation in herbaceous (27% for taxonomic turnover

and 36% for phylogenetic turnover) and woody (50% for

taxonomic turnover and 53% for phylogenetic turnover)

species (Figure 6).
Discussion

Elevational patterns and drivers of
herbaceous and woody in drylands

The species richness of the woody community peaked at mid-

elevation areas and declined toward both sides of elevation

gradients (Figure 2B), supporting the earlier studies in the Helan

Mountains (Zhu et al., 2009). The authors attributed the findings to

serious drought (low altitude) and lower temperatures (high

altitude) with low species richness, and highlighted that the

humped pattern of species richness was explained by the

moderate climatic situation in the mid-elevations (Zhu et al.,

2009). Meanwhile, this result is consistent with previous research

on elevational gradients in other mountain habitats (Zhou et al.,

2019), which revealed a unimodal relationship. The low richness at

lower altitudes might be explained by anthropogenic disturbances

and the extreme competition for resources (Sproull et al., 2015;

Zhang et al., 2016). On the contrary, the poorer richness at higher

altitudes might be explained by the ecophysiological limitations of

the harsh environment (Zhu et al., 2009; Luo et al., 2019), in which

their growth was hampered and led to poor biodiversity (Ding

et al., 2022; Hu et al., 2022). Another possible reason was that

abiotic filtration imposed a limit on the seed settlement or species

persistence (Montano-Centellas et al., 2021; Wang et al., 2021). In

other words, water scarcity reduces species richness at lower

altitudes, and low temperatures limit species richness at higher

altitudes. In comparison, the greater number of species in mid-

elevation regions might be mainly related to favorable climatic

conditions (e.g., water availability, optimal temperature) in these

regions. This means that pressures are strong at both ends of the

elevational gradient, but environmental conditions are milder at

mid-elevations and therefore species richness is higher at mid-

elevations (Lopez-Angulo et al., 2018).

Unlike woody richness, herbaceous richness showed an

increasing tendency along elevational gradients. A study in a
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subtropical forest supported the pattern that plant species

richness increased with elevation (Zhang et al., 2021). They

suggest that both human activities and the elevation range

described by the study are two key factors leading to the

observed diverse patterns (Macheroum et al., 2021; Zhang

et al., 2021; Muhammad et al., 2022). In the Helan Mountains,

plant communities at high elevations are predominantly

herbaceous, whereas those at low elevations are mainly

composed of woody plants (Jiang et al., 2007; Pang et al.,

2013). The study reported that environmental conditions were

generally more beneficial for alpine plants, which seem to have

essential roles in herbaceous plants (Yakimov et al., 2020). When

compared to species at lower elevations, alpine meadow plants

without woody constraints use different survival strategies in

harsh environments, such as investing more resources in

reproductive and below-ground components and expanding

display areas to attract pollinators (Wang et al., 2021).

Therefore, the shorter life cycle of herbaceous plants and the

higher potential for seed dispersal and germination strategies

that favor survival may be the main contributors to changes in

herbaceous richness across elevational gradients in the Helan

Mountains. Furthermore, our findings demonstrate the

combined effect of biotic and abiotic stresses on herbaceous

species distribution and support the inconsistent trends of

herbaceous and woody richness along altitudinal gradients.

Notably, our results appear contrary to the widely reported

view that elevational trends of species richness should decrease

in a unimodal or monotonic pattern (Lee and Chun, 2015;

Sproull et al., 2015; Zhou et al., 2019). However, when drought is

exacerbated at lower elevations, it might reduce species diversity

and likely produce unexpected biodiversity patterns (Lopez-

Angulo et al., 2018). In addition, given the short lifespan of

herbaceous plants, especially annual herbs, we may have

overlooked species coexistence patterns associated with them

due to the fact that we used only one field survey. Therefore,

such limitations should be taken into account when interpreting

our results. Huang et al. (2016) emphasize that it is essential to

pay more attention to herbaceous plants in biodiversity

conservation. So, we suggested that more research be done to

discover their general distribution in the dryland mountains.

In addition, this study found that both the SESmpd and

SESmntd of herbaceous communities significantly increased

linearly along the elevational gradient. Still, there is no clear

pattern in the phylogenetic structure of woody communities.

This difference can be traced to disparities in the responses of

various plant functional groups toward climate change,

topographic heterogeneity, soil nutrients, and disturbances

along the altitudinal gradient in mountainous areas (Paz et al.,

2021). In the Helan Mountains, elevation, local conditions,

slope, and aspect were reported to strongly influence spatial

patterns of plant biodiversity (Jiang et al., 2007; Pang et al.,

2013). Compared to woody species, herbaceous plants were

significantly constrained by multi-dimensional variables (e.g.,
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climatic, aspect, and woody cover), indicating that the effects of

various environmental factors on different groups of life forms

were inconsistent (Loidi et al., 2021). Such variations probably

relate to differences in longevity and tolerance to weather (Qian

et al., 2014). Large differences in life cycles and tolerance to

climatic stress between herbaceous and woody plants may result

in inconsistencies in diversity distribution patterns across

elevations (Qian et al., 2014). Herbaceous plants are generally

able to adjust to novel climate situations two to ten times quicker

compared to woody plants due to their shorter reproductive

cycles and faster growth rates (Smith and Beaulieu, 2009; Zhou

et al., 2019). Moreover, their seed germination, dispersal, and

establishment may be tightly controlled by climate and other

environmental factors (Wang et al., 2021). In our study, after

controlling for other variables, herbaceous richness showed a

negative correlation with woody cover, which could be that

woody species act as a limiting factor in the species composition

of herbaceous communities through the reduction of available

resources such as light and soil (Sproull et al., 2015). Therefore,

herbaceous and woody assembly processes may be driven by

different mechanisms (Luo et al., 2019). We suggest that the

herbaceous communities are radically distinct from woody

communities concerning the phylogenetic structure (Qian

et al., 2014), mainly attributed to abiotic and biotic factors

(Gao et al., 2017). In mountainous areas that have been grazed

and logged for a long time, different results may be found

(Dainese et al., 2015; Wang et al., 2019). Therefore, more field

experiments in the mountain region are required to validate the

above hypothesis.

Although the taxonomic and phylogenetic patterns of

elevation distribution of herbaceous and woody plants were

not consistent, our study indicated (Figure 3) that most

herbaceous and woody communities showed phylogenetic

clustering (both SESmpd and SESmntd < 0) throughout

elevation gradients. Another important finding was that the

phylogenetic structure of most communities did not differ

significantly from that expected from the expected null model.

We believe that this phylogenetic pattern might stem from

deterministic and stochastic processes. Environmental filters

played a big role in the phylogenetic clustering of SESmpd,

which had a big impact on the whole lineage (Zobel and

Scheiner, 2016). However, the SESmntd might result from the

decentralization capability of contemporary species (Volis and

Bohrer, 2013). In the Helan Mountains, drought has likely

filtered out species that lack drought tolerance mechanisms.

Preliminary research has shown that strong environmental

filtering procedures are more likely to form community

assemblages at high altitudes than competitive exclusion

procedures (Chun and Lee, 2017). Other studies support that

herbaceous species may be subject to assembly processes (Luo

et al., 2019), such as dispersal limitation due to their smaller

body and fruit size (Jiang et al., 2015). Moreover, the

stochasticity may promote the early assembly of plant
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2012). Apparently, niche-based and random processes may play

a big role in how plants are put together in the Helan Mountains.
Ecological drivers of species turnover

Here we found a comparatively high taxonomic and

phylogenetic species turnover of herbaceous and woody

communities in the Helan Mountains flora (Figure 5), which

is consistent with research in Donglingshan Mountain (Yakimov

et al., 2020). Although herbaceous and woody plants exhibit a

higher taxonomic and phylogenetic turnover, they correlated

poorly with spatial distance after controlling for environmental

effects. As previous studies have shown, an environmentally

heterogeneous ecosystem generally has a relatively high turnover

rate (Coelho et al., 2018). Species turnovers tend to increase with

environmental heterogeneity due to amplified variations in

community composition and species richness (Ahmad et al.,

2020). There is an evident species substitution phenomenon in

this highly heterogeneous mountain ecosystem due to regional

environmental differences (Bergamin et al., 2017). In addition,

turnover is related to elevation and may also be influenced by

soil fertility, water resources, meteorology, and light conditions

(Dainese et al., 2015; Nascimbene and Spitale, 2017).

This study found that independent contributions of spatial

and environmental factors differentially influenced taxonomic

and phylogenetic turnovers of herbaceous and woody species

(Figure 6). The reason could be that herbaceous and woody

plants differ in their evolutionary relationships and dispersion

patterns (Liu et al., 2015). Studies show that woody plants are

both less plastic in their basic niche and more dispersal-selected

than herbaceous plants (Farjalla et al., 2012). Our study area’s

topographic structure may have resulted in significant

geographic isolation, limiting the migration, dispersal, and

assemblage of many of the species distributed in the current

forest. Further, canopy structure might more intensely influence

understory plant (herbaceous) composition (Luo et al., 2019).

Consequently, they probably followed relatively independent

pathways in terms of evolution, dispersal filtering, and species

interactions. We also found that the joint contribution of spatial

and environmental factors had the highest proportion in

explaining the turnover of herbaceous and woody plants

(Figure 6). This result means that the spatial turnover of plant

communities in our study area is mainly shaped by a

combination of EF and DF (Chun and Lee, 2017;

Grigoropoulou et al., 2022). As emphasized by previous

studies, our results support the view that EF and DF jointly

control plant community assembly, although the relative

contribution of these two processes at different areas and

scales is still inconclusive (Shi et al., 2021). It is worth noting

that herbaceous and woody species are constantly interacting.

Woody species can act as a filter in the structuring of understory
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plants (herbaceous) by reducing resource availability (Luo et al.,

2019), but the sampling design of this study did not proceed

according to plant-plant interactions, which would not directly

capture the effect of woody plants on herbaceous plants.

Nevertheless, integrating the taxonomic and phylogenetic

diversity of herbaceous and woody species might provide a

novel insight into the flora assemblage in the arid and semi-

arid mountains.
Implications of biodiversity conservation

As a crucial dimension of biodiversity, beta diversity could

offer important evidence to predict ecosystem functioning and

improve protected priorities (Martinez-Almoyna et al., 2019;

Scriven et al., 2015). Furthermore, knowledge of beta diversity

patterns may effectively shape preservation policies (Swenson,

2011; Bergamin et al., 2017). For example, if species turnover is

the dominant pattern, more protected areas are needed for

biodiversity conservation (Arif et al., 2022b; Hira et al., 2022).

However, when nestedness is the prevailing pattern, there is a need

to establish a sufficiently large protected area with high species

richness (Bergamin et al., 2017). Given that species turnover in the

Helan Mountains is the dominant factor in driving the b-diversity
pattern (Figure 5), conservations must focus on a vast number of

protected areas distributed to provide maximum protection for the

life forms of species (Bergamin et al., 2017; Muhammad and

Changxiao, 2022). Increasing evidence suggests that phylogenetic

diversity is a key to understanding species assemblages and might

lead to a fundamental understanding of ecosystem function (Li

et al., 2020). Phylogenetic diversity represents the lineage evolution

relationships among species and it can help form conservation

strategies, it may be more important to conserve a phylogenetically

unique species, compared to a more redundant one. Furthermore,

our results suggest that both environmental and spatial factors play

an important role in shaping plant community assembly, and

therefore, it is desirable to combine environmental filtering with

dispersal limitation in the practical process of biodiversity

conservation in drylands. As a consequence of climate change,

the extent of global dryland area is projected to increase

particularly in developing countries, which further increases

dryland degradation and biodiversity loss (Huang et al., 2015).

The global decline in biodiversity has driven calls for ambitious

targets for biodiversity conservation and protected areas coverage

(Peng et al., 2021). Thus, our findings could have a big impact on

the conservation of biodiversity in drylands as the climate warms

and causes more drought (Zhu et al., 2020; Jiao et al., 2021).
Conclusions

In summary, this study integrates TD, PD, and environmental

drivers to evaluate herbaceous and woody species’ general patterns
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semi-arid regions. Our study demonstrated that the responses of

herbaceous and woody plants along elevation gradients in the

Helan Mountains are decoupled mostly due to the inconsistent

influence of biotics and abiotics on them. The TD and PD of

herbaceous communities substantially increase linearly along an

elevational gradient, while a nonlinear model was remarkable for

woody communities with relatively low richness at the ends of the

elevation range and peaked richness at mid-altitudes. In addition,

there was no relationship between woody PD and elevation. We

found TD and PD were mainly dominated by species turnover

with fewer contributions from nestedness. The turnover process is

primarily caused by a combination of environmental and spatial

variables. We also showed that environmental and dispersal

filtering jointly shapes the plant community assemblages along

elevational gradients in arid and semi-arid areas. These findings

highlight that conservationists and policymakers should focus on

the different adaptation strategies of herbaceous and woody plants

to the drought that continues to increase with global warming.
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