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Aerobic living is thought to generate reactive oxygen species (ROS), which are

an inevitable chemical component. They are produced exclusively in cellular

compartments in aerobic metabolism involving significant energy transfer and

are regarded as by-products. ROS have a significant role in plant response to

pathogenic stress, but the pattern varies between necrotrophs and biotrophs. A

fine-tuned systemic induction system is involved in ROS-mediated disease

development in plants. In regulated concentrations, ROS act as a signaling

molecule and activate different pathways to suppress the pathogens. However,

an excess of these ROS is deleterious to the plant system. Along with altering

cell structure, ROS cause a variety of physiological reactions in plants that lower

plant yield. ROS also degrade proteins, enzymes, nucleic acids, and other

substances. Plants have their own mechanisms to overcome excess ROS and

maintain homeostasis. Microbes, especially endophytes, have been reported to

maintain ROS homeostasis in both biotic and abiotic stresses by multiple

mechanisms. Endophytes themselves produce antioxidant compounds and

also induce host plant machinery to supplement ROS scavenging. The

structured reviews on how endophytes play a role in ROS homeostasis under

biotic stress were very meager, so an attempt was made to compile the recent

developments in ROS homeostasis using endophytes. This review deals with

ROS production, mechanisms involved in ROS signaling, host plant

mechanisms in alleviating oxidative stress, and the roles of endophytes in

maintaining ROS homeostasis under biotic stress.

KEYWORDS

ROS - reactive oxygen species, ROS homeostasis, induced systemic response (ISR),
biotic stress, endophytes
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1 Introduction

Among the environmental stresses, biotic stress is a real

scourge that causes enormous crop yield losses. Biotic factors,

including microbial pathogens, weeds, and herbivores, restrict

the plants’ ability to acquire their full genetic potential for

vegetative and reproductive growth (Qaim, 2011; Ashraf et al.,

2012). Being sessile, plants have evolved a surfeit of defense

mechanisms that enable them to sense particular stresses and

respond by triggering complex signaling networks that bring

appropriate biochemical and physiological changes to surmount

the stress (Atkinson and Urwin, 2012; Lamers et al., 2020). It is

well established that reactive oxygen species (ROS) play an

integral part in stress response and plant defense against

pathogenic stress (Heller and Tudzynski, 2011; Srivastava

et al., 2016; Sahu et al., 2020). Under normal growth

conditions, plants use ROS in small concentrations as a

signaling molecule (Baxter et al., 2014), but plants must

maintain a perfect balance between ROS synthesis and

ROS-scavenging mechanisms. Antioxidant enzymes are

transcriptionally activated when plants are subjected to

unfavorable environmental circumstances over an extended

period. Rapid ROS synthesis necessitates activating the

antioxidant defense system right away, which can be

accomplished through retrograde signaling, redox-based

changes, and activating ROS-scavenging enzymes. The main

effect of ROS buildup is its ability to oxidize proteins that might

serve as signaling targets, including kinases, transcription factors

(TFs), and proteins involved in the stress response. Because ROS

may alter the redox state of proteins by oxidizing methionine

residues and cysteine thiol groups, they have the power to

influence signaling. This causes ROS targets to become or

become less functional, change in structure, and become or

become less activated (Waszczak et al., 2015). Once ROS levels

have significantly increased, they may have negative oxidative

effects on proteins, nucleic acids, and lipids that finally lead to
Frontiers in Plant Science 02
cell death (Figure 1). ROS is a component of tightly controlled

programmed cell death (Petrov et al., 2015).

The perception of pathogen-associated molecular patterns

(PAMPs) by pattern recognition receptors of plants causes the

two-tiered plant immune system to react spontaneously, which

activates the first line of defenses, including the oxidative burst,

callose deposition, and enhanced expression of the PR gene,

collectively known as PAMP-triggered immunity. A typical

oxidative burst is the result of the activation of certain ROS-

producing enzymes, including the nicotinamide adenine

dinucleotide phosphat (NADPH) oxidases or cell wall

peroxidases (PODs) (Mittler, 2002), causing the accumulation of

an excessive amount of ROS. According to Zurbriggen et al.

(2010), the oxidative burst in plants may cause the hypersensitive

response (HR), which prevents the pathogen from spreading to

nearby tissue. The HR can also act as a key signal to activate

different pathways regulating plant defense responses and

phytohormone synthesis, inhibiting further pathogen

propagation and disease development (Beers and McDowell,

2001). It is widely known that ROS produced during plant

responses to either abiotic stressors or pathogen infection

stimulate mitogen-activated protein kinase (MAPK) signaling

pathways. Furthermore, unrelated to the flagellin receptor

FLAGELLIN SENSING 2, MPK7 downstream is activated by

the ROS burst induced by pathogen invasion, which further

activates genes linked to pathogenesis (Dóczi et al., 2007). In

MAPK signaling cascades, which are composed of MAPKKKs

(MAP3Ks), MAPKKs (MAP2Ks), and MAPKs that are

sequentially phosphorylated, a variety of target proteins,

including TFs, are either activated or inactivated (Liu and He,

2017). The high reduction state of these chemicals is associated

with better plant resistance to severe stress conditions and

antioxidant capability (Foyer and Noctor, 2011). The ability of

ROS signaling to spread from cell to cell and transmit signals

across great distances, also known as the ROS wave, is a crucial

aspect of this transmission (Mittler et al., 2011). Because of
BA

FIGURE 1

ROS accumulation in tomato leaves due to pathogenic stress as appeared from staining with nitroblue tetrazolium: (A) control and (B)
pathogen inoculation.
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systemic stress response, the locally produced signal is transferred

to the regions that are not immediately affected by the stress. The

ROS wave is implicated in the propagation of rapid systemic stress

response along with other hormone- or electric signal–mediated

signaling pathways (Gilroy et al., 2016; Fichman and

Mittler, 2020).

Excessive ROS discharge in plants while interacting with a

pathogen can strike both partners. However, plants protect

themselves by maintaining a perfect balance between ROS

synthesis and ROS-scavenging mechanisms. Plants accomplish

the ROS equilibrium by enzymatic or non-enzymatic antioxidant

defense mechanisms that tightly compartmentalize the regulation

of ROS levels (Foyer and Noctor, 2020). Some metabolites have

low molecular weights, e.g., glutathione, ascorbate, tocopherol,

flavonoids, and carotenoids, and play a significant role in non-

enzymatic antioxidant defense (Foyer and Noctor, 2020), firmly

relating the cellular antioxidant capability with the preservation

of redox equilibrium. Ascorbate and glutathione are necessary to

maintain the ROS concentration at physiological levels and may

directly break down ROS. In addition, they act as co-substrates

for the ascorbate-glutathione cycle enzymes. Many antioxidant

proteins are directly phosphorylated, primarily by post-

translational modifications. Notably, phosphorylation occurs

inside the ascorbate-glutathione cycle and regulates hydrogen

peroxide (H2O2) breakdown. Several enzymatic antioxidants

maintain ROS homeostasis in plant cells. Among the enzymatic

systems, superoxide dismutase (SOD) is considered the first line

of defense to counter ROS-induced oxidative damage in nearly all

living cells. Catalase (CAT) is involved in several plant

physiological responses during vegetative and reproductive

stages (Yang et al., 2019; Zhang et al., 2020). Furthermore,

glutathione PODs and thio-, gluta-, and peroxiredoxins are also

potent ROS scavengers (Kang et al., 2019). The induced levels of

protective ROS scavengers are responsible for the tolerance level

against biotic and abiotic stress. Moreover, endophytic microbes

that reside inside the plant host contribute to pathogen defense

status by mediating and regulating cellular redox homeostasis

(2020; Sahu et al., 2019; Singh et al., 2020). Endophytes reduce

ROS content in plant cells by increasing scavenging via increased

glutathione and ascorbate redox state and promoting antioxidant

enzyme activities (Sadeghi et al., 2020). A plant growth-

promoting endophyte, Piriformospora indica, was reported to

induce resistance to fungal diseases in barley. P. indica caused the

elevated antioxidative level by activating the glutathione-

ascorbate cycle (Waller et al., 2005). The ROS-scavenging

enzymes such as SOD, POD, and CAT were also found to be

overaccumulating in the plant colonized by P. indica (Trivedi

et al., 2016). Like P. indica, this review has attempted to compile

some recent examples illustrating the role of endophytes in ROS

homeostasis with highlights on ROS production, mechanisms

involved in ROS signaling, and host plant mechanisms in

alleviating oxidative stress.
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2 Reactive oxygen species in
response to biotic stress

During crop growth, multiple biotic stresses such as

pathogens and herbivores severely limit the crop productivity

by altering various biochemical, physiological, and metabolic

processes. Among them, the ROS production is a very crucial

signaling response against pest and pathogen attack (Table 1).

The ROS acts as an alarm for the plant’s metabolic pathways to

divert toward protecting plant machinery and restricting

damage. ROS is primarily produced in chloroplast,

mitochondria, and peroxisomes (Figure 2). During stress,

however, it is generated from secondary sites like the cell

membrane, cell wall, endoplasmic reticulum, and apoplast.

The signaling during the stress causes excessive generation of

ROS, which, in turn, damages plant cells by causing redox

imbalance, lipid peroxidation, degradation of chlorophyll,

nucleic acids, and proteins. Harmful effects of excessive ROS

are curbed by plants’ scavenging mechanisms.

On the other hand, pathogen infections cause certain ROS-

producing enzymes, including the NADPH oxidases or cell wall

PODs, to be activated (Mittler, 2002). These enzymes produce an

excessive amount of ROS, known as the oxidative burst (Heller

and Tudzynski, 2011). According to Zurbriggen et al. (2010), the

oxidative burst in plants may cause the HR, which prevents the

pathogen from spreading to nearby tissue. The HR can also act

as a key signal to activate different pathways regulating plant

defense responses and phytohormone synthesis (Beers and

McDowell, 2001), inhibiting further pathogen propagation and

disease development. The sequential induction of these

pathways results in alteration in expression of genes related to

the plant defense system, induces formation of phytoalexins, and

causes callose deposition. This altogether results in a resistance

response against a pathogen (Forman et al., 2010). Plants

typically enhance their antioxidant capacity in response to

abiotic stress, which aids them in reestablishing the cellular

redox equilibrium (Hazen et al., 2003; Buchanan and

Balmer, 2005).
2.1 ROS and pathogenesis by
necrotrophs and biotrophs

The biotrophic pathogens obtain their energy from live cells.

These can be found on or in living hosts and have intricate

nutrient needs that they derive from their hosts. Whereas, the

necrotrophs get their energy from dead cells. They quickly enter

and kill plant tissue and then feed on the decomposing host

remains in a saprotrophic manner. In cases of biotic stress

(El-Zahaby et al., 2004), a significant difference between

necrotrophic and biotrophic pathogens could be observed. The

pathogen-induced oxidative burst typically encourages disease
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TABLE 1 Mechanism of ROS generation and detoxification in different cellular compartment of plant cell.

Reactive oxygen
species (ROS)

Source of ROS ROS scavengers

In chloroplast

Singlet oxygen, 1O2 PS II over excitation a-Tocopherol, b-carotene, proline,
plastoquinone, D1 protein, and flavonoids

Superoxide, O2•− PS I Mehler reaction, photosynthesis ETC Cu/Mn SOD, Fe SOD, and alternate oxidase

Hydrogen peroxide, H2O2 Dismutation of superoxide APX, GPX, MDHAR, Prx, and TPX

Hydroxyl radicals, •OH Fenton/Haber–Weiss reaction Flavonoids and proline

Lipid radicals Lipid peroxidation a-Tocopherol, carotenoids, and flavonoid

In mitochondria

Superoxide, O2•− Complex I and II of ETC Mn SOD

Hydrogen peroxide, H2O2 Dismutation of superoxide APX, CAT, GPX, MDHAR, and Prx

Hydroxyl radicals, •OH Fenton/Haber–Weiss reaction Flavonoids and proline

In peroxisomes

Hydrogen peroxide, H2O2 Photorespiration (glycolate oxidase), fatty acid b-oxidation (acyl CoA oxidase),
dismutation of superoxide, and purine metabolism (urate oxidase)

CAT, APX, GPX, and MDHAR

Hydroxyl radicals, •OH Fenton/Haber–Weiss reaction Flavonoids

Superoxide, O2•− Purine metabolism (xanthine oxidase) and peroxisomal membrane polypeptides
(membrane monodehydroascorbate reductase)

Cu/Mn SOD and APX

In cytosol

Superoxide, O2•− Phytohorme biosynthesis (Aldehyde oxidase), Purine metabolism (Xanthine
dehydrogenase)

Cu/Mn SOD

Hydrogen peroxide, H2O2 Dismutation of superoxide APX, GPX, and TPX

Lipid radicals Lipid peroxidation GPX and Proline
1O2 – Flavonoids and proline

In apoplast/cell wall

Hydrogen peroxide, H2O2 Class III Peroxidases (PRXs), Dismutation of superoxide, Oxalate oxidase,
Amine oxidase, Polyamine oxidase, Germins

APX, GPX, and CAT

Hydroxyl radicals, •OH Fenton/Haber–Weiss reaction Flavonoids and proline

In plasma membrane

Superoxide, O2•− NADPH oxidase (RBOH homolog) SOD

Lipid radicals Lipid peroxidation a-Tocopherol

In endoplasmic reticulum

Superoxide, O2•− NADPH-dependent cytochrome 450 and cytochrome 540 -

Hydrogen peroxide, H2O2 Dismutation of superoxide –

In vacuole

Hydrogen peroxide, H2O2 – APX and flavonoids
1O2 – Flavonoids

Hydroxyl radicals, •OH – Flavonoids
Frontiers in Plant Science
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APX, ascorbate peroxidase; MDHAR, monodehydroascorbate reductase; CAT, catalase; GPX, glutathione peroxidase; TPX, thiorexiredoxin; Prx, peroxiredoxin; RBOH, respiratory burst
oxidase homolog; SOD, superoxide dismutase.
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development in host–pathogen interactions in necrotroph. In

Arabidopsis, increased ROS levels (produced by treatments with

xanthine/xanthine oxidase or glucose/glucose oxidase)

accelerated Botrytis cinerea’s necrotrophic development and

necrosis (Govrin and Levine, 2000). The Botrytis-induced

necroses and fungal development were constrained by the

inhibition of ROS using antioxidants or diphenylene iodonium

(NADPH oxidase inhibitor) (Govrin and Levine, 2000).

Similarly, with two necrotrophic fungi, Pyrenophora teres and

Rhynchosporium secalis, antioxidant pre-treatment of barley

hindered disease development (Able, 2003). Interestingly,

infection by the B. cinerea in tomato decreases the level of

antioxidants at the cellular and subcellular levels (chloroplastic

and mitochondrial), which causes ROS to be over-absorbed, and

this suppression aids in the successful fungus colonization

(Kuzniak and Sklodowska, 2004).

These results seem to revalidate Farkas’ initial discovery that

abiotic stress and infections caused by necrotrophic bacteria

share an identical mode of action (Farkas, 1978). The

observation is that tissue necrosis brought on by necrotrophic

pathogens or abiotic factors exhibits subcellular indications of

apoptosis [also called as programmed cell death (PCD)], such as

damaging the cellular components (Li and Dickman, 2004).

Furthermore, plants were given the ability to tolerate necrosis

brought on by necrotrophic pathogens, abiotic stress, or

chemical treatments exacerbating oxidative stress (menadione

and hydrogen peroxide) by transgenic expression antiapoptotic

genes (Li and Dickman, 2004; Xu et al., 2004).

In contrast to necrotrophs or abiotic stress, ROS and

antioxidants appear to have a different function in the

pathogenesis brought on by biotrophic infections. Initially, when

resistant plants are invaded by the incompatible biotrophic
Frontiers in Plant Science 05
pathogens, the host’s antioxidant defense is inhibited (Mittler

et al., 1998; Vanacker et al., 1998). It was proposed that the plant’s

intricate defense system includes suppressing the antioxidants.

The increasing ROS concentration may activate cellular signals

that cause resistance and the plant to become hypersensitive.

Leaves of sensitive barley developed HR-type symptoms when

external hydrogen peroxide was administered (Hafez and Király,

2003). It appears crucial to emphasize that, in resistant

(incompatible) host–pathogen interactions, ROS may also

suppress or kill the pathogens in addition to their effect on the

host’s manifestation of necrotic symptoms. Early hydrogen

peroxide administration following powdery mildew infection of

barley (before establishment) was demonstrated to kill the fungus,

causing noHR development (El-Zahaby et al., 2004). The HRwas,

however, enhanced in the resistant plant if ROS (hydrogen

peroxide) was inoculated before the pathogen infection.

Application of ROS to the resistant barley leaves after 2 days

of inoculation, although HR was developed but could not stop

the pathogen to cause necrosis (Bendahmane et al., 1999).

Similarly, it could also be seen in potato cultivars having

“exceptional resistance” toward the infection of potato virus X.

The virus is thought to be destroyed extremely quickly after

infection in potatoes that exhibit great resistance, preventing the

resistant host from mounting a hypersensitive reaction

(Bendahmane et al., 1999). Antioxidants are fully active, and

ROS are scavenged in interactions between suitable hosts and

biotrophic pathogens (El-Zahaby et al., 1995; Mittler et al.,

1998). Because an effective host resistance response may be

inhibited due to insufficient ROS levels, the pathogen may be

able to spread illness. Hence, it seems that ROS plays a different

role in biotic stress caused by biotrophic pathogens than it does

in abiotic stress or stress caused by necrotrophic pathogens.
FIGURE 2

Response of biotrophic and nectrotropic pathogens to the ROS burst in host plants.
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The investigation of rboh mutants and antisense lines

provided genetic evidence for functional roles of NADPH

oxidase Rboh during oxidative burst (Simon-Plas et al., 2002;

Yoshioka et al., 2003). Extracellular peroxide production is

eliminated when Rboh is downregulated or eliminated.

However, HR and pathogen development are impacted

differently by this lack of ROS. In response to avirulent

bacteria, for instance, a reduced HR that was developed in

double-mutant Arabidopsis (for atrbohD and atrbohF genes)

exhibits lower HR (Torres et al., 2002). Similarly, Nicotiana

benthamiana plants silenced by respiratory burst oxidase

homologs (rboh genes: NbrbohA and NbrbohB) are less

resistant to the avirulent Phytophthora infestans, where the

reduction in HR was reported (Yoshioka et al., 2003). In

contrary, the Arabidopsis mutant (for atrbohF gene) exhibited

higher HR and showed higher resilience to a mildly virulent

Hyaloperonospora parasitica strain (Torres et al., 2002). In

addition, there is proof that several Rboh proteins share

functional properties. For instance, the double-mutant
Frontiers in Plant Science 06
atrbohD atrbohF in Arabidopsis emphasizes some features of

the single atrbohD and atrbohF mutants (Kwak et al., 2003).

As a consequence of aerobic respiration, ROS are

also produced by the pathogen itself (endogenous). They can

also be found in the host environment (exogenous). In terms of

eliminating pathogens, ROS have been referred to as “double-

edged swords of life” (Mittler, 2017). First, ROS are considered

to be the tool employed by both antibiotics and the host immune

system because they have the ability to directly damage DNA,

lipids, and proteins. Controversies, nevertheless, cast doubt on

the paradigm. Second, effective pathogens use ROS for self-

adaptation. Phototrophs are essential for maintaining life on

Earth because they transform solar light energy into metabolic

energy. They must pay a price for this in the form of the

possibility of oxidative damage brought on by the many ROS

produced as undesirable by-products, including H2O2, singlet

oxygen (1O2), superoxide radical (O2•), and hydroxyl radical

(OH•) (Figure 3). The ROS are produced using only 1%–2% of

the total O2 used (Bhattacharjee, 2005).
FIGURE 3

Biomolecular targets for ROS induced damage in plant system.
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3 Reactive oxygen species
functioning under pathogenic stress

3.1 Singlet oxygen (1O2) under
pathogenic stress

The 1O2 production was connected to the HR where host–

pathogen interaction occurs at a race level (Vera-Estrella et al.,

1992). In cell suspension culture, it has been observed that the

extract of diseased leaves exhibited HR induced activated oxygen

species (AOS) production in a period of 2 min. Pseudomonas

syringae pv. syringae–infected tobacco plants displayed an HR

accompanied by elevated production of O2 along with lipid

peroxidation (Adam et al., 1989). Using the Cyt c reduction

assay, 1O2 was found in leaf discs undergoing HR in

investigations on the interaction between tobacco and the

tobacco mosaic virus (Doke and Ohashi, 1988). However, in

uninfected or systemically infected leaf discs, minimal 1O2 was

found. A good histochemical test of AOS generation is created

by the reduction of nitroblue tetrazolium by AOS. This test

revealed that the 1O2-producing activity seemed to take place at

the locations where a necrotic lesion would later develop.

Beltran-Garcıá et al. (2014) showed that the melanin made by

the fungus Mycosphaerella fijiensis causes the black Sigatoka

disease in bananas and generated abundant singlet molecular

oxygen and may act as a “photoactivated toxin” that kills cells in

infected leaves and causes damaging symptoms.
3.2 Superoxide radical (O2 •) under
pathogenic stress

Superoxide radicals (O2) are a by-product of peroxisomes’

regular metabolism. When molecular oxygen is reduced by one

electron, superoxide, an anion radical, is created. The

partitioning of superoxide radicals is catalyzed by the family of

enzymes known as SODs. It is an essential enzyme needed to

keep the cells’ redox potential stable. It is essential for shielding

healthy cells from the ROS that are created when many

intracellular pathogen infections occur. SOD eliminates excess

O−
2 radicals from the body by oxidizing to H2O2 and O2.

Kim et al. (1999) demonstrated that Pseudomonas syringae

pv. syringae B728a mutants induced disease symptoms on bean

pods and leaves similarly to the wild-type strain, despite more

susceptibility of the mutants to the O−
2 -producing chemical

paraquat. Smith et al. (1996) had cloned a sod gene of

Xanthomonas campestris pv. campestris encoding the main

Mn-dependent SOD activity. However, efforts to create a

SOD-deficient mutant were fruitless. The sod gene was

activated in planta within 3 h of inoculation by these scientists

using transcriptional fusions, with similar kinetics under

compatible and incompatible contacts (Hugouvieux et al.,
Frontiers in Plant Science 07
1998). However, it is probable that this strain’s Cu-Zn SOD

output is enough to shield P. syringae from the toxicity of

superoxide in plant leaves. Apart from pathogenic P. syringae,

Cu-Zn SODs are also present in a variety of other plant

associated bacteria, suggesting that these enzymes are widely

conserved (Finn et al., 2010).

Other SOD subtypes, however, have been demonstrated to

play a role in some plant–pathogen interactions. Mn SOD

activity has been demonstrated to be necessary for the soft-rot

pathogen Erwinia chrysanthemi to successfully macerate

Saintpaulia ionantha leaves, but intriguingly, the Mn SOD

mutants also preserved the capacity for potato maceration

(Santos et al., 2001). This study by Santos et al. (2001) also

discovered that thylakoid Cu-Zn SOD activity reduction and the

light-dependent production of ROS are linked to the decrease in

photosynthetic capacity. The formation of the necrotic lesions

that distinguish the P. syringae–caused bacterial speck illness

appears to depend on this ROS production. In P. aeruginosa

PA14, an opportunistic pathogen, Mahajan-Miklos et al. (1999)

discovered a gene that is critical for the quick destruction of the

nematode Caenorhabditis elegans and is also implicated for

causing disease in Arabidopsis. Under aerobic conditions, the

phenazine toxin pyocyanin that this gene makes causes

superoxide and hydrogen peroxide to form.

Saccharomyces cerevisiae grows slowly and is more sensitive

to substances that produce ROS and H2O2 when SOD1 is lost

(Moradas-Ferreira and Costa, 2000). Erwinia chrysanthemi cells

are exposed to an oxidative environment at the beginning of an

infection and need active defense mechanisms against oxidative

damage, including MnSOD. Under these conditions, the

pathogen may require iron homeostasis and active oxygen

species detoxification to survive and spread disease (Santos

et al., 2001).

SOD1 dysfunction can also change the typical physiology of

fungi. As an example, the ability to produce conidia and

mycorrhize is reduced in Oidiodendron maius (ericoid

mycorrhizal fungus) SOD1 mutant (Abba et al., 2009). Later

on, extracellular SODs were identified in a number of diseases

(Robinett et al., 2018). Extracellular SODs in fungi typically have

a glycosyl phosphatidyl inositol (GPI) anchor attachment site at

the C-terminus and an N-terminal secretion signal peptide. The

mature GPI anchor facilitates covalent attachment of the protein

to the cell membrane and/or cell wall (Robinett et al., 2018).

Such extracellular SODs from fungi are released to protect the

ROS generated from host defensive response, providing survival

in an environment with a lot of ROS. A Cu-only SOD (Sod5) is

encoded in the Candida albicans genome, which helps the

pathogen tolerate ROS (Gleason et al., 2014). The host’s

copper co-factor is quickly bound and sequestered by the C.

albicans Sod5, which reduces copper toxicity for C. albicans (Li

et al., 2015). Similar to this, the dimorphic fungus Histoplasma

capsulatum’s extracellular SOD helps yeast cells to resist

oxidative stress caused by the host (Youseff et al., 2012). A
frontiersin.org

https://doi.org/10.3389/fpls.2022.1042936
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sahu et al. 10.3389/fpls.2022.1042936
secreted extracellular Zn-only SOD helps Puccinia striiformis,

the fungus that causes stripe rust on wheat, to better withstand

oxidative stress when it interacts with the wheat host (Liu et al.,

2016). When conidia or conidiogensis are produced,

Colletotrichum graminicola exhibits increased expression of the

Mn SOD–expressing SOD2 gene (Fang et al., 2002). The

biological purpose of Fusarium oxysporum f. sp. vasinfectum’s

extracellular SOD FoSod5 is related to disease development. A

FoSOD5 mutant’s pathogenicity on cotton was dramatically

reduced because upregulation of FoSOD5 in cotton (Wang

et al., 2021). In addition, they demonstrated that extracellular

SODs play a role in the onset of ROS tolerance before harmful

chemicals even reach the fungus cell. These results show that

extracellular SODs are involved in pathogenesis in a variety of

hosts and provide tolerance to the oxidative stress brought on by

the host’s own ROS.
3.3 Hydrogen peroxide (H2O2) under
pathogenic stress

Among all the ROS, H2O2 is the most stable. It is thought

that plant mitochondria, which function as “energy factories”,

are a significant site of H2O2 generation connected to ongoing

physiological processes under aerobic conditions (Rasmusson

et al., 1998). Another important source of H2O2 synthesis comes

from chloroplasts. In the absence of transition metal ions, it

weakly reacts with most organic molecules and could easily

reach to the place far from its production site by diffusion

through cell membrane. A rising corpus of research is showing

that H2O2 is crucial for plants’ defense mechanisms under biotic

stress. H2O2 is well established for impeding the growth and

survival of plant pathogens, which further limit infection

transmission (Yergaliyev et al., 2016). In vitro spore

germination of various dangerous fungi was found to be

suppressed by H2O2 at micromolar concentrations (Averyanov

et al., 2007). The development of Pseudomonas syringae pv.

tabaci was also revealed to be highly sensitive to micromolar

doses of H2O2 (Cheng et al., 2016). The bacterial phytopathogen

Xanthomonas campestris pv. phaseoli (Xp) infects plants. During

the infection of the bacteria like Xanthomonas, plant generates

H2O2 for defensive signaling and for restricting bacterial growth

(Kumar et al., 2011).

In a similar study of bacterial infection, Botrytis cinerea’s

mycelium growth was reduced by 50% when exposed to H2O2

(50 mmol/L) (Małolepsza and Urbanek, 1999). These H2O2

values are similar to those found in various pathosystems

during the oxidative burst (Levine et al., 1994). Unexpectedly,

compared to the pathogen, plant cells are relatively resilient to

H2O2 (Lu and Higgins, 1999). H2O2 is relatively stable in

biological systems compared with its usual precursor

superoxide ( O−
2 ); hence, it can be used as a relatively
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controllable substrate and signaling molecule. In plants, redox

homeostasis is maintained through the balance between

production and scavenging. Furthermore, transgenic plants

having high constitutively expressed endogenous levels of

H2O2 have shown improved disease resistance. The tobacco

plants under light produced higher H2O2 and showed increased

tolerance to P. syringae (Cheng et al., 2016). Potato plants added

with glucose oxidase gene, which, in turn, produces H2O2, are

found to show resistance toward Phytophthora infestans and

Erwinia carotovora infection (Chamnongpol et al., 1998). CAT

applied exogenously could negate the impact. On the basis of

these results, it seems likely that higher levels of H2O2 made

transgenic plants more resistant to both bacterial and

fungal diseases.

Early plant–pathogen interactions produce H2O2, which acts

as signaling molecule and induce cell wall, strengthening

processes such as lignification, cross-linking of cell walls,

production of papillae, and other cell wall–strengthening

polymers. It has been discovered that papillae that accumulate

callose, proteins, and phenolic chemicals are a significant barrier

to pathogen penetration during the interactions between cereal

and powdery mildew pathogen. According to cytological

investigations, H2O2 is directly linked to the development of

functional papillae in cells that the fungus pathogen has not yet

been able to enter (Hückelhoven et al., 1999). The role of H2O2

as a substrate in lignification has received extensive

documentation. Numerous plant–pathogen interactions have

shown that an increase in H2O2 and the activity of PODs that

oxidize phenylpropanoid alcohols add to the lignification

process (Sahu et al., 2019). Furthermore, the concurrent

oxidative burst-derived H2O2 acts as a mediator of the POD-

catalyzed strengthening of hydroxyproline- and proline-

containing structural proteins of cell wall that were triggered

in cell suspension cultures (Otte and Barz, 1996). After the

elicitor applied, the process of cell wall strengthening moved

quickly and was over in a short amount of time. The highest

H2O2 concentration in tomato leaves treated with Fusarium

toxin correlated with the highest POD activity measured with

syringaldazine and with ferulic acid. This syringaldazine

is thought to be a marker of the lignification process, whereas

the ferulic acid is considered to link polysaccharides and lignin

in the cell wall (Kuiniak et al., 1999). Such cell wall–

strengthening processes are quickly induced near the pathogen

intrusion sites and restrict the nutrients availability to the

pathogens. This also inhibits the transport of pathogenic

toxins to host cell walls, making it highly resistant to the

degrading enzymes produced by the pathogens, and, in turn,

limits the spread of infection before transcription-dependent

defense mechanisms develop. According to Shetty et al. (2007),

the substantial H2O2 accumulation following pathogen infection

in wheat shows that the Septoria tritici infection has passed from

the biotrophic phase to the necrotrophic phase. Radwan et al.
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(2010) found that the H2O2 and malondialdehyde (MDA) levels

were higher in Bean Yellow Mosaic Virus–infected Vicia faba

leaves than in non-infected leaves.
3.4 Hydroxyl radical (OH•) under
pathogenic stress

The OH• radical is considered as highly potent but is

transient ROS. There is rising suggestion that the hydroxyl

radical is much more than simply a disruptive agent, similar to

how H2O2 was once assumed to be just a damaging oxidative

metabolism by-product but now known to have a key role in

signaling (Barba-Espıń et al., 2011; Vavilala et al., 2015). In

addition, it aids in stomatal closure, reproduction, the immune

system’s reaction, and the ability to adapt to various kinds of

stresses. Moreover, it also takes part in host cell death and

essential in degradation (recycling) of plant waste. The

formation of the OH• radical inside the cell is promoted by

membrane and cell wall SOD, NADPH oxidases, and PODs

along with transition metal catalysts. The activity of OH•

radicals is precisely controlled for delivering substrates to the

radical, because OH• radicals are having high diffusability and

shorter half-life.

Xanthomonas campestris pv. phaseoli (Xp) is killed by H2O2

in the Fenton reaction as a result of the production of the

hydroxyl radical. Xp was protected against H2O2 toxicity by

substances that absorbed hydroxyl radicals, but not from

superoxide or organic peroxide toxicity. Iron augmentation

enhanced H2O2 killing. However, iron chelator pre-treatment

of Xp had not provided any protective effects against H2O2 but,

in fact, increased the concentration of H2O2 (Vattanaviboon and

Mongkolsu, 1998). Rastogi and Pospisil (2012) demonstrated

that the OH• was the most harmful ROS produced against P.

infestans necrotrophic phase. It is generally known that OH•

causes cell damage by lipid peroxidation, protein degradation,

and nucleic acid damage by oxidizing biomolecules.

According to Karin and Stefan (2002), the tiny non-

enzymatic agent known as the •OH is thought to have a role

in the degradation of wood by brown rot. Inoculation of

biocontrol agent Pseudomonas fluorescens increased the •OH

generation in interaction with Antrodia vaillantii as compared to

the fungus alone. However, contact with Bacillus subtilis had no

effect on the amount of •OH produced. In the Fe-polyphenol

catalyst made from coffee grounds, Morikawa (2018) isolated

polyphenols from coffee, including caffeic acid and chlorogenic

acid, which are crucial in the production of hydroxyl radicals.

Application of H2O2 along with caffeic acid and chlorogenic acid

in soil was found to minimize Ralstonia solanacearum–caused

soil-borne illness in tomato cv. Momotaro. Phaeoacremonium

minimum and Phaeomoniella chlamydospora, which produce

esca disease in grape vines, promote the formation of hydroxyl

radicals and may add to the disease development.
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4 Detrimental effect of reactive
oxygen species on plant physiology

The ROS family performs dual functions in plant physiology

depending on their concentration. ROS regulate normal plant

growth and development processes and act as signaling

molecules to acclimate to environmental stress at low to

moderate concentrations. However, at higher concentrations,

they cause a risk that leads to cell injury and directly initiates

untimely PCD (Sharma et al., 2012). ROS hinder several

physiological functions of the plant cells through the alteration

of DNA or RNA, oxidation of polyunsaturated fatty acids

(PUFAs; lipid peroxidations), oxidations of amino acids in

proteins, and deactivation of several enzymes through

oxidation of co-factors (Mhamdi and Van Breusegem, 2018).

During aerobic metabolism, ROS is formed as a by-product. A

particular plant cell has a redox regulatory network maintained

through ROS that regulates almost all processes, including gene

expression and translation, metabolism, and turnover. In plant

cells, ROS is conditionally produced in different subcellular

compartments and cellular environments. Cells exploit ROS

for signaling and sensing roles according to their spatial and

temporal pattern along with reaction specificity. Furthermore,

when the ROS level exceeds the threshold under adverse

conditions, cells undergo oxidative stress, resulting in oxidative

modification and cell toxicity. Various locations in the cell

engage to generate ROS under both normal and stressful

conditions. Organelles like mitochondria, chloroplasts, and

peroxisomes represent potential sites for intracellular ROS

synthesis. Whereas, NADPH oxidases, PODs, amine oxidases,

etc., situated in plasma membrane and cell walls, are responsible

for extracellular/apoplastic ROS generation (Kadota et al., 2014;

Kadota et al., 2015). During plant–pathogen interaction, cell

wall–localized enzymes are the main source of apoplastic

ROS production.

In homeostasis, antioxidant machineries of plants scavenge

excess ROS produced during various metabolic processes. The

disturbance of the delicate balance between ROS generation and

scavenging leads to enhanced generation of ROS. Such

perturbation is caused by environmental stress, which inflates

the ROS level in plant cells and leads to oxidative stress. Under

stressful conditions, plants activate certain oxidases and PODs to

produce ROS (Doke, 1985; Bolwell et al., 1998; Bolwell et al.,

2002). The rapid rise of ROS concentration is referred to as an

“oxidative burst”. Owing to high chemical activity, ROS have the

potential to damage macromolecules such as pigments, nucleic

acids, lipids, carbohydrates, and proteins. Excess ROS

deteriorate the cell organelles and membrane components by

disturbing membrane integrity, protein cross-linking, protein

synthesis, ion transport, enzyme activity, DNA damage, etc.,

and, at severe levels, eventually triggering physiological or

programmed cell death. ROS accumulation in chloroplasts is
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detrimental to chloroplast development, disrupts photosynthetic

electron transport, and prevents photosystem II (PSII) assembly

and repair.
4.1 ROS induced damage at the
biomolecular level

Enhanced ROS accumulation causes damage to critical

biomolecules including nucleic acid, lipid, protein, and

polysaccharide, which alter cell physiology, membrane

properties, and signaling cascades, eventually leading to death

of the cells (Figure 3). Many reports suggest that transition

metals (Fe, Cu, Cd, Ni, Cr, Pb, V, and Hg) are potent oxidative

agents of biomolecules. These metals are more reactive toward

oxidative damage as they are involved in enormous ROS

production in cells (Stohs and Bagchi, 1995; Hemnani and

Parihar, 1998).

Stress causes the production of damaging by-products that

are bad for plants. ROS are substances created due to the

reduction of oxygen molecules in plant tissue. These species

include superoxide radicals, hydrogen peroxide (H2O2),

hydroxyl radicals (OH•), and singlet oxygen (1O2). These

oxygen radicals harm and kill cells by affecting proteins and

lipids. When given ideal development conditions, the ROS levels

within organelles are minimal. However, during stress, these

levels are increased due to changes in cellular water potential

that impact cellular homeostasis (Hussain et al., 2018). The

balance between ROS production and scavenging allows cells to

maintain homeostasis, with growth circumstances, the intensity

and duration of stress, and other factors influencing cellular

equilibrium (Beckhauser et al., 2016). The creation of ROS and

its scavenging function is somewhat antagonistic; an excess of

this molecule is poisonous to cells, whereas acting as a signal

transducer, it activates the plant’s defense. As a result of the first

burst of ROS generation, downstream post-stress activities are

activated, which mobilize defense mechanisms and promote

stress management (Sewelam et al., 2016). To prevent plant

stress damage, the ROS-scavenging pathway is essential.

Enhancing crop tolerance to environmental circumstances can

be accomplished by comprehending the mechanisms of ROS

generation, signaling, and scavenging (Chen et al., 2017).

Electron leakage produces ROS in the cell during

photosynthesis and respiration. Plants have a well-regulated

antioxidative mechanism combining enzymatic and non-

enzymatic components that can balance ROS creation and

scavenging to limit the overproduction of ROS and oxidative

stress and to prevent cellular damage (Duan et al., 2012).

Peroxides (POX), CAT, and SOD are a few of the enzymatic

antioxidant systems that control the equilibrium of ROS in

living things. These enzymes have a role in the conversion of

oxygen to hydrogen peroxide. Ascorbic acids (AAs),

tocopherol, flavonoids, glutathione, carotenoids, lipids, and
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phenolic compounds are non-enzymatic components that

effectively mitigate oxidative damage by reducing ROS

activity or by collaborating with enzymatic components to

achieve efficient antioxidant activity through the utilization of

H2O2 (Yin et al., 2015). Later, how these antioxidant systems

and their components are regulated and how they work will

be discussed.

The significance of controlling oxidative stress and local and

systemic ROS signaling function in addressing abiotic stress has

been thoroughly researched in recent years (de Carvalho et al.,

2013). Despite these investigations, the information on

antioxidant activity in various abiotically challenged plants still

varies greatly. We still do not fully understand how abiotic stress

management works or its essential elements. Here, we summarize

plants’ systems for managing oxidative stress and their function in

abiotic stress response. An overview of ROS generation in plants

and how the plant systemmaintains ROS homeostasis are given in

this paper. To achieve equilibrium, the connection between ROS

generation and scavenging inside plant organelles is also briefly

described. The list of genes involved in ROS regulation under

abiotic stress is the most crucial part of this review. We need this

information to find the processes and genes that control oxidative

stress in plants and to choose the most important targets for crop

breeding and genetic engineering.

4.1.1 Nucleic acid
Among nucleic acids, organellar DNA is more prone to

oxidative damage because it does not have protective histone

proteins, unlike nuclear DNA, and are situated in direct

vicinity of ROS generation sites. Irrespective of the source of

DNA, damage leads to mutation and further results in

abnormalities in the resultant protein, which influences

different facets of cell physiology (Das and Roychoudhury,

2014). Some damages/lesions in DNA are subjected to repair

processes and can be eliminated. However, a few errors are not

easy to repair and can have biological consequences. Such an

irreversible reaction happens when hydroxyl ions create DNA–

protein cross-links between DNA and associated proteins.

Hydroxyl radicals are likely to damage both the nitrogenous

base and the deoxyribose sugar backbone. ROS deplete the H-

atom from C-4 position of sugar moiety, resulting in radical

formation that initiates single-strand breaks (Hemnani and

Parihar, 1998). The oxidative damage of nucleotide bases

results in various modification in DNA bases. Oxidative

damage occurs when the oxygen atom binds with the carbon

atom in the DNA, forming peroxyl radicles. Numerous

covalent DNA changes, including single-nucleobase lesions,

strand breaks, inter- and intrastrand cross-links, and protein–

DNA cross-links, can be brought about by ROS. Purine damage

is most frequently caused by 7,8-dihydro-8-oxoguanine, also

known as 8-oxoguanine or 8-oxoG, whereas pyrimidine

damage is most frequently caused by the creation of thymine

glycol (Slupphaug et al., 2003). These lesions do not deform
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the helix and are not bulky. The 8,5′-cyclopurine-2′-
deoxynucleosides are an illustration of bulky modified bases.

4.1.2 Protein
Oxidative damage can have a devastating influence on

protein structure, activity, and physical properties. Proteins

can be modified directly or indirectly as a result of the

damage. Direct modification includes chemical modifications

like carbonylation, glutathionylation, nitrosylation, and disulfide

bond formation. Indirect modification takes place when a

protein molecule interacts with products of lipid peroxidation.

Increased ROS concentrations in cells result in modifications in

amino acids, cleavage of peptide chain, excessive cross-linking,

alteration in electrical charges, and increasing protein

degradation vulnerability (Davies, 1987; Sharma et al., 2012).

The amino acids varied in susceptibility to oxidative damage.

Sulfur- and thiol-containing amino acids are particularly

vulnerable to ROS attack, according to research (Stohs and

Bagchi, 1995). Metals were found to reduce the thiol groups in

protein chains. Both singlet oxygen and hydroxyl radicals are

detrimental to the amino acids Cys and Met. Superoxide radicals

oxidize iron-sulfur centers of enzymes and inactivate them

permanently. It is suggested that oxidized proteins are effective

substrates for ubiquitination-mediated proteosomal degradation

(Das and Roychoudhury, 2014).

4.1.3 Lipid
Disruption in redox equilibrium leads to oxidative stress in

the cell, mainly by enhanced lipid peroxidation. The lipid

peroxidation is considered as a hallmark of oxidative damage

and stress-induced cell injury. Oxidative stress-induced lipid

degradation has been studied in different plants (Sharma and

Dubey, 2005; Han and Yang, 2009; Mishra et al., 2011; Taïbi

et al., 2016). Lipid peroxidation causes massive cell membrane

damage by affecting the composition, assembly, structure, and

dynamics of lipid membranes. As extremely reactive compound,

lipid-derived radicals can also promote the subsequent ROS

production, which interacts with nucleic acids and proteins

(Gaschler and Stockwell, 2017). In lipid peroxidation, PUFAs

(linoleic, linolenic, arachidonic, and docosahexaenoic acids)

present in the membrane phospholipid are most susceptible to

oxidation. ROS chiefly attacks the phospholipid moiety in two

places: C-atom double bonds and ester linkages of fatty acids and

glycerol. Superoxide and hydroxyl radicals interact with PUFA,

producing peroxide that propagates the chain reaction and

generates several other reactive species. As a consequence of

elevated lipid peroxidation, membrane fluidity, and permeability

increase, membrane localized enzymes, ion channels, and

receptors become non-functional (Sharma et al., 2012; Das

and Roychoudhury, 2014). MDA, a peroxidation product lipid

of biomembrane, is considered as oxidative damage indicator of

biomaterials (Yamauchi et al., 2008; Chen et al., 2015).
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4.1.4 Polysaccharides
ROS attack also causes fragmentation of polysaccharides of

the cell wall, thereby probably changing the structure and

function of these molecules. ROS such as singlet oxygen,

hydroxyl radicals, and superoxide involve in oxidative cleavage

of polysaccharides (Duan and Kasper, 2011; Faure et al., 2013;

Lin et al., 2020). Reports have suggested that, in polysaccharide

catabolism, prior treatment with ROS makes the substrate more

suitable for enzymatic cleavage (Metcalfe et al., 1990; Faure et al.,

2013). H2O2 elevates the activities of cell wall–degrading

enzymes to increase the depolymerization of polysaccharide.

In addition, OH• oxidize cell wall polysaccharides, causing the

wall to loosen (Airianah et al., 2016).
5 ROS scavengers in plants

Plant systems possess their own antioxidant defense

mechanism to detoxify overproduced ROS and protect the plant

from oxidative stress under unfavorable development conditions.

To maintain homeostasis in cells, enzymatic components and non-

enzymatic antioxidants tightly control the ROS concentration and

prevent any oxidative injury (Figure 4). Both mechanisms work

synergistically and concurrently to counteract free radicals.

Moreover, alternate oxidases present in ETC complex III of

mitochondria control excessive ROS production indirectly

(Rasmusson et al., 2009). Antioxidants perform a major function

in the halting of oxidative chain reactions by degrading free

radical intermediates.
5.1 Enzymatic antioxidants

Among the enzymatic systems, SOD is considered as the first

line of defense to counter ROS-induced oxidative damage in

nearly all living cells. It is a metalloenzyme, rapidly catalyzing

the dismutation of superoxide radicals into dioxygen and

hydrogen peroxide. In plants, three SOD isozymes have been

reported on the basis of their metal co-factors: (i) Cu/Zn-SOD

(found in cytosol, peroxisomes, and chloroplasts), (ii) Mn SOD

(found in mitochondria), and (iii) Fe SOD (found in

chloroplasts) (Sharma et al., 2012; Das and Roychoudhury,

2014). Overproduction of SOD is often correlated with

enhanced oxidative stress tolerance in plants. Moreover,

compartmentalization of different isozymes across the plant

cell enables them to efficiently prevent stress. SOD is also

capable of detoxifying the hydroxide radical to H2O2, and the

generated H2O2 is subsequently degraded to water and dioxygen

by CAT, ascorbate POD, and guaiacol POD (Anjum et al., 2016;

Mittler, 2017).

The enzyme structure and metal co-factor binding allow for

the classification of SOD enzymes into numerous types. The
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most prevalent SOD enzymes in eukaryotic cells are the cytosolic

Cu/Zn SODs, and the fungal genome has at least one gene for

Cu/Zn SOD synthesis (Miller, 2012). ROS can be used by

pathogenic pseudomonads for their own purposes. For

instance, several P. syringae pathovars produce the phytotoxin

coronatine, which is known to be essential for the pathogen’s

complete pathogenicity (Bender et al., 1987; Uppalapati

et al., 2008).

CAT is an omnipresent heme enzyme, having more

specificity for H2O2 but weaker specificity toward organic

peroxides. CAT activity is prevalent in peroxisomes during

different cellular processes and metabolizes H2O2 without

requiring any cellular reducing equivalent. CAT enzyme has

been found in chloroplasts, cytosols, and mitochondria, but its

activity is less well understood. Similarly, guaiacol peroxidase

(GPX), localized in the cytosol, vacuole, cell wall, and apoplast, is

assumed to be an effective quencher of hydrogen peroxide under

stress and non-stress conditions. It requires aromatic electron

donors such as guaiacol and pyragallol (Asada 1992). GPX is

involved in many indispensable activities, like lignin

biosynthesis, ethylene biosynthesis, IAA degradation, wound

repair, and protection against stress. Ascorbate peroxidase

(APX) executes H2O2 scavenging functions in organelles such

as chloroplasts, cytosol, mitochondria, and peroxisomes with

higher affinity for H2O2. APX is a part of the ascorbate-

glutathione cycle (that also maintains redox homeostasis in the

plant) and harnesses ascorbate (AsA) as a specific electron donor

for the reduction of H2O2 into water. In addition to APX, other

enzymatic scavenger components include DHAR, MDHAR,

glutathione reductase (GR), and nonenzymatic antioxidants
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such as AA and reduced glutathione (GSH) that play a role in

the AsA-GSH cycle. MDHAR is a FAD enzyme that regenerates

AA from the MDHA radical (formed in an APX-catalyzed

reaction) by using NAD(P)H as a reducing substrate. MDHAR

isozymes are produced in organelles like chloroplasts, cytosols,

peroxisomes, mitochondria, and glyoxysomes. Another enzyme,

DHAR, is responsible for regenerating the cellular AA pool by

reducing dehydroascorbate (DHA) with the help of GSH as a

reducing agent. DHAR enzyme is abundant in dry seeds, in

roots, and in both etiolated and green shoots. GSH is oxidized to

glutathione disulfide (GSSG) by the action of DHAR. GR is a

NADPH-dependent enzyme that reduces GSSG to GSH, thereby

keeping a higher cellular GSH to GSSG ratio.
5.2 Non-enzymatic antioxidants

Both ROS-scavenging systems function in a collaborative

and interdependent way to increase cellular defense and to resist

the oxidative damage resulting from ROS. Enzymatic

antioxidants could not scavenge some highly reactive ROS

such as O2 and OH·; therefore, plants depend on non-

enzymatic antioxidants for scavenging such ROS. These non-

enzymatic antioxidants comprise proline, phenolics, flavonoids,

AA, GSH, alkaloids, a-tocopherol, carotenoids, etc. Non-

enzymatic defense machineries also participate in normal plant

physiological function by refining cellular processes like cell

division, cell elongation, aging, and cell death, in addition to

maintaining the cell redox homeostasis (Das and Roychoudhury,

2014). Non-enzymatic scavengers include relatively smaller
FIGURE 4

REDOX homeostasis and effect of various ROS levels on plant cellular function.
frontiersin.org

https://doi.org/10.3389/fpls.2022.1042936
https://www.frontiersin.org/journals/plant-science
https://www.frontiersin.org


Sahu et al. 10.3389/fpls.2022.1042936
organic molecules with low molecular weights. AA is found in

abundance in most plant cell types, apoplasts, and organelles,

particularly in photosynthetic tissues. It is known as a strong

antioxidant as it can act as an electron donor and a reducing

agent in different enzymatic and non-enzymatic reactions.

Apoplastic AA is considered the first line of defense of the

immune system against deleterious exogenous oxidants. AA

offers membrane protection by immediate detoxification of

hydrogen peroxide, peroxide radicals, hydroxyl radicals, and

recycling of vitamin E (a-tocopherol) and carotenoids (Shao

et al., 2008). AA also protects the biosynthetic enzymes from

binding with prosthetic transition metal ions. When there is no

stress, AA is present in the chloroplast in a reduced state where it

helps in distributing excess excitation energy by functioning as a

co-factor for enzyme violaxanthine de-epoxidase (Moussa et al.,

2019). AA is oxidized in two successive processes: first turning

into MDHA and then DHA. GSH was predominantly found in

all cell components (Sharma et al., 2012).

Owing to its high reductive potential, GSH is involved in

many biological activities such as cell growth/division,

differentiation, aging, death, detoxification of xenobiotics,

biosynthesis of nucleotides and proteins, enzymatic regulation,

synthesis of phytochelatins for metal chelation, expression of

stress-responsive genes, conjugation of metabolites, signal

transduction, and regulation of sulphate transport. The

equilibrium between the reduced glutathione and the GSSG is

important for sustaining the redox state in cells. GSH performs

its antioxidant role by different means. It detoxifies ROS

members O2•−, •OH, H2O2 directly, prevent oxidative damage

of macromolecules. GSH is involved in the recycling of

antioxidant AsA by the AsA-GSH cycle and producing GSSG.

The generated GSSG is converted back to GSH by employing

NADPH as co-factor and an electron donor (Das and

Roychoudhury, 2014). This process eventually restores the

GSH pool in cells.

Vitamin E (a-tocopherol) is a member of the lipophilic

antioxidant class, thus able to guard lipids containing biological

membranes from oxidative damage. It safeguards the PSII

structure and function by interacting with oxygen and

quenching its surplus energy, thus protecting the lipid and

other membrane components of the chloroplasts (Ivanov and

Khorobrykh, 2003). The synthesis of vitamin E is restricted to

photosynthetic organisms, including photosynthetic algae, and

certain cyanobacteria. As an antioxidant, a-tocopherol
effectively prevents the toxic effects of oxygen free radicals,

singlet oxygen, and lipid peroxy radicals in cells (Moussa et al.,

2019). Tocopherol functions as a potential trap for free radical by

impeding the chain propagation during lipid autooxidation.

Carotenoids also belong to a class of lipophilic antioxidants

that prevent oxidative damage caused by various ROS.

Carotenoids exist not only in plants but also in microbes (Stahl

and Sies, 2003). In plants, these come under the antennae

molecule group absorbing 450- to 570-nm spectrum of the
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visible light and transfer excitation energy to chlorophyll. It is a

highly potent physical and chemical quencher of singlet oxygen

produced during photochemical reactions of photosynthesis and

generates heat as a by-product (Krinsky, 1998; Shao et al., 2008).

In addition, carotenoids interfere with radical-initiated reactions,

especially with those that form peroxyl radicals. Thus, they protect

the cellular membrane and lipoproteins of plant cells (Moussa

et al., 2019). Carotenoid also plays a role as a precursor to

signaling molecules that affect plant physiological function

under stress and normal conditions. Similarly, flavonoid

antioxidants are present in the plant kingdom as well as a few

other photosynthetic organisms. It is categorized into four

different classes based on their structure: flavonols, flavones,

isoflavones, and anthocyanins. Anthocyanins are powerful

inhibitors of lipid peroxidation. Flavonoids also avoid oxidative

injury to nucleic acid brought by H2O2, HO., and O−
2 It acts as a

secondary ROS scavenger for photosynthetic tissues suffering

damage because of excessive excitation energy. Flavonoids

perform singlet oxygen quenching and mitigate the injury

resulting in the chloroplast membrane (Agati et al., 2012).

Flavonoid is an example of a phenolic compound, possessing

ROS-scavenging property. In addition to flavonoids, other

antioxidant phenolic compounds are tannins, hydroxycinnamate

esters, and lignin. They show their scavenging role by trapping

peroxyl radicals in lipid peroxidation and direct chelation with

transition metal ions (Sharma et al., 2012). Another powerful

antioxidant includes an osmolyte, i.e., proline. Proline is

abundantly reported in different organisms to reduce the

damaging effect of ROS under stress conditions (Das and

Roychoudhury, 2014).
6 Role of endophytes in ROS
homeostasis

Endophytes have been reported to maintain ROS

homeostasis in both biotic (2020; Sahu et al., 2019; Singh

et al., 2020) and abiotic stresses (Sahu et al., 2021).

Endophytes decrease ROS content in the plant cells by

increasing scavenging via increased redox state of glutathione

and ascorbate along with promoting antioxidant enzyme

activities (Sadeghi et al., 2020). Because endophytes have a

close relationship with plants, they have a direct role in ROS

homeostasis (Table 2). Reports suggested that the endophytes

are present at the site of ROS production, i.e., plant cells

(Thomas and Sekhar, 2014). The ROS helps establish

mutualistic interaction between the endophyte, Epichloe

festucae, and gross host, Lolium perenne (Tanaka et al., 2006).

On the other hand, endophytic bacteria–produced ROS help to

produce oxygenous sesquiterpenoids in Atractylodes lancea.

Both pathogenic and helpful fungi encounter an oxidative

surge of ROS during plant infection (Heller and Tudzynski,

2011). The ROS outburst results from plants’ innate immune
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response, which needs to be suppressed by the pathogen to

prevent activating stronger plant defenses. Lack of an ROS

production system can significantly affect the virulence and

symbiosis of fungi with plants (Kayano et al., 2013). Fungi

must combat both plant-derived ROS and ROS produced as a

consequence of aerobic respiration. Strong antioxidant

mechanism, including SOD, CAT, PO, GSH, and thioredoxin,

has been created by fungal pathogens. Intriguingly, despite the

fact that ROS was once assumed to function as a toxic agent to

prevent pathogen infections, it is now well known that ROS

signal the plant defensive response rather than being created in

quantities high enough to defeat these pathogens (Marroquin-

Guzman et al., 2017).
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The focused production of endogenous ROS could be

crucial for major phytopathogen developmental stages, and

the absence of fungal ROS-producing systems may have an

impact on virulence and plant–fungal symbioses (Kayano et al.,

2013). Peroxiredoxins are frequently used by pathogens as a

defense to reduce oxidative stress and maintain redox

equilibrium (Stincone et al., 2014). Fungal phytopathogens

also have other antioxidant systems such as CATs and

glutathione PODs in addition to peroxiredoxins (Stincone

et al., 2014; Breitenbach et al., 2015). Recently, it was found

that oxidative stress induces the necrotrophic fungus Ascochyta

rabiei to produce metabolic enzymes, potential effectors, and

other virulence-related proteins (Maurya et al., 2020),
TABLE 2 Mechanism of ROS homeostasis by the endophytic microorganisms in plants.

SN. Endophyte Host Biotic stress Mechanism of ROS homeostasis Reference

1. Acrophialophora jodhpurensis Tomato Early blight Antioxidant enzymes activity, phenolic content increased,
and reduced cell death

Daroodi
et al. (2021)

2. Piriformospora indica Bean plants Rhizoctonia solani Polyamines production Kheyri et al.
(2022)

3. Irpex lacteus Distylium
chinense
(Winter
hazel)

Penicillium,
Candida

albicans, and
Aspergillus niger

Antioxidant enzymes production Duan et al.
(2019)

4. B. amyloliquefaciens and
P. fluorescens

W.
somnifera

Alternaria
alaternata

Antioxidant machinery, such as SOD, CAT, PO, APx,
GPx, and TFC

Mishra et al.
(2018)

5. AMF Soybean RKN–
Meloidogyne genus

Glycosyltransferases, peroxidases, auxin-responsive proteins
and gibberellin-regulated genes, and DELLA-like proteins

Beneventi
et al. (2013)

6. Piriformispora indica Wheat,
barely, and

maize

Fusarium
verticillioides and

Fusarium
culmorum

Antioxidants production Kumar et al.
(2009) and
Waller et al.

(2005)

7. Glomus mosseae S.
lycopersicum

Meloidogyne
incognita

ROS-scavenging mechanism Voss et al.
(2013)

8. Trichoderma harzianum S.
lycopersicum

Rhizoctonia solani Steroidal glycoalkaloids Manganiello
et al. (2018)

9. Pseudomonas aeruginosa Cucumber Sclerotium rolfsii Enhanced antioxidant activities and proline accumulation Pandey et al.
(2012)

10. Piriformospora indica Corn Fusarium sp. Improved antioxidant enzyme activity Kumar et al.
(2009)

11. Bacillus safensis Rice Rhizoctonia solani Antioxidant enzymes (SOD, POD, and APx) production Sahu et al.
(2020)

12. Bacillus spp. Tomato S. rolfsii PO, polyphenol oxidase (PPO), and APx reduce the accumulation of
superoxides in tissues

Sahu et al.
(2019)

13. B. amyloliquefaciens NBRISN13 Rhizoctonia solani ROS quenchers (arabitol, proline, mannitol, and phospholipases), production
of non-metabolizable rare sugars (turanose) to keep the immune system
induced and compromise fungal growth; activation of defense response

through MAPK signaling and production of defense-related alkaloids such as
terpenes and quinazoline, maintaining cell wall integrity, reduced starch-

content, and the delayed formation of aerenchyma in parenchymal cells and
delayed apoptosis

Srivastava
et al. (2016)

14. Periconia or Microdochium,
Microdochium

Tallgrass
prairie

ecosystem

Polyphenol oxidases Mandyam
et al. (2010)

15. Phyllosticta sp. Guazuma
tomentosa

Production of non-enzymatic antioxidants Srinivasan
et al. (2010)
fro
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suggesting a potential link between pathogenesis and stress

response system, albeit it is yet unclear how fungal diseases

penetrate the host plant despite the lethal oxidative burst. The

only plausible conclusion is that fungal phytopathogens have

developed innovative strategies to counteract the oxidative

stress caused by the host during their evolution alongside it,

and they have also taken advantage of this antagonism for their

own gain.

On the other hand, NoxA (Nox1)– and NoxB (Nox2)–

mediated fungal ROS production plays a crucial role in

pathogen development and infection process. Plants have

defense mechanisms against biotic and abiotic stresses, such

as controlling the transit of ions like Na+ and K+,

accumulating suitable solutes, and altering the expression of

genes associated to stress. It has been proposed that the initial

Ca2+ influx mediated by plasma membrane ion channels is

essential for the adaptive signaling. It has also been proposed

that ROS produced by NADPH oxidase (Nox) serve critical

roles in controlling how various plant species, particularly

halophytes, adapt to stress. One of the chief mechanisms used

to counteract the plant defence system is NoxA and NoxB.

These genes are involved in the production of H2O2 through

the sequential reduction of oxygen. The ROS-producing

Nox activity is demonstrated by respiratory burst oxidase

homolog (Rboh) proteins, which are synergistically

activated by Ca2+ binding to EF-hand motifs and Ca2

+-dependent phosphorylation.

In some pathogens like Magnaporthe oryzae, oxidative

burst by fungus is required to form the products related to

the infection (Egan et al., 2007). In addition, the Nox1 and

Nox2 complexes have a crucial role in determining the

differences between different virulence determinants

including appressoria and infection peg formation (Egan

et al., 2007). However, the two homologs play different

functions in plant infection.

ROS acts as signaling molecules for several environmental

responses and conversely degenerate the cells, DNA, RNA,

lipids, and protein. Hence, endophytic microorganisms and

antioxidant compounds work together to help plants deal with

stress (Mishra et al., 2014). Several endophytic microorganisms

produce a myriad of compounds with antioxidant capacity.

However, the information on the endophyte-produced

antioxidant compounds was scattered and barely exposed.

Hence, this section scouts the available literature for the ROS-

scavenging compounds from endophytes.

The antioxidants are treasured for their critical role in plant

disease management and ROS homeostasis. Plants and

endophytes produce antioxidant compounds due to

environmental stimuli, but the endophytes have supplementary

action. Pioneering work on antioxidant compounds revealed that

endophytic microbes produce phenols, flavonoids, tannins,

hydroxyanthraquinones, phenolic terpenoids, etc. (White and

Torres, 2010). Ethanolic extract of Phyllosticta sp. demonstrated
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strong antioxidant activity against both 2,2′-azino-bis-3-
ethylbenzthiazoline-6-sulphonic acid and 1,1-diphenyl-2-

picrylhydrazyl radicals (Srinivasan et al., 2010). Nevertheless, the

endophyte-produced compounds play a significant role in

antioxidant activity in vitro and in vivo because of their

structural similarity (Kannan et al., 2016). Endophyte

(Pestalotiopsis microspore)–derived antioxidants, pestatin

(Harper et al., 2003) and isopestacin (Strobel, 2002), are

potential scavengers of superoxide and hydroxyl radicles

(Strobel and Daisy, 2003). The endophytic actinomycetes,

Streptomyces sp. isolated from the Mirabilis jalapa, produce

several antioxidant compounds (Passari et al., 2020).

Technological advancements in chromatography techniques

are commonly employed for the analysis of crude extracts of

endophyte (E+) plant extracts. These techniques helped to

identify and characterize novel compounds with antioxidant

properties. In Thin Layer Chromatography (TLC) and High

Performance Liquid Chromatography (HPLC) analyses, several

phenol-based antioxidants were classified as antioxidant

compounds. Fungal endophytes were found to produce

antioxidant compounds such as 2,2′-methylenebis, phenol, and

some aldehydes, which could contribute to the host oxidative

stress alleviation (Kaur et al., 2020).
7 Future prospects and conclusion
in endophyte-mediated ROS
homeostasis in plants

Endophytes are integral parts of ROS homeostasis in plants,

and exploring some potential endophytes in the form of

inoculants could be useful in reducing stress on the plants and

achieving the production potential of crop plants. Endophytes

with specific induction to an enzymatic or non-enzymatic

antioxidant system must be identified through research. It

would help in fitting such microbial inputs for precision

agriculture in a calculated way.

Microbial inputs have wonderful roles in agriculture, and

they are going to be multiplied many folds in the coming future.

Endophytes are being characterized for their immense roles in

growth promotion and stress tolerance. The induction of

systemic resistance is one of the mechanisms by which the

endophytes supplement biotic stress tolerance in the plants.

When microbes inhabit host plants, they activate a number of

pathways, which has an impact on plant metabolism. In such a

scenario, it is indispensable to critically understand the

mechanisms of microbe-mediated induction of plant pathways.

This would facilitate the development of smart bio-formulations

by reducing the energy-exhaustive induction of “not so

important” pathways under specific pathogen stress. It could

further be explored to design stress specific endophytic

compounds to work against excess ROS and maintain normal
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plant growth and development. In other words, it would result in

an energy-efficient microbial support system that could help

plants sustain pathogenic stress conditions at the lowest

energy cost.
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